

Improving Face Recognition by Exploring Local Features with Visual Attention

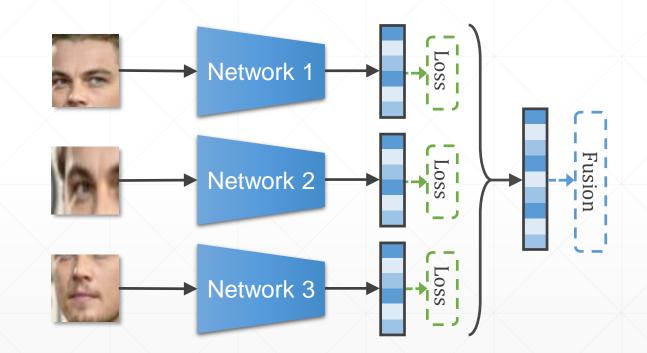
Yichun Shi and Anil K. Jain

Michigan State University

Difficulties of Face Recognition

- Large variations in unconstrained face datasets
- Face alignment partially solve the problem
- Variations still remains after alignment

Example face images after alignment

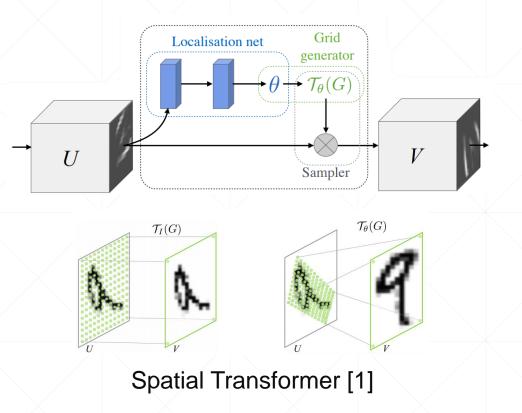

Parts-based Method

- Cropping patches for different facial parts [1]
- Building models for different patches
- Fuse the representations or scores

> Problems:

- Deciding useful facial parts
- Learning complementary features
- Effective fusion

An end-to-end solution

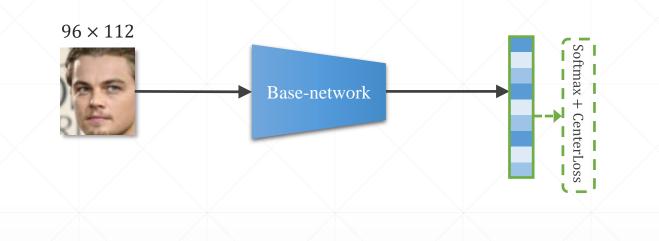


Spatial Transformer Network

- An Attention Network predicts transformation matrix θ
- A grid sampler transforms the image:

$$\begin{pmatrix} x_i^s \\ y_i^s \\ 1 \end{pmatrix} = \frac{1}{\lambda} \begin{pmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & 1 \end{pmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

- Bilinear sampling
- Differentiable



[1] M. Jaderberg, K. Simonyan, A. Zisserman, et al. "Spatial Transformer Networks." In NIPS, 2015.

Architecture – Baseline

- Build upon a typical single
 CNN system
- Pre-aligned input (112x96)
- Base-net: any CNN

Architecture – Attention Network

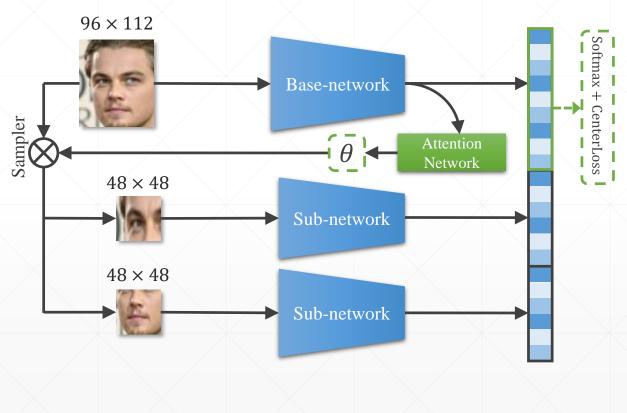
- Spatial Transformer Network
- Last feature map as input
- Predicts *K* transformation matrices θ

ç	96 × 112						
						oftm	
)	Se-	Base-net	work		→	ax +	
R)E			$\mathbf{\lambda}$		Cen	
				Attention		enterL	
				Network		sso	

Туре	\mathbf{X}	Output Size
Batch Norr	n + Fully Connected	128
Batch Norr	n + Fully Connected	8 × K

Architecture of Attention Network

Architecture – Attention Network


Grid sampler using θ
K output patches (K = 2 in example figure)
48x48 size
48x48 size

Architecture – Sub-network

- K subnetworks
- Each learns a local feature vector

Туре	Output Size	Filter Size/Stride
Convolution	48×48×32	3×3/1
Convolution	48×48×64	3×3/1
Max Pooling	24×24×64	2×2/2
Convolution	24×24×64	3×3/1
Convolution	24×24×128	3×3/1
Max Pooling	12×12×128	2×2/2
Convolution	12×12×128	3×3/1
Convolution	12×12×256	3×3/1
Max Pooling	6×6×256	2×2/2
Convolution	6×6×256	3×3/1
Convolution	6×6×512	3×3/1
Fully Connected	128	2×2/2

Architecture of Sub-network

Architecture – Fusion Layer

96 × 112 A fully connected layer to fuse Softmax the features **Base-network** CenterLoss Sampler Softmax Classification/Verification loss $\overline{\theta}$ Attention Network for the fused feature 48×48 CenterLoss Sub-network 48×48 Sub-network

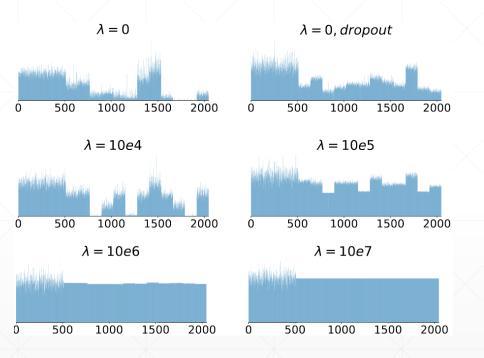
Promoting Sub-networks

- Some sub-networks has a very small weight in the fusion layer (dead)
- Dead sub-networks fails to learn useful local features
- Fusion layer:

$$\mathbf{y} = W^g \mathbf{x}^g + W^l \mathbf{x}^l + \mathbf{b}$$

 $\mathcal{L}_{p} = \frac{1}{D_{l}} \sum_{i=1}^{D_{l}} \left\| \left\| W_{i}^{l} \right\|^{2} - \alpha \right\|^{2}$ $\alpha = \frac{1}{D_{g}} \sum_{i=1}^{D_{g}} \left\| W_{i}^{l} \right\|^{2}$

Promotion Loss [1]:


$$W^g$$
: weights for global (base-network) features
 \mathbf{x}^g : global features
 W^l : weights for local (sub-network) features
 \mathbf{x}^g : local features
b: biases

$$D_l$$
: # dimensions of global feature vector
 W_i^l : weight for i_{th} local feature
 D_g : # dimensions of global feature vector
 W_i^g : weight for i_{th} global feature

Promoting Sub-networks

- Visualization of magnitude of the
 - weights in fusion layer
- λ : the coefficient of the promotion loss
- Dead neurons without promotion
- Dropout harms the performance

Experiments

- Base-net: Face-ResNet
- Three models:
 - Base-net: K = 0, typical single CNN system
 - Model A: K = 3, manually initialized patches.
 - Model B: K = 12, randomly initialized
- Training Data: CASIA-Webface (0.5M)

- 2/4 GPUs for training Model A/B, respectively
- Inference speed:
 - Base-net: 0.003s per image
 - Model A: 0.003s per image
 - Model B: 0.004s per image

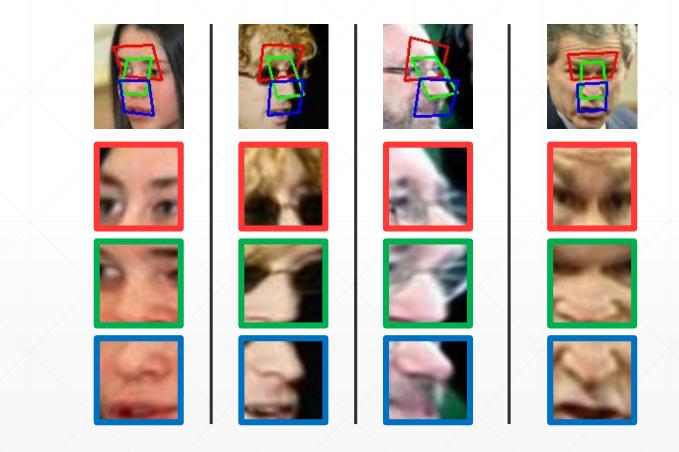
[1] A. Hasnat, J. Bohne, S. Gentric, and L. Chen. "Deepvisage: Making face recognition simple yet with powerful generalization skills". arXiv:1703.08388, 2017.

Results on LFW

Model	AN	FL	PL	Accuracy	VR @ FAR=0.1%	DIR Rank-1 @ FAR=1%
Base-net				98.77%	94.96%	72.96%
Model A	Y	Y	Y	98.85%	95.90%	77.51%
Model B	N	Y	Y	98.67%	95.54%	74.33%
Model B	Y	N	Y	98.78%	95.63%	76.37%
Model B	Y	Y	N	98.75%	95.83%	75.75%
Model B	Y	Y	Y	98.98%	96.44%	77.96%

AN: Attention Network

Accuracy: standard LFW protocol


- FL: Fusion Layer
- PL: Promotion Loss

VR, DIR: BLUFR protocol [1]

Example localized facial parts

- Consistent localization
 - Invariant to variation
 - Distinctive regions
 - No landmarks are used

Results on IJB-A and IJB-B

Model	TAR@FAR	(Verification)	CMC (Closed-se	et Identification)	FNIR (Open-set Identification)	
	0.001	0.01	Rank-1	Rank-5	0.01	0.1
Base-net	0.542 ± 0.092	0.788 ± 0.092	0.882 ± 0.019	0.954 ± 0.008	0.426 ± 0.017	0.355 ± 0.014
Model A	0.583 ± 0.084	0.808 ± 0.026	0.889 ± 0.007	0.957 ± 0.007	0.418 ± 0.015	0.353 ± 0.014
Model B	0.602 ± 0.069	0.823 ± 0.022	0.898 ± 0.009	0.960 ± 0.006	0.411 ± 0.016	0.353 ± 0.014

Results on IJB-A 1:1 Comparison and 1:N Search protocol

Model	TAR@FAR (V	erification)	CMC (Closed-se	et Identification)	FNIR (Open-set Identification)	
	0.001	0.01	Rank-1	Rank-5	0.01	0.1
Base-net	0.631	0.851	0.749	0.861	0.149	0.032
Model A	0.652	0.861	0.768	0.875	0.139	0.031
Model B	0.659	0.865	0.769	0.874	0.135	0.032

Results on IJB-B 1:1 Baseline Verification and 1:N Mixed Media Identification protocol

Conclusion

- End-to-end Parts-based face recognition
- Automatic localization of facial parts via attention network
- Simultaneous learning of fusion layer

Conclusion

- End-to-end Parts-based face recognition
- Automatic localization of facial parts via attention network
- Simultaneous learning of fusion layer

Future work:

- Architecture of sub-network efficiency, effectiveness
- More complementary local features

