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Abstract

Face retrieval is an enabling technology for many
applications, including automatic face annotation, de-
duplication, and surveillance. In this paper, we propose
a face retrieval system which combines a k-NN search
procedure with a COTS matcher (PittPatt1) in a cascaded
manner. In particular, given a query face, we first pre-filter
the gallery set and find the top-k most similar faces for the
query image by using deep facial features that are learned
with a deep convolutional neural network. The top-k
most similar faces are then re-ranked based on score-level
fusion of the similarities between deep features and the
COTS matcher. To further boost the retrieval performance,
we develop a manifold ranking algorithm. The proposed
face retrieval system is evaluated on two large-scale face
image databases: (i) a web face image database, which
consists of over 3, 880 query images of 1, 507 subjects and
a gallery of 5, 000, 000 faces, and (ii) a mugshot database,
which consists of 1, 000 query images of 1, 000 subjects
and a gallery of 1, 000, 000 faces. Experimental results
demonstrate that the proposed face retrieval system can
simultaneously improve the retrieval performance (CMC
and precision-recall) and scalability for large-scale face
retrieval problems.

1. Introduction

In the digital era, more and more face images are
captured, stored, and shared over the Internet. Given a
large collection of face images, an interesting challenge is
automatic face retrieval, which aims to find one or several
face images of interest from the collection [2, 15]. Face
retrieval is useful for many applications, including auto-
matic face annotation, de-duplication, surveillance, etc. In
general, face retrieval can be solved based on two schemes:
using face recognition models and using facial features
for k-NN search. In the first scheme, followed by most

1PittPatt, a face recognition company, was acquired by Google in 2011.

Figure 1. Illustration of the proposed cascaded face retrieval
system.

face recognition techniques, a model of facial similarity is
learnt and then used to rank faces in the dataset (gallery)
according to their similarities with the query face image.
Over the past few decades, face recognition in constrained
environments has been extensively studied, with the result
that commercial face SDKs have demonstrated impressive
accuracies in these scenarios. However, one limitation
of model-based schemes is the scalability to large-scale
galleries, as the recognition models need to compare the
query image with all face images in the gallery. While
this problem can be addressed by parallelizing the matching
process, we propose an alternative which filters the gallery.

The scalability problem can be addressed by directly
using learned facial features for k-NN search, an approach
that follows content-based image retrieval techniques [15].
Face images are represented as feature vectors and then
efficiently indexed, searched, and re-ranked in the feature
space. Based on traditional handcrafted features, the k-NN
search schemes generally perform worse than state of the
art model-based schemes. For example, in [1] the mean
Average Precision (mAP2) of a nearest neighbor algorithm
is 0.66, while the commercial software PittPatt achieves the
best performance with mAP of 0.86. A recent breakthrough
in feature representation is “deep learning”, which includes

2The mean of the average precision scores of a set of queries.
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a family of machine learning algorithms that model high-
level abstractions in data by employing architectures com-
posed of multiple non-linear transformations. Many studies
have reported state of the art performance by applying deep
learning techniques to facial images [10, 11, 9, 12].

In this paper, we propose a face retrieval system which
combines a k-NN search procedure with a COTS matcher
(PittPatt3) in a cascaded manner, as shown in Fig. 1. In the
first step, we first pre-filter the gallery set by using the deep
learning based facial representations and find the top-k most
similar faces to the query face image. Then, we re-rank the
top-k most similar faces by fusing the similarities from deep
facial features with the similarities output by PittPatt. In
the third step, we use a manifold ranking algorithm to fully
explore the intrinsic structural information among the top-k
face images.

The main contributions of this paper are:

• A cascaded scheme for large-scale face retrieval prob-
lem, which addresses the performance and scalability
simultaneously.

• Improved retrieval results on both relatively uncon-
strained (web downloaded images) and constrained
(mugshots) large-scale facial image databases, which
contain 5 millions and 1 million gallery images respec-
tively.

2. Related Work

Face verification has been extensively studied in multi-
media, computer vision, and biometrics [7]. Many studies
prior to the last decade focused on face recognition and ver-
ification for relatively constrained acquisitions. Recently,
many significant publications have appeared dealing with
face recognition in unconstrained conditions using the La-
beled Faces in the Wild (LFW) dataset [5, 9, 10, 11, 12].
For example, Sun et al. [10] constructed a ConvNet for face
identification and verification. The overall facial feature
representation was constructed by concatenating 25 low-
dimensional deep features generated from 25 independent
deep ConvNets. Finally, a joint Bayesian verification model
was learned. Sun et al. achieved the best verification
accuracy to date on the LFW database (99.15%), which
is close to the human performance of 99.20%. Instead
of directly using 2D aligned faces, a deep feature rep-
resentation framework based on 3D alignment techniques
was proposed in [12]. Given a 2D face image, they first
generated a 3D aligned frontal-view face, followed by
learning a deep ConvNet; the outputs of the second to last
fully-connected layer were used as the face representations,
demonstrating comparably high accuracy to [10] on LFW.

3Version 5.1

Most of the existing feature representations learned from
deep learning frameworks are fed to supervised recogni-
tion/verification models. But, only a few of these studies
have evaluated the retrieval performance of the deep feature
representations [3, 13]. Donahue et al. [3] evaluated
whether features extracted from the activation of deep
ConvNets, trained in a fully supervised fashion for object
recognition tasks, could be re-purposed for novel generic
recognition tasks. Wan et al. [13] mainly focused on
evaluating the performance of deep features on general
content-based image retrieval tasks. In this paper, we aim
to train deep ConvNets on a large set of facial images
and evaluate their retrieval performance on large-scale face
image databases.

An important problem in using k-NN search for face
retrieval is the implementation of an efficient indexing and
search scheme, which depends on the feature representa-
tion [15, 2, 14]. For example, following the Bag-of-Words
representation scheme, Wu et al. [15] proposed a face
retrieval system using component-based local features with
identity-based quantization to deal with scalability issues.
Chen et al. [2] proposed to use a sparse coding algorithm
and partial identity information to generate component-
based semantic codewords. Using global facial feature vec-
tors, Wang et al. [14] adopted the Locality-Sensitive Hash
(LSH) [4] algorithm for indexing and retrieval, which can
also be adopted for the deep face representations proposed
in this paper.

3. Face Retrieval System

3.1. Deep Face Representation

The architecture of our deep ConvNet is inspired by [8,
13]. In [8], the deep ConvNets were trained on about
1 million images from 1, 000 object categories. This
system won the ImageNet Large Scale Visual Recognition
Challenge in 2012 with a top-5 test error rate of 15.3%.
The architecture of our deep ConvNet is shown in Fig. 2 (a),
which mainly consists of three parts: i) convolution layers
and max-pooling layers, ii) fully connected layers, and iii)
output classification layer.

The input layer accepts raw intensity values of the face
image pixels. All faces are first aligned and cropped by
the PittPatt SDK and resized to 256 × 256. To reduce
over-fitting, a data augmentation procedure is performed:
several transformations of the input image are generated
with translations and horizontal reflections by extracting
224 × 224 random patches from the original 256 × 256
image.

Following the input layer, there are five convolutional
layers. The first two convolutional layers are followed by
a response normalization and a max-pooling layer. The
third and fourth convolutional layers are interconnected
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Figure 2. The proposed deep convolutional neural network (ConvNet) and deep feature similarity calculation.

without any intervening pooling or normalization. The fifth
convolutional layer is followed by a max-pooling layer.
Following the convolutional layers, there are two fully-
connected layers with 1, 024 neurons. Finally, the last layer
is a softmax classification layer. The number of neurons in
the classification layer is equal to the number of classes in
the training set.

When using deep ConvNets to generate feature represen-
tations, generally, the last fully-connected layer produces
the best retrieval performance [13]. In our deep ConvNet
architecture shown in Fig. 2 (a), the last fully-connected
layer is the Feature Layer; we denote the feature represen-
tation generated from the Feature Layer as “deep feature”
(DF). Since there are millions of parameters in the deep
ConvNet, it requires an enormous number of training im-
ages, and associated computational cost, to obtain a stable
deep ConvNet. In order to reduce the training time and
overcome the limitations of the number of training images,
we initialize our deep ConvNets with the parameters of a
pre-trained ImageNet-based ConvNet [13].

To improve the performance and robustness of the
learned deep features, we train five deep ConvNets
independently. For face retrieval, given a pair of facial
images, we first generate their deep features with the
learned deep ConvNets. Then, we compute the overall
deep feature similarity by averaging the ConvNet-wise
cosine similarities. The procedure of calculating deep
feature similarity is shown in Fig. 2 (b). Since the similarity
among two deep feature vectors only depends on the cosine
similarity function, the retrieval problem can be easily
accelerated by adopting any one of the many fast search
and indexing techniques [4]. All the experiments on deep
learning are conducted on a Linux server with Tesla K20
GPUs. To implement the system, we use the public-domain
C++ implementation of ConvNet 4.

4https://code.google.com/p/cuda-convnet/

3.2. Manifold Ranking

The similarity of deep features and the similarity output
by PittPatt SDK both aim to measure the possibility that
two face images belong to the same subject. However,
ranking based on the similarities of the query face image
to the top-k face images alone does not make use of the
intrinsic structure of the top-k most similar facial images.
To fully exploit the intrinsic structure information, we adopt
a manifold ranking algorithm that further utilizes the pair-
wise similarities between all of the top-k most similar face
images [6].

Let xq and X={x1, . . . ,xk} denote the query face and
its top-k most similar faces retrieved from the gallery,
respectively, where i=1, 2, . . . , k is the ranking position.
We obtain candidate face sets by sorting the fused similarity
of deep features (DF) and PittPatt (PP) in descending order.
The fused similarity is computed by a sum-of-score fusion
rule with equal weights applied to the similarities of PP and
DF after z-score normalization. A sparse n-NN graph G is
constructed overX , where two vertices are connected if and
only if one is among the n nearest neighbors of the other. In
our experiments, we used the top-5 nearest neighbors of xi

in X to construct the graph G. We denote the edge affinity
matrix of graph G as W∈Rk×k, where Wij is the similarity
score between xi and xj . Let ŷ and y denote the initial and
refined ranking scores, respectively. The manifold ranking
algorithm aims to determine y by minimizing the following
objective function:

min
y

k∑
i,j=1

Wij(yi − yj)
2 + λ

k∑
i=1

(yi − ŷi)
2 (1)

The first term in Eqn. 1 enforces that similar face images
have close ranking scores, the second term incorporates
the initial scores into the final result, and λ is a penalty
parameter. A simple example of the manifold ranking
algorithm is shown in Fig. 3. The optimization problem
in Eqn. 1 has a closed-form solution: y = (L + Λ)−1Λŷ,

https://code.google.com/p/cuda-convnet/
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Figure 3. An example of manifold ranking. We pre-filtered the
gallery set and retrieved the top-k (k=5 in this example) most
similar face image. Firstly, we ranked these similar faces by fusing
the similarities of deep features and PittPatt, and obtained the
initial ranking score ŷ. Then, we constructed a n-NN similarity
graph (n=2 in this example). Finally, we generated the refined
ranking score y by adopting the proposed manifold ranking
algorithm based on the initial ranking score ŷ and the edge affinity
matrix W .

where L = D −W is the graph Laplacian matrix of W , D
is a diagonal matrix with the diagonal elements as Dii =∑k

j=1Wij , and Λ is a diagonal matrix with Λ(i, i) = λ

4. Experimental Protocol
4.1. Datasets

The proposed facial image retrieval system is evaluated
on two databases. (i) Web-based Face Database, where web
downloaded images are relatively unconstrained in a natural
environment; (ii) Mugshot Database, where all the faces
are captured in constrained environments and mostly have a
frontal view.

Web-based Face Database is composed of three
sources: WLFDB [14], LFW [5] and general web faces.

For WLFDB database, we randomly select 1, 000 sub-
jects for the Training Set to learn the deep ConvNets. Since
WLFDB is constructed by querying the Google search
engine and contains a large number of noise images (i.e.
images that do not actually contain the person of interest),
we only use his/her top 50 Google-ranked images for each
subject.

For LFW database, we remove any overlapping subjects
with the Training Set. We also remove all the subjects who
only have 1 images. For each left subject, we randomly
collect half of his/her images for the Query Set and use the
left images for the Gallery Set. As a result, there are 3, 880
query images of 1, 507 subjects in the query set and 3, 854
mated images in the gallery set.

To build a large-scale gallery set, we use a crawler to
download millions of web images, which are filtered to
only include images with faces detectable by the OpenCV
implementation of the Viola-Jones face detector. As a
result, there are 5 millions of web facial images in the

Figure 4. Examples of face images in the (a) web-based face
database, and (b) mugshot database.

gallery set in total.
More details of the web-based face database are shown

in Table 1. Several examples are shown in Fig. 4 (a).

Table 1. Web-based Face Image Database

Source # Subjects # Images

Training Set WLFDB [14] 1,000 36,061

Query Set LFW [5] 1,507 3,880

Gallery Set LFW [5] 1,507 3,854
General Web Faces – 4,996,146

Total – 5,000,000

Mugshot Database. The Mugshot database was derived
from the Pinellas County Sheriffs Office (PCSO) database,
which is collected in the state of Florida, U.S.A. Firstly, we
randomly select 2, 000 images of 1, 000 subjects. For each
subject, we randomly add one image into the Query Set and
the other into the Gallery Set as the mate image. Secondly,
we randomly select 10, 000 images of 1, 000 subjects for the
Training Set. Finally, we randomly select 900, 000 images
for background images in the Gallery Set. The details of the
mugshot database are shown in Table 2. Several examples
are shown in Fig. 4 (b).

Table 2. Mugshot Database

# Subjects # Images

Training Set 1,000 10,000

Query Set 1,000 1,000

Gallery Set 1,000 1,000
– 900,000

Total 1,000,000

Remark 1 There are no overlapping subjects between the
training set and the query and mated images in the gallery.

4.2. Experimental Settings

The learning rate of deep ConvNets is initialized with
0.01, which is finally reduced to 0.0001. In our ex-
periments, we train 5 deep ConvNets independently. To
measure the similarity between deep features, we first
compute ConvNet-wise cosine similarities, then compute



the overall DF similarity by averaging the five ConvNet-
wise similarities.

For the manifold ranking algorithm, we construct the
graph of similar faces with the top-5 nearest samples. The
penalty parameter λ is set to 1. The initial ranking scores ŷ
are set as: ŷi=

n−i
n where i is the ranking position. We find

the above ranking scores are empirically better than using
similarity scores. For the mugshot database, we evaluate
the retrieval performance by using a Cumulative Match
Characteristic (CMC) curve, since only one mate image
exists for each query image.

5. Experimental Results
5.1. Comparison of Distance Measures

In the proposed face retrieval system, we use cosine
similarity to compute the distance between two deep facial
representations, as Fig. 2 (b). In this experiment, we
evaluate the performance of two other common distance
measures: L1 and L2, as shown in Table. 3. We use a 100K
gallery set for this experiment.

Table 3. Comparison of Distance Measures.

Cosine L2 L1

mAP of DF 0.448 0.309 0.283

We can observe that cosine similarity achieves the best
performance.

5.2. Comparison of Fusion Schemes

In the proposed face retrieval framework, we first re-
trieve the top-k most similar images by deep feature similar-
ities, then re-rank the similar faces by fusing the similarities
of deep features and PittPatt. We denote such a unifying
scheme as DF→PP. In this experiment, we also evaluate two
other kinds of unifying schemes, as follows:

• PP→DF: We first use the similarities output by PittPatt
to find the top-k most similar faces over the whole
retrieval set, then we fuse the similarities of deep
features and PittPatt over the top-k most similar faces
for re-ranking.

• PP+DF: We fuse the similarities of deep features and
PittPatt over the whole retrieval set, and rank all the
images in retrieval set.

In PP→DF and DF→PP schemes, we retrieve the top-
k=1, 000 most similar faces then re-rank them. Experimen-
tal results for web-based face database are shown in Fig. 5.
We use a 100K gallery set for this experiment. We can draw
several observations from these results.

Firstly, deep features alone (i.e. ConvNet-wise cosine
similarities) remarkably outperform commercial PittPatt
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Figure 5. Comparison of fusion schemes for web-based face
database. Top-k=1, 000 most similar faces were first retrieved in
PP→DF and DF→PP schemes with PP and DF, respectively.

SDK, which indicates that the deep ConvNets can efficient-
ly learn and abstract high-level facial representations by
training on a large set of web facial images.

Secondly, by fusing the similarities of deep features and
PittPatt, we get better performance. However, the per-
formance of the three fusion schemes (DF→PP, PP→DF,
and DF+PP) varies. We notice that DF→PP produces the
best performance, which is the one used in the proposed
face retrieval system. The fusion scheme DF+PP performs
worse than DF→PP and also requires more computation
cost.

5.3. Impact of Number of Retrieved Faces, k

For the proposed face retrieval system, one important
parameter is k, the number of retrieved similar faces from
the gallery set, as it affects both the retrieval performance
and computational cost/scalability. In this experiment, we
examine the impact of k by increasing it from 100 to 1, 500.
Based on the re-ranking results of the DF→PP scheme, we
sequentially adopt the manifold ranking algorithm, which
is denoted as DF→PP+MR. The experimental results are
shown in Fig. 6. We use a 100K gallery set for this
experiment. We can draw several observations from the
results.

Firstly, we observe that increasing the number of re-
trieved faces k, generally leads to better overall retrieval
performance, while the improvement becomes marginal
when k is larger than 1, 000 (see Fig. 6 (a)). However,
increasing the number of retrieved faces k will increase the
computational cost, since we have to adopt PittPatt SDK
for O(k) times in the DF→PP and DF→PP+MR schemes
(the similarity matrix W can be pre-computed offline). In
our experiments, we set k=1, 000 as a trade-off between
performance and efficiency. Secondly, the manifold rank-
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ing algorithm improves the retrieval performance, which
indicates that the propagation of similarities among the
retrieved similar faces is helpful to increase the ranking
values of the correct faces.

5.4. Retrieval Performance
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Figure 7. Retrieval Performance vs. Database Size, N .

In this experiment, we examine the relationship between
the retrieval performance and the size of the gallery, which
is increased from 100, 000 to 5, 000, 000. The experimental
results are shown in Fig. 7. The retrieval performance de-
creases with increased size of the gallery set. The proposed
scheme consistently achieve the best performance.

5.5. Retrieval Time

In general, the retrieval time of all schemes increases
linearly with the size of the gallery set. Table 4 shows
evaluation of the running time of the various face retrieval
schemes for the largest gallery set (5M). For one face query,
the average retrieval time of PP is around 440 seconds com-
pared with 14.2 seconds for DF→PP+MR. This indicates

the proposed face retrieval system is able to address the
performance and scalability issues, simultaneously.

Table 4. The average retrieval time of one query face image for
web-based face database with 5M face images in gallery set.

PP DF DF→PP DF→PP+MR

Time (s) 444.3 6.65 11.55 14.2

mAP 0.200 0.230 0.340 0.355

5.6. Experiments on Mugshot Retrieval

On the mugshot database, we first evaluate the perfor-
mances of three kinds of deep features generated with the
following three schemes on a 100K gallery set:

• DF1: Using the web-based face ConvNets that are
trained and used in our previous experiments.
• DF2: Training new ConvNets with the mugshot

database training set. The deep ConvNets are
initialized with an ImageNet-based ConvNet.
• DF3: Training new ConvNets with the mugshot

database training set. The deep ConvNets are
initialized with a facial ConvNet that was used in our
previous experiments.

Table 5. Comparison of various deep features for mugshot
retrieval.

DF1 DF2 DF3

Accuracy @ Rank-1 0.468 0.617 0.704

The experimental results are shown in Table 5. We can
observe that the performance of DF1 scheme is very poor,
which indicates the web face based ConvNets have bias
when used for the mugshot database. To overcome the
bias, five new deep ConvNets are trained with the mugshot
training set in DF2 and DF3 schemes. Comparing with
initializing the deep ConvNets with the ImageNet-based
ConvNet (DF2), substantially better performance can be
achieved by using the facial ConvNet for initialization
(DF3). It indicates that the facial ConvNet, which was
trained on a large set of web face images, provides a better
start-point for deep ConvNet training on mugshot image
databases.

Based on DF3 feature representation scheme, we evalu-
ate the face retrieval performance of the proposed scheme
on the whole 1M gallery set, as shown in Fig. 8. Since
there is a single mate image for all query images, in
this experiment, we do not adopt the manifold ranking
algorithm. Several observations can be drawn from the
results. First, the performance of PittPatt on the mugshot
database is substantially better than on the web-based face
images, which indicates that it has been well developed on
face images captured in constrained environments. Second,



the recognition rate of DF3 is worse than PittPatt for small
rank positions, and better at high rank positions. Third, the
proposed face retrieval system (DF3→PP) obtains the best
performance over all ranking positions.
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Figure 8. Retrieval performance on the mugshot database. Top-
k=1, 000 most similar face images are first retrieved from the
gallery and then re-ranked. The size of the gallery database is
1, 000, 000.

6. Conclusions
In this paper, we propose a face retrieval system which

combines a k-NN search procedure and a COTS matcher
in a cascaded manner. We propose to pre-filter the gallery
set by using deep face representations and rank the top-k
most similar faces by fusing the similarities of deep fea-
tures and a COTS matcher (PittPatt). A manifold ranking
algorithm is also adopted to refine the retrieval perfor-
mance. Experimental results demonstrate the proposed
face retrieval system can simultaneously address the perfor-
mance and scalability issues and achieve favorable retrieval
results on two large-scale face databases collected in differ-
ent scenarios.
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Figure 9. Face retrieval results for three face queries on web-based face database. (a), (d) and (g) top-10 retrieved faces by using PittPatt
SDK (PP); (b), (e) and (h) top-10 retrieved faces by using deep features (DF); (c), (f) and (i) top-10 retrieved faces by using the proposed
cascaded face retrieval system (DF→PP+MR): top-k=1, 000 most similar faces were first filtered by deep features, and then were ranked
by fusing the similarities of deep features and PittPatt SKD, finally, were re-ranked by adopting a manifold ranking (MR) algorithm. The
size of the gallery set is 5, 000, 000.




