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Abstract

Over the past several years, the performance of state-
of-the-art face recognition systems has been significantly
improved, due in a large part to the increasing amount of
available face datasets and the proliferation of deep neu-
ral networks. This rapid increase in performance has left
existing popular performance evaluation protocols, such
as standard LFW, nearly saturated and has motivated
the emergence of new, more challenging protocols (aimed
specifically towards unconstrained face recognition). In
this work, we employ the use of parts-based face recogni-
tion models to further improve the performance of state-
of-the-art face recognition systems as evaluated by both
the LFW protocol, and the newer, more challenging proto-
cols (BLUFR, IJB-A, and IJB-B). In particular, we employ
spatial transformers to automatically localize discrimina-
tive facial parts which enables us to build an end-to-end
network where global features and local features are fused
together, making the final feature representation more dis-
criminative. Experimental results, using these discrimina-
tive features, on the BLUFR, IJB-A and IJB-B protocols,
show that the proposed approach is able to boost perfor-
mance of state-of-the-art face recognition systems. The pro-
posed approach is not limited to one architecture but can
also be applied to other face recognition networks.

1. Introduction
Face recognition is an ongoing challenging problem in

both computer vision and biometrics, due in a large part
to a number of difficult issues such as pose, illumination,
and expression variations, high inter-person similarity and
occlusions. Thanks to the large face datasets in the pub-
lic domain and rapid developments in deep convolutional
neural networks, the state-of-the-art performance of uncon-
strained face recognition today is quite impressive and it
continues to improve [20, 18, 16, 19, 17, 27, 15, 14]. On
the standard LFW protocol [6] for face verification, which
was regarded as a difficult task ten years ago, the perfor-
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Figure 1: Example images in LFW and IJB-B after align-
ment using MTCNN [28]. The image in the first row are
well aligned and all the facial parts are located in a consis-
tent way. The face images in the second and third rows, al-
though aligned, still appear in a quite different way because
of large pose or occlusion.

mance of deep learning based methods have achieved ac-
curacy over 99%, beating even human performance [10].
Due to this saturation of the old LFW protocol, more diffi-
cult and realistic face recognition challenges have recently
been proposed, such as BLUFR [11], IJB-A [9] and IJB-
B [22]. These newer protocols contain a larger number of
test images, and the individual face images could be of low
quality, larger pose variations and unfavorable illumination.
In light of these new challenges posed by BLUFR, IJB-A,
and IJB-B, we propose a new face recognition system to
push state-of-the-art in face recognition performance. Our
proposed method is inspired by the previous success of lo-
cal parts-based face recognition systems and visual atten-
tion networks. In particular, we further improve the per-
formance of state-of-the-art deep neural networks by fusing
the semantic information from both the global features and
automatically localized facial parts.

Almost all face recognition systems include face align-
ment as a pre-processing step to ensure the input faces
are in a similar position and orientation, reducing the
intra-class variations and making the recognition task eas-



ier [20, 19, 27, 15, 14]. However, as the complexity of
unconstrained face images increase, even though aligned,
2D face images can still appear very differently, as shown
in Figure 1. As such, constructing global face models be-
comes a very difficult task. Because of this difficulty, an
attractive idea is to model different facial parts individu-
ally and combine them to generate a global representation.
Recognizing complex objects by their parts is a popular
technique in pattern recognition. In the well-known De-
formable Part Model (DPM) [2], different part filters are
learned and combined with a root filter to detect complex
objects in the images efficiently. Similar ideas, such as de-
composing faces into different parts, have been shown to
work well for face detection [12, 25, 26]. A highly suc-
cessful, parts-based face recognition approach, called the
DeepID series [18, 16, 19, 17], cropped a large number of
different local patches either at fixed positions or around
landmarks in the face image, trained a single deep convolu-
tional network on each of these regions, and fused the repre-
sentations from all the networks by training on a validation
dataset. The success of works like DeepID indicate that al-
though face is a nearly rigid object, building models for dif-
ferent face regions can also help improve the performance
of face recognition systems.

One of the most important problems in parts-based face
recognition approaches, is the localization of the target
parts. In other words, although the faces are aligned, parts
of a face shown in a fixed region could be quite different
for different people at different poses, which reduces the
discrimination ability of these parts-based models. One ap-
proach to solving this problem is to use the detected land-
marks to crop rectangular patches around those respective
landmarks. However, even with these landmarks, it is still
difficult to decide what regions we should crop since some
regions may be useful for recognition, and other may not.
Given this difficulty, we turn to another technique to find
and localize discriminative regions automatically that has
become popular in the vision community, i.e. visual atten-
tion mechanism [1, 24, 3, 8].

By using a differentiable visual attention network, we
can build an end-to-end system where the global recogni-
tion network and several parts-based networks are trained
simultaneously. In this proposed end-to-end system, a
fully connected layer for fusing features can be trained to-
gether with the recognition networks, which helps the sub-
networks to explore more discriminative features comple-
mentary to the global representation. In addition, the vi-
sual attention network learns to localize distinct local re-
gions automatically without any landmark supervision. Our
experiments show that the proposed approach can further
improve the state-of-the-art networks on challenging bench-
marks such as BLUFR, IJB-A and IJB-B. More concisely,
contributions of this paper can be summarized as follows:

• We designed an end-to-end face recognition system in-
cluding global network, parts-based networks, atten-
tion network and a fusion layer that are trained simul-
taneously.
• We showed that discriminative regions can be be lo-

calized automatically without using facial landmarks
by using a visual attention network.
• We showed that adding parts-based networks can fur-

ther improve the performance of state-of-art deep net-
works on challenging protocols, including BLUFR,
IJB-A and IJB-B, with little complexity increase.

2. Related Work
2.1. Parts-based Deep Face Recognition

Our proposed approach is predominantly inspired by the
success of the DeepID series [18, 16, 19, 17]. In the first
DeepId paper [18], ten different regions were cropped, re-
spectively, from a face image (five large regions at fixed po-
sitions and five small regions around detected landmarks).
For each region, RGB and gray-scale patches of five dif-
ferent scales were generated and each trained with a sin-
gle convolutional neural network to output a feature vector
of 160 dimensions. The features were then concatenated
and the dimensionality was reduced with additional train-
ing on a validation set. In DeepID2, 400 patches at differ-
ent positions, scales, color channels and horizontal flipping
were cropped and used for training 200 different networks.
After feature selection, 25 patches were selected to extract
a 4, 000-dimensional feature vector, which was finally re-
duced to 180-dimensional vector with PCA. The authors
showed that combining these features from different regions
substantially improved the face recognition performance. In
our work, unlike the DeepID methods, we combine all the
elements (patch selection, sub-networks and feature fusion)
together into an end-to-end system and train them simulta-
neously.

2.2. Visual Attention Network

Visual attention is a mechanism to automatically local-
ize objects of interest in an image or parts of an object. Ba
et al. [1] used a recurrent attention model to locate the ob-
jects in order to better perform multi-object classification.
A similar scheme was used in [24] to generate captions
for images. Xiao et al. [23] proposed to use visual atten-
tion proposals for fine-grained object classification by clus-
tering the channels of a feature map into different groups
and generating patches based on the activation of individ-
ual groups. In [3], a recurrent structure of a CNN and at-
tention proposal network is proposed to zoom into small
regions for fine-grained classification. The input of the at-
tention network is the feature map of the last convolutional
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Figure 2: An example architecture of the proposed end-to-end network with K = 2 sub-networks. A 96× 112 image is first
fed into the base-network, which is a single CNN for face recognition. The feature map of the last convolutional layer of the
base-network is then both used to learn a global representation with a fully connected layer, and K transformation matrices
with an attention network of two-stacked fully-connected layers. The regions of interest are sampled into patches of size of
48× 48. K smaller CNNs as sub-networks follow to learn local features from these automatically localized patches. All the
global and local features are then concatenated and fused by another fully connected layer.

layer rather than raw images so that the computational cost
can be reduced. We adopt a similar strategy in our net-
work. Only two levels of CNNs are used in our approach
but more than one patch is generated by the attention net-
work. In addition, we use Spatial Transformers [8], which
use a projective transformation matrix θ to transform the
original input image, enabling us to better sample patches.
By multiplying θ and the coordinates of pixels in the output
image, the spatial transformer computes the corresponding
coordinates of each pixel in the input image, and samples
them through bi-linear interpolation. This transformer is
differentiable, allowing the attention network to be learned
end-to-end without labels. In [8], experiments showed that
the spatial transformer network is able to automatically lo-
calize distorted digits, and street view house numbers. Sub-
sequently, the performance of fine-grained classification is
improved by generating multiple region proposals. Finally,
Zhong et al. [29] showed that by training an attention net-
work with spatial transformers, an end-to-end face recogni-
tion network which automatically learns the alignment can
achieve comparable results to those with pre-aligned im-
ages.

3. Approach

In this section, we outline an end-to-end network which
includes a base-network for learning a global representation
from the whole face image, several sub-networks for model-

ing specific facial parts, an attention network for generating
region proposals to feed into the sub-networks and a fusion
layer to fuse the global and local features.

3.1. Overall Architecture

A graphic illustration of the overall architecture is shown
in Figure 2. The input image size is 96×112. The proposed
network begins with a base-network which can be any sin-
gle convolutional neural network for face recognition. In
particular, we employ the Face-ResNet proposed in [5] be-
cause of its good generalization ability and its state-of-the-
art performance. In order to reduce the computational cost
of the attention network, we adopt a similar approach as [3],
where the attention network is connected to the last hidden
convolutional layer rather than the input image. The atten-
tion network outputs K projective transformation matrices
θ, each of which has 8 parameters. Here, K is a hyperpa-
rameter. For each of the K transformation matrices, a spa-
tial transformer is used to sample a 48× 48 patch from the
region of interest via bi-linear interpolation. The sampled
patch is then used by a smaller sub-network to learn local
features. The global representation is of 512 dimensions,
while the length of each local feature vector is 128 dimen-
sions. All of them are concatenated together and fused by a
fully connected layer to generate a 512-dimensional repre-
sentation.

A softmax layer is added to both the global represen-



Type Output Size

Batch Norm + Fully Connected 128
Batch Norm + Fully Connected 8×K

Table 1: The architecture of the attention network.

tation and the fused representation for classification in the
training phase. Notice that the gradient is not propagated
back through the fusion layer to the global representation.
This allows the base-network to be trained independently,
and it encourages the sub-networks to explore new features
complementary to the global representation. Experimen-
tal result shows that such an approach enables the model
to converge faster and leads to better generalizability. The
softmax mainly learns to scatter the features of different
classes, which is correspondent to the inter-class dissimilar-
ity. Therefore, in order to reduce the intra-class variation,
we also adopt the center loss proposed in [21] with the rec-
ommended setting of α = 0.5 and λ = 0.003. The center
loss is applied to both the global representation and fused
representation.

3.2. Attention Network

Details about the attention network are shown in Table 1.
Because the input to this network is the feature map of the
last convolutional layer of the base-network that contains
rich semantic information, the attention network is com-
posed of only two fully-connected layers, saving a large
amount of computational resources. We add a batch nor-
malization layer [7] along with a ReLU activation layer [13]
both before and after the first fully-connected layer to ac-
celerate the training of attention network. The second fully
connected layer outputs K transformation matrices. Then
a spatial transformer module is used to sample the corre-
sponding partial regions according to each of these matri-
ces. Finally, there are several implementation subtleties to
note.

First, because we are using a projective transformation,
the sampled region is not restricted to be a rectangular
shape. This means that the original image could be warped.
However, Zhong et al. [29] showed that a better perfor-
mance can be achieved with a projective transformation
than a similarity transformation for face alignment. One
plausible explanation for this is that neural networks do not
perceive images in the same way as human do. As such,
networks are able to learn better features from warped im-
ages.

Second, we multiply the learning rate of the attention
network by 0.0001. Without performing this scaling, the
output transformation deviates too much before the network
is able to learn a set of reasonable parameters.

Third, the weights of the last fully connected layer are
initialized as zero, while its biases are initialized as the flat-

Type Output Size Filter Size/Stride

Convolution 48 × 48 × 32 3 × 3/1
Convolution 48 × 48 × 64 3 × 3/1
Max Pooling 24 × 24 × 64 2 × 2/2
Convolution 24 × 24 × 64 3 × 3/1
Convolution 24 × 24 × 128 3 × 3/1
Max Pooling 12 × 12 × 128 2 × 2/2
Convolution 12 × 12 × 96 3 × 3/1
Convolution 12 × 12 × 192 3 × 3/1
Max Pooling 6 × 6 × 192 2 × 2/2
Convolution 6 × 6 × 128 3 × 3/1
Convolution 6 × 6 × 256 3 × 3/1
Fully Connected 128

Table 2: The architecture of the sub-networks.

ten vector of the initial K transformation matrices. In exper-
iments, we use manual initialization for these matrices if K
is small and random initialization if K is large.

3.3. Sub-Network for Modeling Facial Parts

Since the information in a local region is relatively small,
it would be unnecessarily complex to use a network with as
many parameters as the base-network to learn representa-
tions from these patches. As such, we use a simple archi-
tecture for all the sub-networks, as shown in Table 2. It is
very similar to the network used in [27] except that it uses
fewer layers. We add a fully connected layer at the end of
the sub-network to learn a compressed local feature vector.
Finally, we add a batch normalization along with a ReLU
layer after every convolution and fully connected layer. Be-
cause the sub-networks take a smaller input and have much
less parameters compared with base-network, they only add
little extra run-time to the whole model, as shown in 4.1.

3.4. Promoting Sub-networks for Feature Explo-
ration

Although theoretically the larger the number of sub-
networks, the more complementary local features can be
learned to improve the robustness of the fused representa-
tion, we find that the improvement of the performance after
adding a large number of sub-networks is usually negligent.
An explanation for this is found by the magnitude of the
weights in the fusion layer for each dimension in the con-
catenated feature. Figure 3 shows that many local features
have very small weights in the fusion layer. This indicates
that there are some sub-networks which contribute little to
the final fused representation. Additionally, this could di-
minish the loss propagated back to the base-networks and
prevents the sub-networks from learning efficiently. As
such, some sub-networks become “dead” during training.
Therefore, inspired by [4], we add a promotion loss to ex-
plicitly promote the weights in the fusion layer for those lo-
cal features. Notice that in [4], the promoted parameters are
those related to a certain output class, however, in our case
they are those related to a certain input dimension. In par-
ticular, let’s denote an input feature vector as x = [xg,xl]



where xg is the global feature vector and xl is the vector
of all local features concatenated into one column. The
fused representation y is obtained with a fully connected
layer y =Wx+ b. Corresponding to xg and xl, W can be
viewed as the concatenation of two matrices W g and W l,
where

y =W gxg +W lxl + b (1)

The goal of the proposed promotion loss Lp is to encourage
the local weights to be similar to the global weights:

Lp =
1

Dl

Dl∑
i=0

‖‖W l
i ‖2 − α‖2, (2)

where

α =
1

Dg

Dg∑
i=0

‖W g
i ‖

2 (3)

and Dl, Dg refer to the number of dimensions in the local
and global feature vectors, respectively. W l

i refers to the ith
column ofW l, similar forW g

i . The promotion loss is added
as a regularization loss with coefficient λ. As shown in 3,
after adding promotion loss, the distribution of the weights
in the fusion layer become much more uniform, thus avoid-
ing the problem of “dead” sub-network and encouraging the
sub-networks to find more discriminative features.

4. Experiments
4.1. Implementation Details

. We conduct all of our experiments using Tensorflow
1.2. First, we implement the Face-ResNet in [5] as a base-
line. We follow the same settings for the learning rate and
center loss. All the images are first aligned using landmarks
detected using MTCNN [28] and trained on the CASIA-
Webface dataset [27]. The resulting network achieves a ver-
ification accuracy of 98.77% on the standard LFW protocol.
This result is quite comparable to the performance origi-
nally reported in [5], however, we do note a slight drop in
performance (from 99.00% to 98.77%). The most plausible
explanation is that we are using a different library for im-
plementation. All the following experiments are compared
to this baseline result.

For the sub-networks, we adopt two schemes to initialize
the transformation matrices θ:
• Model A: a small network with K = 3 rectangular re-

gions initialized in the upper, middle and bottom face,
respectively.
• Model B: a relatively larger network with K ran-

domly initialized rectangular regions, whose widths
and heights are between 30% and 60% of the original
image.

The reason that we manually initialize Model A is that when
K is rather small, the randomly initialized regions are not
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Figure 3: Magnitude of the weights of the fusion layer
over different input dimensions when using different λ for
the promotion loss. Without promotion loss, many dimen-
sions have little weight, resulting in “dead” sub-networks.
Dropout helps to promote the weights, but diminishes the
performance.

guaranteed to be distributed well. For example, they may
have a large amount of overlap and only cover a small part
of the entire face image. This would result in leaving behind
crucial information useful for recognition. Therefore we
manually choose three rectangular regions that cover differ-
ent parts of the face for Model A.

We follow the same training settings as [5] with a batch
size of 256 and 28, 000 training steps. The promotion loss
weight is set to λ = 105 based on the results of a grid
search. We use two Nvidia Gefore GTX 1080 Ti GPUs
to train Model A and four for Model B. As for time com-
plexity, there is only a slight increase in run-time: for base-
network, Model A and Model B, it takes 0.003s, 0.003s and
0.004s per image to extract features with one GPU, respec-
tively.

In order to evaluate the proposed method and implemen-
tation, we first study the effectiveness of the proposed mod-
ules using LFW dataset with both standard and BLUFR pro-
tocol [11]. Then we evaluate the proposed model on more
challenging IJB-A [9] and IJB-B [22] benchmarks. Because
the purpose of this paper is to present a system to improve
any face recognition network instead of achieving the best
result on these specific protocols, and since most results
on the benchmarks are based on different architectures and
training datasets, we believe it is not fair to compare the ab-
solute performances. Thus, we only compare the relative
performance of the proposed system with the original base-
network.

4.2. Evaluation of Proposed Modules on LFW

In the proposed network, we use an attention network
to localize K discriminative regions rather than cropping a



Figure 4: Example pairs that are misclassified by base-
network but are classified correctly on LFW dataset. Pairs
in the green box are genuine pairs and pairs in the red box
are impostor pairs. We use the average threshold of BLUFR
face verification for VR@FAR= 0.1% on 10 splits.

fixed patch, train a fusion layer to compress the concate-
nated feature and add promotion loss encouraging the sub-
networks to explore more discriminative features. Here we
evaluate the effectiveness of these modules by comparing
the results with and without these modules on two proto-
cols on LFW dataset: standard and BLUFR [11]. The stan-
dard verification protocol of the original LFW dataset con-
tains only 6, 000 pairs of faces in all, which is insufficient to
evaluate deep learning methods, evidenced by the fact that
results are almost saturated on this protocol. Because of
this, Liao et al. [11] made use of the whole LFW dataset to
build the BLUFR protocol. In this protocol, a 10-fold cross-
validation test is defined for both face verification and open-
set face identification. For face verification, a verification
rate (VR) is reported for each split with strict false alarm
rate (FAR= 0.1%) by comparing around 156, 915 genuine
pairs and 46, 960, 863 imposter pairs1, which is more close
to real-world scenario than the accuracy metric in the stan-
dard LFW protocol. For open-set identification, an identifi-
cation rate (DIR) at Rank-1 corresponding to FAR= 1% is
computed. We first test the performance of Model B with-
oug certain modules to ensure their effectiveness. Then we
train the proposed Model A, Model B with all modules and
compare them with base-network.

In Table 3, Base-net indicates the baseline single CNN
network, which is used as the base-network in our model.
Attention Net indicates whether an attention network is used
to automatically localize the regions for sub-networks or
crop the fixed regions that are randomly initialized. Fu-
sion Layer indicates whether to add a fully connected fu-

1the numbers are averaged over ten splits.

Type AN FL PL Accuracy VR DIR Rank-1
@FAR= 0.1% @FAR= 1%

Base-net 98.77% 94.96% 72.96%
Model B N Y Y 98.67% 95.54% 74.33%
Model B Y N Y 98.78% 95.63% 76.37%
Model B Y Y N 98.75% 95.83% 75.75%
Model A Y Y Y 98.85% 95.90% 77.51%
Model B Y Y Y 98.98% 96.44% 77.96%

Table 3: Evaluation results of the proposed model
with/without certain modules on standard LFW and
BLUFR protocols. “AN” means ”Attention Network”; “FL”
means ”Fusion Layer”; ”PL” refers to ”Promotion Loss”.
“Y” indicates the module is used while “N” indicates that
module is not used. Accuracy is tested on the standard LFW
verification protocol. Verification Rate (VR) and Detection
and Identification Rate (DIR) are tested on the BLUFR pro-
tocol.

sion layer or directly use the concatenated layer as the rep-
resentation. Promotion Loss means whether we add pro-
motion loss as regularization to the fusion layer. The ac-
curacy is tested on the standard protocol, while Verifica-
tion Rate (VR) and Detect and Identification Rate (DIR)
are tested on BLUFR protocol. Although all the results are
similar on standard LFW protocol, distinct differences can
be observed on BLUFR results. This is because standard
protocol only contains 6, 000 pairs which is not adequate
to precisely reflect the performance of a highly sophisti-
cated model. Based on the results on BLUFR, we can see
that Model B consistently outperforms base-network even
without certain modules. And also every module is making
a contribution and is essential to guarantee the final per-
formance of the whole model. After using all modules,
the proposed Model A and Model B surpasses the base-
line by four percent in terms of DIR@FAR= 1% at rank-1.
This demonstrates that the proposed idea of an auto-aligned
parts-based model does improve the performance of a single
neural network. And with more sub-networks added, Model
B (12 sub-networks) consistently outperforms Model A (3
sub-networks).

To further evaluate the attention networks, we visualize
the localized patches in the Model A. Some examples are
shown in Figure 5. Notice the different distribution of fa-
cial parts, even after alignment, due to the challenging pose
of the input image. The attention network can still accu-
rately find the target facial parts. In the localized patches in
the column, all the facial parts are distributed in a similar
way. These accurately localized patches make it an eas-
ier task for the sub-networks to learn robust features from
certain facial parts. The attention network also allows ad-
justing which part to localize so that the sub-networks can
find more discriminative features. Notice that the attention
network is trained without the landmark labels and as such,
the computation is almost free.



Figure 5: Examples of the localized regions in Model A.
The attention network localizes the eyes, nose and mouth
accurately by learning without landmark labels. These ac-
curately localized patches make it an easier task for the sub-
networks to learn robust features from certain facial parts.

4.3. Evaluation on IJB-A and IJB-B Benchmarks

Recently, the IARPA Janus Benchmarks, including IJB-
A and IJB-B, were released to push forward the frontiers of
unconstrained face recognition systems. In IJB-A, a man-
ually labeled dataset containing images both from photos
and video frames is used to build a protocol for face iden-
tification (1:N Search) and face verification (1:1 Compari-
son). In comparison to LFW, the 5, 712 images and 2, 085
videos in the IJB-A benchmark have a wider geographic
variation, larger pose variation and images of low resolu-
tion or heavy occlusion, making it a much harder bench-
mark than both standard LFW and BLUFR benchmarks.
Again, a 10-fold cross-validation test is designed for both
identification and verification in IJB-A. True Accept Rate
(TAR) at False Accept Rate (FAR) is used to evaluate ver-
ification performance. For closed-set identification, Cumu-
lative Match Characteristic (CMC) measures the fraction of
genuine gallery templates that are retrieved within a cer-
tain rank. And False Negative Identification Rate (FNIR) at
False Positive Identification Rate (FPIR) is reported to eval-
uate the performance in terms of open-set identification.

IJB-B is an extension of IJB-A benchmark. It consists of
21, 798 still images and 55, 026 frames from 7, 011 videos
from 1, 845 subjects. There is no cross-validation in IJB-B.
In particular, we use the 1:1 Baseline Verification protocol
and 1:N Mixed Media Identification protocol for IJB-B.

From the results in Table 4 and Table 5, we can see that
the proposed models do improve the performance of the
base-net on both the IJB-A and IJB-B benchmarks. This
shows the effectiveness of the proposed idea which fuses
features from local regions together with a global feature

Figure 6: Example pairs that are misclassified by base-
network but are classified correctly by Model B on IJB-B
dataset. Pairs in the green box are genuine pairs and pairs
in the red box are impostor pairs. We use the threshold of
IJB-B 1:1 Baseline Verification for TAR@FAR= 0.1%.

representation, although the base-network is already quite
sophisticated. Second, Model B outperforms Model A in
most protocols, which indicates that more local regions and
sub-networks could help achieve even larger performance
gains.

5. Conclusion

In this paper, we have proposed a scheme for incorporat-
ing parts-based models into state-of-the-art CNNs for face
recognition. A set of sub-networks are added to learn fea-
tures from certain facial parts. An spatial transformer-based
attention network learns to automatically localize the dis-
criminative regions. We have further added a fusion layer
to combine the global and local features, which, with the
proposed promotion loss, encourages the sub-networks to
find more discriminative features. The proposed approach
can be applied to any single CNN to build an end-to-end
system. Experiments on the most novel and challenging
benchmarks show that the proposed strategy can help im-
prove the performance of a single CNN without significant
increase in run-time. Evidence suggests that in the future,
we can further improve the performance with even more
sub-networks.
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