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Abstract—Given the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to
search for persons of interest among the billions of shared photos on these websites. Despite significant progress in face recognition,
searching a large collection of unconstrained face images remains a difficult problem. To address this challenge, we propose a face
search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a
cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using features
learned by a convolutional neural network. The k retrieved candidates are re-ranked by combining similarities based on deep features
and those output by the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million
web-downloaded face images. Experimental results demonstrate that while the deep features perform worse than the COTS matcher
on a mugshot dataset (93.7% vs. 98.6% TAR@FAR of 0.01%), fusing the deep features with the COTS matcher improves the overall
performance (99.5% TAR@FAR of 0.01%). This shows that the learned deep features provide complementary information over
representations used in state-of-the-art face matchers. On the unconstrained face image benchmarks, the performance of the learned
deep features is competitive with reported accuracies. LFW database: 98.20% accuracy under the standard protocol and 88.03%
TAR@FAR of 0.1% under the BLUFR protocol; IJB-A benchmark: 51.0% TAR@FAR of 0.1% (verification), rank 1 retrieval of 82.2%
(closed-set search), 61.5% FNIR@FAR of 1% (open-set search). The proposed face search system offers an excellent trade-off
between accuracy and scalability on galleries with millions of images. Additionally, in a face search experiment involving photos of the
Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed cascade face search system could find the younger
brother’s (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M gallery.

Index Terms—face search, unconstrained face recognition, deep learning, large face collections, cascaded system, scalability.
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1 INTRODUCTION

Social media has become pervasive in our society. One popular  secial media
aspect of social media is the sharing of personal photographs. G
Facebook, in a 2013 white paper, revealed that its users have
uploaded more than 250 billion photos, and are uploading 350
million new photos each day To enable automatic tagging of
these images, accurate and robust face recognition capabilities

Who is he?
are needed. Given an uploaded photo, Facebook and Google's o PE—"
. .
tag suggestion systems automatically detect faces and then 3
suggest possible name tags based on the similarity between facial “** ™" Hﬂ.l‘l-lﬂﬂ
templates generated from the input photo and previously tagged <
photographs in their datasets. In the law enforcement domain, One of them?

the FBI plans to include oveb0 million photographs in its
Next Generation Identification (NGI) data§etvith the goal of Fig- 1. An example of large-scale face search problem.
providing investigative leads by searching the gallery for images
similar to a suspect'’s photo. Both tag suggestion in social networks
and searching for a suspect in criminal investigations are examp¥éale face search: (i) loss in search accuracy, and (ii) increase in
of face search at scale (Fi@). We address the large-scale fac&€omputational complexity with increase gallery size.
search problem in the context of social media and other web The typical approach to scalability (used in e.g. content-based
applications where face images are generally unconstrainedirmaige retrieval f]) is to represent objects with feature vectors
terms of pose, expression, and illuminatici [2]. and employ an indexing or approximate search scheme in the
A major focus in face recognition has been to improve uffieature space. A vast majority of face recognition approaches,
constrained face recognition accuracy, particularly on the Label#gespective of the representation scheme, are ultimately based
Faces in the Wild (LFW) benchmark][ But, the problem of on fixed length feature vectors, so employing feature space
scale in face recognition has not been adequately addréssed methods is feasible. However, some techniques for improving
is now generally agreed that the small size of the LFW dataga€e recognition accuracy, such as pairwise comparison models
(13,233 images of5, 749 subjects) and the limitations in the(e.g. Joint-Bayes ), are not compatible with feature space
LFW protocol do not address the two major challenges in largapproaches. Additionally, most COTS face recognition SDKs
define pairwise comparison scores but do not reveal the underlying
1. http://phys.org/news/2016-01-facebook.html feature vectors, so they are also incompatible with feature-space
2.900.gl/UYIT8p _ _ _ approaches. Therefore, using a feature space based approximation
3. Our preliminary work on this topic appeared in the Proc. BEE o4 aione may not be sufficient for large-scale search.

International Conference on Biometrics (ICB), Phuket, June 2015A
technical report describing this work appearedd [ To address the tradeoff between search performance and search
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time at scale§0M face images used here), we propose a cascadediN search method to improve scalability. There are three main
face search framework (Fi@). In essence, we decompose th@pproaches for approximate face search:

search problem into two steps: (i) a fast filtering step, which
uses an approximation method to return a short candidate list, *
and (ii) a re-ranking step, which re-ranks the candidate list with

a slower pairwise comparison operation, resulting in a more
accurate search. The fast filtering step utilizes a deep convolutional
network (ConvNet), which is an efficient implementation of the
architecture in ], with product quantization (PQ)] to speed up
retrieval. For the re-ranking step, a COTS face matcher (one of
the top performers in the 2014 NIST FRVE]) is used. The main
contributions of this paper are as follows:

2 RELATED WORK

An efficient deep convolutional network for face recogni- e
tion, trained on a large public domain data (CASIA)[

which improves upon the baseline results reportedjn [

A large-scale face search system, leveraging the deep
network representation combined with a state-of-the-art
COTS face matcher in a cascaded scheme.

Studies on three face datasets of increasing complexity:
PCSO mugshot dataset, LFW dataset (only contains faces
detectable by Viola-Jones face detector), and the 1JB-A
dataset (contains several faces which are not detectable by
the Viola-Jones detector).

The largest face search experiments conducted to date on
the LFW [3] and 1JB-A [9] benchmarks, with ar80M
gallery.

Using face images of the Tsarnaev brothers involved i
the Boston Marathon bombing as queries, we show th
Dzhokhar Tsarnaev’s photo could be identified at r&nk .
when searching against t8@M gallery.

Inverted IndexingFollowing the traditional bag-of-words
representation, Wu et al2] designed a component-based
local face representation for inverted indexing. They first
split aligned face images into a set of small blocks
around the detected facial landmarks and then quantized
each block into a visual word using an identity-based
quantization scheme. The candidate images were retrieved
from the inverted index of visual words. Chen et dl] [
improved the search performance irY] py leveraging
human attributes.

Hashing Yan et al. [L5] proposed a spectral regression
algorithm to project facial features into a discriminative
space; a cascaded hashing scheme (similarity hashing) was
used for efficient search. Wang et &i3] proposed a weak
label regularized sparse coding to enhance facial features
and adopted the Locality-Sensitive Hash (LSEY][to
index the gallery.

Product Quantization (PQ)Unlike inverted indexing and
hashing which require index vectors to be stored in
main memory, PQ 7] is a compact discrete encoding
method that can be used either for exhaustive search or
inverted indexing search. In this work, we adopt product
guantization for fast filtering.

In the literature, face search systems have mainly been evalu-
a{hed under the closed-set protocol (Tabjewhich assumes that

e subject in the probe image is present in the gallery. However,
in many large scale applications (e.g., surveillance and watch list
scenarios), open-set search protocol, where the probe subject may

not be present in the gallery, is more appropriate. Recognizing

this, several new protocols for unconstrained face recognition

Face search has been extensively studied in multimedia &#fed on the LFW dataset have been proposed, including the
computer vision literature2[]. Early studies primarily focused OPen-setidentification protocal{] and the Benchmark of Large-

on faces captured under constrained conditions, e.g. the FEREf®I® Unconstrained Face Recognition (BLUFR) protocdl] [
dataset [4]. However, due to the growing need for Strond—iowever, even for these two protocols, the gallery sizes are fairly
face recognition capability in the social media context, ongoi;c?a" (afew thousand images), due to the inherent small size of the

research is focused on faces captured under more challen

av dataset. Tablé shows that the largest face gallery reported

conditions in terms of large variations in pose, expressiol the literature to date is aboiM, which is not even close to
illumination and aging, similar to images in the LFW][and Peing a representative of social media and forensic applications.

JB-A [9] datasets.

To tackle these two limitations, we evaluate the proposed cascaded

The three main challenges in large-scale face search dAge search system with &M face gallery under both closed-

i) face representatignii) approximate k-NN search and iii)

gallery selection and evaluation protocol. For face representation,
features learned from deep convolutional networks (deep featurg@s) FACE SEARCH FRAMEWORK

have been shown to saturate performance on the standard LEW
evaluation protocdl

The best accuracy to date on LFW is reported by Baidl} [
which is99.77%; it leverages70 deep learning models trained on

set and open-set protocols.

Iven a probe image, a face search system aims to find th& top-

most similar face images in the gallery. To handle large galleries

containing tens of millions of images, we propose a cascaded face
search structure similar tol§], [25], designed to speed up the

1.2M images of18K individuals. A comparable resul99.63%) . o
was achieved by Googlé ] using a deep model and a training Se?earch process while achieving acceptable accuracy.

. : . Figure 2 outlines the proposed face search architecture con-
\t’r\?t? 3\/6”‘;’0'\1 |:nagej OfSSA tiUbjﬁcrtj' lr;[ ?as e\r/en bi?tin :leporte%isting of three main steps: template generatiomodule which
al deep fealures excee € human face recognition acculgey, ¢ features for thay gallery faces (offline) as well as for

(99.20% [10]) on the LFW dataset. In order to recognize face f line): i filteri le which
in web downloaded images, we also adopt a deep ConvNet ba%eedprobe ace (online); iface filteringmodule which compares

. - . . . . € probe representation against the gallery representations using
face representatlon by improving the archltecty re outlinedjn [ Iproduc'[ quantization to retrieve the tépmost similar candidates
Given our goal of using deep features to filter a large gallery

to a small set of candidate face images, we use an approximatg we got the links to these web images from a research collaborator, who
was unwilling to release these images publicly. Our approach will also work

4. http://lvis-www.cs.umass.edu/lfw/results.html on any other gallery size.
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TABLE 1
A summary of face search systems reported in the literature

Probe Gallery

Authors Dataset Search Protocol
#Images # Subjects #Images # Subjects
Wu et al. P] 220 N/A 1M+ N/A LFW [3] + web face8 closed set
Chen et al. [] 120 12 13,113 5,749 LFW [3] closed set
4,300 43 54,497 200  Pubfig [LO] closed set

Miller et al. [11] 4,000 80 1M+ N/A  FaceScrub]Z] + Yahoo Image% closed set
Yietal [13] 1,195 N/A 201,196 N/A  FERET [14] + web faces closed set
Yan et al. 5] 16,028 N/A 116,028 N/A  FRGC [1€] + web faces closed set
Klare et al. [7] 840 840 840 840 LFW [3] closed set

25,000 25,000 25,000 25,000 PCSO[7] closed set
Best-Rowden et al.1f] 10,090 5,153 3,143 596 LFW[3] closed & open set
Liaoetal. [L9 8,707 4,249 1,000 1,000 LFW[3] closed & open set
Proposed System 7,370 5,507 80M+ N/A LFW [3] + web faces closed & open set

14, 868 4,500 80M+ N/A  1IB-A[9] + web faces closed & open set

a. Face images are downloaded from the web and used to augment the gallery; different face search systems use their own web downloaded face datas
b. http://labs.yahoo.com/news/yfcc100m/
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Fig. 2. lllustration of the proposed large-scale face search system.

(k < N); and (iii) re-ranking module which fuses similarity
scores of deep features with scores from a COTS face matcher tc
generate a new ordering of tlhecandidates. These three modules

are discussed in detail in the remainder of this section.

Fig. 3. Proposed deep convolutional neural network (ConvNet).

3.1 Template Generation The input layer accepts the RGB pixel values of the aligned
Given a face imagd, the template generator is a non-lineaf?Ce images. Faces are aligned as follows: i. Use the bLiB
mapping function implementation of Kazemi and Sullivan’s ensemble of regoess
F()=x¢ R4 o) trees methodZg] to detect68 facial landmarks (see Figl); ii.
rotate the face in the image plane to make it upright based on the
which projects] into a d-dimensional feature space. The diseye positions; iii. find a central point on the face (the blue point in
criminative ability of the template is critical for search systerfig. 4) by taking the mid-point between the leftmost and rightmost
accuracy. Given state-of-the-art performance of deep learnitemdmarks; the center points of the eyes and mouth (red points in
techniques in various machine learning applications, particulafyg. 4) are found by averaging all the landmarks in the eye and
face recognition, we adopt deep learning for template generatianouth regions, respectively; iv. center the faces along the x-axis,

The architecture of the proposed network (F3y.is inspired based on the central point (blue point); v. keep the aspect ratio and
by [€], [26]. There are four main differences between the proposé# the position along the y-axis by placing the eye center point at
network and the one irf]: i) input to the network is color images 45% from the top of the image and the mouth center poir5d%
instead of gray scale images; ii) use of a robust face alignmémm the bottom of the image, respectively; vi. resize the width and
procedure; iii) an additional data argumentation step that randonhlgight of the image t@10 x 110. Note that the computed midpoint
crops al00 x 100 region from thel10 x 110 input color image, is not consistent across pose. In faces exhibiting significant yaw,
followed by a horizontal reflection to generate additional imagése computed midpoint will be different from the one computed in
to train the network; and iv) deleting the contrastive cost layer fer frontal image, so facial landmarks are not aligned consistently
computational efficiency. across yaw.

For the network’s convolution layers, we adopt a very deep Following the input layer, there arg) convolutional layers,
architecture 77] (10 convolution layers in total) and use filters4 max-pooling layers, andl average-pooling layer. Every pair of
with a small size § x 3). The small filter size reduces the total
number of parameters to be learned, and the deep architectur http:/blog.dlib.net/2014/08/real-time-face-poseiaation.html

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


http://labs.yahoo.com/news/yfcc100m/
http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI) 4

space. Although multiple hash table§4] can significantly
improve performance and reduce distortion, their performance
degrades quickly with increasing gallery size in face recognition
applications. Product quantization (PQj],[ where the feature
template space is decomposed into a Cartesian product of low
dimensional subspaces (each subspace is quantized separately)
has been shown to achieve excellent search restliDEtails
of product quantization used in our implementation are described
below.

) . . o . . Under the assumption that the feature dimensionality is a
Fig. 4. A face image alignment example. The original image is shown in ltinle of h . . f d
(a); (b) shows the 68 landmark points detected by the method in [28], MU tiple o m, wherém IS an mte_gerl, an2y eature vectere R
and (c) is the final aligned face image, where the blue circle was used ~ can be written as a concatenatigr’, x*, ..., x™) of m sub-
to center the face image along the x-axis, and the red circles denote the  yectors, each of dimensimb/m. In thei-th subspac&d/””, given
two points used for face cropping. a sub-codebook? — {C;':l,Q,...,z_'C;' c Rd/m}l wherez is the
size of codebook, the sub-vectot can be mapped to a codeword

convolutional layers is grouped together and connected sequén N the codeboolC’, with j as the index value. The indei
tially. The first four groups of convolutional layers are followed@n then be represented by a binary code Withy () bits. In our
by a max-pooling layer with @ x 2 filter and a stride of2, syste_m, each codebook is generated usingstheeans clustering
while the last group of convolutional layers is followed by afigorithm. Given all then sub-codebook$C',C*,...,C™}, the
average-pooling layer with @ x 7 filter. The dimensionality of Product quantizer of feature templatds
the feature representation layer is the same as the number of filters g(x) = (q1(x1), g™ (X™))
in the last convolutional layer. As discussed iif the ReLU P9
node produces a sparse vector, which is undesirable for a fageere ¢/(x’) € C’ is the nearest sub-centroid of sub-vector
representation layer. In our network, we use ReLU nod@ékifh  x7 in C7, for j = 1,2,...,m, and the quantizef(x) requires
all the convolutional layers, except the last one, which is combined log, (=) bits. Given another feature templatethe asymmetric
with an average-pooling layer to generatg2f-dimensional face squared Euclidean distance betweeandy is approximated by
representation. m

A!though multiple ful!y-connected layers are used iro]| D(y,x) = |ly — ¢(x)||* = Z lly? — ¢ (x7)||?
[29], in our network we directly feed the deep features generated j=1
by the feature layer to aP-way softmax, whereP is the L P . P L
number of subjects in the training set. We regularize the featdfdere ¢’(x’) € €7, and the distancegy’ — ¢’(x’)|| are
representation layer using dropoui(], keeping 60% of the Preé-computed for each sub-vector pf,j = 1,2,...,m and

feature components as-is and randomly setting the remadiiig each sub'-centr0|d' 7,5 = 1,2,...,m. Since the gllstance
to zero during training. computation requiresO(m) lookup and add operations/][

We use a softmax loss function for our network. and traiﬁoproximate nearest neighbor search with product quantizers is
it using the standard back-propagation method. The network @t @nd significantly reduces the memory requirements with
implemented using open source cuda-convhéit®ary: weight binary coding. If no additional hashing scheme is used, this

decay is set t& x 10~*. The learning rate for stochastic gradienfnethod isO(IV) with dataset size. _
descent (SGD) is initialized ta0~2, and gradually reduced to To further reduce the search time, a non-exhaustive search

10-5. scheme was proposed irv][and [31] based on an inverted
file system and a coarse quantizer; the query image is only
o compared against a portion of the image gallery, based on the
3.2 Face Filtering coarse quantizer. However, we found that non-exhaustive search
Given a probe facé and a template generation functién finding  significantly reduces face search performance when used with the
the top% most similar face€’, (1) in the galleryG is formulated proposed feature vector.
as follows: Two important parameters in product quantization are the
number of sub-vectors: and the size of the sub-codebook
Cr(l) = Ranky ({S(F (1), F(J))i=1.2,..8 € G}) Q) which together determine the length of the quantization code:
where N is the size of galleryG, S is a function which 7102, z. Typically, z is set t0256. To find the optimalm,
measures the similarity of the probe fadeand the gallery W€ empirically evaluate search accuracy and time per query for
image.J;, andRank(-) is a function that finds the top-largest various valqes ofn, bas'ed on d million face gallery and over
values in an array. The computational complexity of naive face 000 queries. We noticed that the performance gap between
comparison functions is linear with respect to the gallery size product quantization (PQ) and brute force search becomes small
and the feature dimensionality To address large-scale searchwhen the length of the quantization code is longer tha® bits
approximate nearest neighbor (ANN) algorithms, which impro&? = 64). Considering search time, the PQ-based approximate
runtime without a significant loss in accuracy, have beconf€arch is an order of magnitude faster than the brute force
popular. search. As a trade-off between efficiency and effectiveness, we
Hashing based algorithms use compact binary representati§fk the number of sub-vectors to 64; the quantization code is

to conduct an exhaustive nearest neighbor search in Hammfiglog2(256) = 512 bits long. o -
Although we use product quantization to compute face similar-

7. https://code.google.com/p/cuda-convnet2/ ity scores, we also need to pick a distance or similarity metric. We
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evaluated cosine similarityL1 distance, and 2 distance using a

5M gallery. The cosine similarity achieves the best performanc
among those three metrics, although the normalized L2 distang
has identical performance.

mAP of DF . CO
IS
Y

3.3 Re-Ranking
Given the short candidate list, the-ranking moduleaims to

o
o

T T ! " [—DoF
I ' ' ' 100K Gallery | |
[ 1M Gallery —CcoTs
{—2u callery ——DF+COTS
! |—5M Gallery —DF-COTS,,,
| | | | —DF-COTS
rank

DF -.COTS

T

0.8

Average Precision

improve search accuracy by using additional face matchers to 1
rank the candidate list. In particular, given a probe fdcand
its top& most nearest faces returned from the filtering modu

00505 1 2 5 10 20 50 100 300 500 82

1

0.6
Size of Candidate Set k (x103) Average Recall

fg) Impact of candidate set size (b) Various fusion strategies

(de.r‘OtEd WiFth (.I))1 the & Candid"ite faces are re-ranked byig 6. (a) Impact of candidate set size (k) as a function of the gallery size
fusing the similarity scores froni. different matchers. The re- (V) on the search performance as measured in terms of Mean Average

ranking module is formulated as:

Precision (mAP). Red points mark the optimal value of & for different

values of N. (b) Comparison of fusion strategies based on a 1M gallery

Re-Rank({Fusion(Sj=1,...r.(I, J;))|Ji=1,..k € Cx(I)}) (3)

whereS; is the j-th matcher, andie-Rank function sorts top-
k samples in the descending order. To make our system simple e
yet effective; we setl = 2 and generate the final similarity
score using sum-rule fusiof¥] between cosine similarity scores
computed from the learned deep features and the similarity scorese
generated by the COTS face matchd@o reduce the effect of scale
in sum-rule fusion, we adopt z-score normalizati6f] [over the
top-k similarity values for each face matcher, respectively. .
The main benefit of combining the similarities derived from
deep features and scores output by a COTS matcher is to utilize
the strength of two different face representations. We noticed
that the set of impostor face images that are incorrectly assigned
high similarity scores by deep features and the COTS matcher do
not overlap, suggesting their representations are complement
which is necessary for the success of fusiéf][ Since COTS
matchers are widely deployed in many real world applicatiGis [
the proposed cascade fusion scheme can be easily integrate
existing applications to improve both scalability and performanc

3.3.1 Impact of Candidate Set Size (k)

and 3K probes.

DF—COTS: Filter the gallery using deep features, then
re-rank the candidate list based on fusion of similarity
scores from deep features and the COTS matcher.
DF—COTSp1y: Only use the similarity scores of COTS
matcher to rank thé: candidate faces output by deep
features.

DF—COTS;ank: Filter the gallery using deep features,
and rankk candidate faces using similarity scores of deep
features and the COTS matcher, respectively, and then
finally, combine two ranked lists using rank-level fusion.
This is useful when the COTS matcher does not report
similarity scores.

?"a/’keep the evaluation tractable, different fusion methods were
evaluated using abouiK probes and alM face gallery. The
verage precisiorvs. average recallcurves of these four fusion
tr’gtegies are shown in Fi§.(b). As a baseline, we also show the
ftrieval performances of using DF and COTS alone. The fusion
scheme (DF—COTS) consistently outperforms the other fusion

methods, as well as simply using DF and COTS alone. Note that

In the proposed cascaded face search system, the size of candlgatI
list k is a key parameter. In general, we expect the optimal value Orp
k to be related to the gallery siZ€ (a larger gallery would require
a larger candidate list to maintain good search performance).
evaluate the relationship betwekmand N by computing the mean
average precision (mAP) as the gallery si2 (s increased from

?ting the filtering step leads to poor retrieval results compared
to the cascaded approach, which is consistent with results in
e previous section: wheh approachesV, the search accuracy

ecreases.

100K to 5M and the size of candidate lisk) is increased from 4 FACE DATASETS

50 to 500K. We use one mugshot dataset and four different web face datasets in
Fig. 6 (a) shows that the search performance, as expectgdr experiments: PCSO, LFW]} 1JB-A [9], CASIA-WebFace ]

decreases with increasing gallery size. Further, for a fiRéd (abbreviated as “CASIA” in the following sections), and general

search performance initially increases, then drops off whgets web face images, referred to as “Web-Face”. We briefly introduce

too large. The optimal candidate set skzecales linearly with the these datasets and show example face images from each dataset in

gallery sizelN. Because the plots in Fig (a) flatten out for large Fig. 5.

k, a near optimal value ok (e.g.,k = 0.01N) can drastically

reduce the candidate list with a very small loss in accuracy. « PCSO: This dataset is a subset of a large collection of

mugshot images acquired from the Pinellas County Sher-
iff’'s Office (PCSO) dataset, which contairis447,607
images o#103, 619 subjects.

LFW [3]: The LFW dataset is a collection @8, 233 face
images of5, 749 individuals, downloaded from the web.
Face images in this dataset contain significant variations in
pose, illumination, and expression. All the images in this
dataset contain faces that can be detected by the Viola-
Jones face detecto?][ [34].

1JB-A [9] IARPA Janus Benchmark-A (1JB-A) contains
500 subjects with a total o25, 813 images j, 399 still

3.3.2 Fusion Method

Another important issue is the choice of fusion scheme to
combine similarity scores from deep features (DF) and COTS. °
We empirically evaluated the following four fusion strategies:

o DF+COTS: Fusion of similarity scores based on deep
features and the COTS matcher, without any filtering.

8. https://en.wikipedia.org/wiki/Cosinsimilarity
9. We enforce the COTS matcher to compare two face imagestlgirec  ®
without using any metadata.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://en.wikipedia.org/wiki/Cosine_similarity

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI) 6

() PCSO (b) LFW [3] () 1JB-A [9] (d) CASIA [6] (e) Web-Face

Fig. 5. Examples of face images in five face datasets used in our experiments.

images an@0, 414 video frames). Compared to the LFWapproximately 6.7 million non-singleton clusters by thisthoel,

dataset, the 1JB-A dataset is more challenging. and consider that an estimated lower bound on the potential true
o CASIA [6] dataset provides a large collection of faceaumber of discrete identities.

images labeled with the subjects’ identities, suitable for

training deep networks. It contain94, 414 face images

of 10,575 subjects. There ar@2 overlapping subjects 5

between the CASIA and 1JB-A datasets. After removin (s

the images of these 22 subjects and all images where

face detection failed, we are left with04, 992 images

of 10, 553 subjects in the CASIA dataset.

(b)

Fig. 7. Examples of false positive samples detected by DLIB face
detector. (a) non-face images, (b) non-human face images.

4.1 Gallery Augmentation: 80 Million Web Faces
To conduct face search at scale, we used a crawler to automaticélly FACE RECOGNITION EVALUATION

download millions of web images (The links to these web images yis section, we first evaluate the proposed deep ConvNet on a
were proylded by a different research collaborator)l. FOHOW'%ugshotdataset (PCSO), followed by evaluations on two publicly
that, we filtered out all the non-face-detectable web images Wifl} iiaple unconstrained face recognition benchmarks (LEW [

the DLIB face detectdf. A total of 80 million face images were 4,4 |3p_A [2]) to establish its performance relative to state-of-the-
collected in this manner. Since these images are unlabeled, W oq its.

use them to augment the gallery size in our large-scale search
experiments. We call this database “Web-Face.” .
We first evaluate the DLIB face detector on the unconstrain®dl Mugshot Evaluation
face detection benchmark FDDB3Y], which contains5,171 We evaluate the proposed deep model on mugshot data obtained
faces extracted fron2, 845 Yahoo news images. Using defaultfrom PCSO. Some example mugshots are shown in Fin).
parameters provided by the DLIB face detector, the number Bfugshot faces are captured in constrained environments (e.g., a
detected false positive faces id0, and the corresponding truepolice station) with near frontal views of the face. We compare
positive rate (TPR) is abo@fl.6% using discrete score evaluationthe performance of our deep features with a state-of-the-art COTS
metric [39). Fixing the same number of false positive faces, thiace matcher. The COTS matcher used here was designed to work
true positive rate (TPR) of the best commercial face det&ctowith mugshot-style images, and is one of the top performers in the
and academic face detectof(] are around91% and 89%, 2014 NIST FRVT .
respectively. Since mugshot data is qualitatively different from the CASI-
We further manually examined0,000 randomly drawn A [9] dataset that we initially used to train our deep network,
samples from the entirg) million dataset. A total ob0 non-face we first retrained the network with a subsetddfl, 130 mugshot
images and 64 non-human faces were detected, which indicatésages o0f29, 674 subjects taken from the full PCSO mugshot
that approximately2.1% of the 80 million web downloaded dataset. For evaluation, we compared deep features with the COTS
face images may be false positives. In Figirgve show some matcher on a test subset of the PCSO dataset contalfiing)0
examples of non-face and non-human face images from the Weétrages of63, 670 subjects, which does not contain any of the
Face dataset. subjects and images included in the training set. We conduct
We made a rough estimate of the number of identities the face verification experiment using 10-fold cross-validation;
this dataset by combing the full LFW dataset with the 8€here are approximate40K genuine comparisons ardbillion
million images, performing clustering using the method outlineithpostor comparisons, on average in each fold.
in [41], and selecting the distance threshold which attained Experimental results show that the COTS matcher outperforms
the best possible performance on the LFW data. We acquingé@ deep features, especially at low False Accept Rates (FAR)

10. http://blog.dlib.net/2014/08/real-time-face-posekaation.html 12. False Accept Rate (FAR) is defined as the fraction of impostor pairs
11. http://idl.baidu.com/ incorrectly accepted at a particular threshold.
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For example, at a FAR di.01%, the True Accept Rates (TAR) networks. By combining these nine deep models together and
of deep features and the COTS matcher 88&6% + 0.1% using Joint-Bayesd], the mean verification accuracy of our deep
and 93.7% + 0.1%, respectively. However, a score-level fusiormodel improves ta98.20% from 96.20% for a single network
between the deep features and COTS scores results in an impray@idg the cosine similarity. Despite relying only on publicly
overall performance99.5% =+ 0.3%'*. This result suggests theavailable training data, the performance of our deep model is
following: (i) deep features are not superior to other state-ofempetitive with state-of-the-art on the standard LFW protocol
the-art face recognition approaches for all tasks, especially n@arshown on the leaderboard.

frontal photos with neutral expression and controlled illumination,

and (i) Deep features and state-of-the-art COTS matchers provid@.2 BLUFR Protocol

complementary information. It has been argued that the standard LFW evaluation protocol
is not appropriate for many face recognition applications, which
5.2 LFW Evaluation require high True Accept Rates (TAR) at low False Accept Rates

While mugshot data is of interest in several applications, maf§9- FAR= 0.1%). In this experiment, we further evaluate the
other applications require recognizing more difficult, uncorProPosed deep models using the BLUFRI][ protocol, which
strained face images. We now evaluate the proposed deep mofgfi1€s bothL0-fold cross-validation face verification and open-
on the benchmark LFW3] unconstrained face dataset usin&et identification tests involving larger number of genuine and

two protocols: the standard LFW][ protocol and the BLUFR MPOStor comparisons. _ _
protocol [19]. For face verification, in each trial, the test set cont&ns)8

face images ofl, 249 subjects, on average. As a result, ou&r
5.2.1 Standard Protocol million face comparison scores need to be computed in each trial.
dﬁor open-set identification, in each trial, the genuine probe set
containst, 350 face images ot , 000 subjects, the impostor probe
set containgl, 357 images of3, 249 subjects, on average, and the
gallery set contain$, 000 images. Following the protocol i ],

The standard LFW evaluation protocol defines a verificati
experiment under 10-fold cross-validation wit00 genuine
comparisons an@d00 impostor comparisons per fold, involving
a total of 7, 701 images of4, 281 subjects. In Table, following

the standard protocol, we present the mean verification accur report the True Accept Rate (TAR) at a False Accept Rate

of the proposed deep models and the same COTS face mat FAR) of 0.1% for face verification®. For open-set identification,

evaluated in sectiof.1 for the mugshot dataset. More evaluatiof'® report t_he detection and identification rate (DIR) at Rank-
results are available on the LEW leaderbokid. corresponding to a False Accept Rate (FAR)L6f. See Table3

for results.
TABLE 2
Performance of various face recognition methods on the _ TABLE 3 ,
standard LFW verification protocol. Performance of various face recognition methods on LFW using the
BLUFR protocol reported as True Accept Rate (TAR) and Detection
and Identification Rate (DIR).
Method | #Nets  Mean accuracy s.d.
COoTs N/A 90.4%+1.3% Method #Nets TAR DIR@FAR=1%
Proposed Deep Mode] 1 96.2%+0.9% @FAR=0.1% Rank=1
0, 0,
Proposed Deep Mode] 9 98.2%t0.6% Lietal [ 1 80.3% 28.9%
COTS N/A | 60.0%+ 1.5% | 37.9%+ 1.5%

. . Proposed Deep Mode| 1 85.0%=+ 1.9% 49.1%+ 2.8%
We notice that the COTS matcher performs poorly relative t0  proposed Doop Mode| | 89.8%c 18% | 55.9% 3.3%

the deep learning based algorithms. This is to be expected since
unlike deep models, most COTS matchers have been trained toWe notice that the TAR at a FAR 00.1% under the

handle face images captured in constrained environments, BPUFR protocol is much lower than the accuracies reported

mug;hot or driver license photos. Almost all the top-rankingn the standard LFW protocol. For example, the performance
algor!thms on the LF\.N lsaderboard are deep Iearn!ng baso the COTS matcher is onl$8.56% under the BLUFR pro-
algorithms. The superior performance of deep learning bast%%lol compared 1090.35% in the standard LFW protocol.

algorithms can be attriputed to (2) large number of training ir.nag?ﬁis indicates that the performance metrics for the BLUFR
of large number of subjects-( 100K) [22], (b) data augmentation protocol are more stringent than those of the standard LFW

methods, e.g., use of multiple deep modeél§[and (c) supervised I h iously di d ical licati
learning algorithms, such as Joint-Bayé§, [used to learn a protqco, OWEVET, as previously discusse prac_tlca app Ications
’ ’ require good performance at low FAR operating points. The

verification model fO”?‘pa" of faces in the tra|n|'ng set.' deep models still outperform the COTS matcher. Using cosine
To generate multiple deep models, we first trained thres(lamilarity and a single deep model, our method achieves better
deep ConvNets independently based on training data that was g b '

oreprocessed using the alignment method in Secdh In performance §3.08%) than the one in€]], which indicates that

” o . . our modifications to the network design (using RGB input, random
addition, we cropped six different sub-regions from the allgnegfr.jopping, and improved face alignment) help boost the recognition

face images (by centering the positions of the left-eye, right-eye rformance. Our performance is further improvedsg03%

nose, mouth, left-brow, and right-brow) and trained six addltlongvﬁ]en we fuse nine deep models. In this experiment, the Joint-

13. True Accept Rate (TAR) is defined as the fraction of genuine paid@yes approachS] did not improve accuracy. In the open-set

correctly accepted at a particular threshold recognition results, a single deep model achieves a significantly
14. The two-tailed? value equals 0.0001, which indicates the performance

improvement of fusion scheme is statistically significant. 16. The original BLUFR protocol uses Verification Rate (VR). We changed
15. http://vis-www.cs.umass.edu/Ifw/results.html it to True Accept Rate (TAR) for consistency in reporting our results.
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better performanceé$.90%) than the previous best reported result
of 28.90% [6], as well as the COTS matched(44%).

5.3 [1JB-A Evaluation

The 1IB-A dataset] was released in 2015 in an attempt to
push the frontiers of unconstrained face recognition. Given that
recognition performance on the LFW dataset has saturated under §
the standard protocol, the 1JB-A dataset contains more challenging
face images and specifies both verification and identification (open
and close sets) protocols. The basic protocol consists of 10-fold
cross-validation on pre-defined splits of the dataset, with a disjoint
training set defined for each split.

One unique aspect of the 1JB-A evaluation protocol is that II—I|g. 8. Examples of web images in the 1JB-A dataset with overlayed

defines “templates,” consisting of one or more images (still imag@@dmarks (top row), and the corresponding aligned face images
or video frames), and defines set-to-set comparisons, rather tkf@ttom row); (a) example of a well-aligned image obtained using

face-to-face comparisons, as shown in Figln particular, in the 2utomatically detected landmarks by DLIB [26]; (b), (c), and (d)
amples of poorly-aligned images with 3, 2, and O ground-truth

. . X
IJB-A evaluation protocol the number of images per templa%]dmarks provided in IJB-A, respectively. DLIB fails to output landmarks
ranges from a single image to a maximum 202 images. for (b)-(d). The images in the top row have been cropped around the
Both the search task (1:N comparisons) and verification tatievant face regions from the original images.
(1:1 comparison) are defined in terms of comparisons between

templates (consisting of several face images), rather than single Since all the IJB-A comparisons are defined between sets of
face images. faces, we need to determine an appropriate set-to-set comparison

The verification protocol in 1JB-A consists @b sets of pre- method. Our set-to-set comparison strategy first determines if there
defined comparisons between templates (groups of images). Eath one or morevell-aligned image in a template. If so, we
set contains about 1,748 pairs of templates1( 756 genuine only use thewell-aligned imags for the set comparison; we call
plus 9,992 impostor pairs), on average. For the search protocdhe corresponding templategell-aligned template Otherwise,
which evaluates both closed-set and open-set performarice,we use thepoorly-aligned imags, calling the corresponding
corresponding gallery and probe sets are defined, with both fegplatespoorly-aligned template The pairwise face-to-face
gallery and probe sets consisting of templates. In each seaghilarity scores are computed using the cosine similarity, and
fold, there are abouit, 187 genuine probe templates76 impostor the average score over the selected subset of images is the final
probe templates, andl 2 gallery templates, on average. set-to-set similarity score.

Given an image or video frame from the 1JB-A dataset, we first Key results of the proposed method, along with the baseline
attempt to automatically dete68 facial landmarks with DLIB. If results reported in9 and DCNN [36] are shown in Tabled.
the landmarks are successfully detected, we align the detecfddr deep network based method performs significant better than
face using the alignment method proposed in Se@idnWe call the two baselines at all evaluated operating points, and slightly
the images with automatically detected landmankedl-aligned Wworse than DCNNF6]'”. DCNN uses a similar network structure
images. If the landmarks cannot be automatically detected, asagd the same training dataset as our deep model; however, it
the case for profile faces or when only the back of the headiiicorporates the recently proposed parametric rectified linear unit
showing (Fig.8), we align the face based on the ground-truttPRelLu) Bg], instead of the rectified linear unit (ReLu)q] used
landmarks provided with the 1JB-A protocol. The ground truti our deep model. This indicates that the performance of our
landmarks consist of the left eye, right eye, and nose tip, but sirdeep model could also be further improved using updated network
these points are not visible in every image, landmarks which agechitectures. Still, the main focus of this paper is to address the
not clearly visible are omitted. For example, in faces exhibitinigrge-scale face retrieval problem.
a high degree of yaw, only one eye is typically visible, so the Fig. 9 shows face search results for two probe templates, one
other eye will not be included in the ground truth landmarkavhere rank-1 retrieval is successful and the other where rank-1
If all the three landmarks are available, we estimate the mougirieval is not successful. A template containing a single poorly-
position and align the face images using the alignment methodaligned image is much harder to recognize than the templates
Section3.1; otherwise, we directly crop a square face region usirgpntaining one or more well-aligned images. Fig. shows the
the provided ground-truth face region. We call images for whidtistribution of well-aligned images and poorly-aligned images
automatic landmark detection faif®orly-aligned image. Fig.8 in probe templates. Compared to the distribution of poorly
shows some face alignment examples in the 1JB-A dataset.  aligned templates in the overall dataset, we fail to recognize

The 1JB-A protocol allows training for each fold. Since thea disproportionate number of templates containing only poorly-
IJB-A dataset is qualitatively different from the CASIA datasetligned face images.
that we used to train our network, we retrain our deep model using
the IJB-A training set for each fold. The final face representatiogs | ARGE-SCALE FACE SEARCH
consists of a concatenation of the deep features from five different , . . .
deep models trained just on the CASIA dataset, and one re-trai ffthis section, we evaluate our face sear_ch system using an
on the IJB-A training set for the current fold. We then use Princip Ep gallery. The test o_latasets we use consist of LFW ar!d IJB-
Component Analysis (PCA) to reduce the dimensionality of tHe images. We use the images to construct the mated portion of a
combined face representation 100, which is the lowest value 17 pcNN was published after an earlier version of this papérdppeared
without performance reduction over the training set. on arxiv.

(d)
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Retrieved templates from the gallery under the closed-set search protocol of IJB-A
Rank-2 Rank-3 Rank-4
TID:5754 (: TID:234 (#=27) TID:234 (#=4

Probe Template

Rank-5
TID:234 (#=4)

;§

Rank-1
TID:226 (#=34)

#=10)

TID:234 (#=2) 2)
[ [ =

TID:414 (#=1) TID:3779 (#=4)

A

Fig. 9. Examples of face search in the first fold of the IJB-A closed-set search protocol, using “templates.” The first column contains the probe
templates, and the following 5 columns contain the corresponding top-5 ranked gallery templates, where red text highlights the correct mated
gallery template and the number of faces in the corresponding template is denoted with #. There are 112 gallery templates in total; only a subset
(at most four) of the images for each template are shown.

TABLE 4
Recognition accuracies under the 1JB-A protocol. Results for GOTS and OpenBR are taken from [9]. Results reported are the average + standard
deviation over the 10 folds specified in the 1JB-A protocol.

TAR @ FAR (verification) CMC* (closed-set search) FNIR @ FARopen-set search):

Algorithm 10% 1% 0.1% Rank-1 Rank-5 10% 1%
GOTS 62.7% £ 1.2%  40.6% £1.4% 19.8% +£0.8% 44.3% +£2.1% 59.5% +2.0% 76.5% +£3.3%  95.3% £ 2.4%
OpenBR 43.3% £ 0.6%  23.6% £0.9% 10.4% +1.4% 24.6% +1.1% 37.5% +0.8% 85.1% +2.8% 93.4% +1.7%
DCNN; [3€] 94.7% £ 1.1%  78.7% £ 4.3% N/A 86.0% £2.3% 94.3% + 1.7% N/A N/A

Proposed Deep Model 89.3% +1.4%  72.9% +3.5% 51.0% +6.1% 82.2% +2.3% 93.1% + 1.4% 39.2% +£2.7% 61.5% + 4.6%

* Cumulative Match Characteristic (CMC) computes the fraction of genuine samples retrieved at or below a specific rank.

T For consistency, we use False Accept Rate (FAR) in place of the False Positive Identification Rate (FPIR) termdlsg&tismduantity is the fraction of
impostor probe images accepted at a given threshold, and False Negative Identification Rate (FNIR) is the fraction of genuine probe images rejected
same threshold.

filtering step).

DF—COTS: First filter the gallery using deep features.
Next, re-rank the tog: candidate faces by fusing cosine
similarities computed from deep features with the COTS
matcher’s similarity scores for thle candidate faces.

u Well-aligned Templates M Poorly-aligned Templates

100%

50%

For closed-set face search, we assume that the probe always
has at least one corresponding face image in the gallery. For
open-set face search, given a probe we first decide whether a
corresponding image is present in the gallery. If it is determined
that the probe’s identity is represented in the gallery, then we
return the search results. For open-set performance evaluation, the

0%
Incorrect
Match@Rank1

All Probe
Templates

Correct
Match@Rank-1

Fig. 10. Distribution of well-aligned templates and poorly-aligned
templates in 1:N search protocol of 1IB-A, averaged over 10 folds.
Correct Match@Rank-1 means that the mated gallery template is
correctly retrieved at rank 1. Landmarks in well-aligned images can
be automatically detected by DLIB [28]. Poorly-aligned images mainly
consist of profile views of faces. We align these images using the three
ground-truth landmarks when available, or else by cropping the entire
face region.

probe set consists of two groups: i. genuine probe set that has
mated images in the gallery, and ii. impostor probe set that has no
mated images in the gallery.

6.1 Search Dataset

We construct a large-scale search dataset using the four face
datasets introduced in SectidnThe dataset consists of five parts,

retrieval database with an extended gallery, rather than followidg SNOwn in Tables: 1) training set, which is used to train our
the standard protocols for those datasets. We report search re{figP network; 2)genuine probeset, the probe set which has

under both open-set and closed-set protocols with increasitff

responding gallery images; B)ateset, the part of the gallery

gallery size, up to 80M faces. We evaluate the following thregPntaining the same subjects as gemuine probeet; 4)impostor

face search schemes:

quantization (PQ) to directly retrieve the té@p-most
similar faces to the probe (no re-ranking step).

probe set, which has no overlapping subjects with tiEnuine
probeset; 5)backgroundset, which has no identity labels and is

Deep Features (DF): Use our deep features with productsimply used as background images to enlarge the gallery size.

We use the LFW and 1JB-A datasets to constructgbeuine
probeset and the correspondingateset. For the LFW dataset, we

COTS: Use a state-of-the-art COTS face matcher tfirst remove all the subjects who have only a single image, leaving

compare the probe image with each gallery face, arid507 subjects with 2 or more images. For each of these subjects,
output the topk most similar faces to the probe (nowe take half of the images for thgenuine probeset and use
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the remaining images for theateset in the gallery. We repeat from the Web-Face dataset, and combine this subset with the LFW
this processl0 times to generaté( groups of probe and mate and I1JB-A datasets, respectively. We then extract features using the
sets. To construct thiempostor probeset, we takel, 000 subjects proposed deep model, and compute all pairwise cosine similarities.
from LFW, each having only one image. For the IJB-A datasefye examine the distributions of these scores in Hify. which

a similar process is adopted to gener#fiegroups of probe and plots the genuine, within-dataset impostor, and between-dataset
mate sets. To build a large-scadackgroundset, a crawler was impostor score distributions for both the LFW+Web-Face and 1JB-
used to download millions of web images from the Internet, thela+tWeb-Face datasets.

filter them to only include those with detectable faces by DFIB We observe that for both LFW and 1JB-A datasets the
By combining themateset andbackgroundset, we compose an distributions of cosine similarities of the within-dataset and

80 million image gallery. More details are shown in Table between-dataset impostor pairs have a significant overlap, but the
distribution of cosine similarities of the between-dataset impostor
TABLE 5 pairs is left-shifted. This indicates that the “effective” background
Large-scale web face search dataset overview. gallery size is smaller thag80 million, since typical impostor
images from the background dataset score relatively lower than
Source #Subjects  # Images impostors from the labeled datasets. We analyze this effect in
Training Set CASIA ] 10,553 404,992 terms of the verification problem, by estimating what size sample
LFW based probe and mate sets from the within-dataset impostor would result in the same total
Genuine Probe Set  LFWZ[ 1,507 3,370 number of false accepts seen from the cross-dataset impostor
Mate Set LFW [3] 1,507 3,845 score distribution (using the empirical score distributions directly).
1JB-A based probe and mate sets For the 1% False Reject Rate operating point, a sample of
Genuine Probe Set  1JB-A] 500 10,868 approximately 23 million images following the observed within-
Mate Set IJB-A [9] 500 10,626 LFW impostor score distribution would generate as many false
Impostor Probe Set  LFW3[ 4,000 4,000 accept errors as were generated from the full 80 million Web-Face
Background Set \Web-Faces N/A 80,000,000 dataset. For a lower FRR of 0.01%, matching the number of false

accepts generated from the cross-dataset impostor distribution
would require approximately 72 million images following the
6.2 Dataset Segmentation within-LFW impostor score distribution.

In the retrieval experiments, we use LFW or 1JB-A for the
probe and mate sets, and 80M web faces for th®ackground 6.3 Performance Measures

_set. Although all the three datasets consist of unconstrained ficaece search aims to find all the mated faces in the gallery, which is

$¥oader than the traditional biometric problems, e.g. authentication

ntaining more challending im nd Web-F i< from ph 1:1 search) or identification (1:N search). Hence, we evaluate
containing more challenging images) a eo-race 1S Tom PhOiRs ¢ace search system with the widely used retrieval evaluation

on social media websites. As such, the different CharaCte”Stﬁsétrics: precision the fraction of the search set consisting of

of the datasets may lead to a segmentation effect, where imag]eﬁed face images, anecall, the fraction of all mated face
_%ga . '

from one dataset may easily be distinguished from others bag ges for a given probe face that were returned in the search
on differing image acquisition properties, rather than the idemiti?ésults

of the faces being compared. In other words, laekgroundset Various trade-offs betweeprecisionand recall are possible

should have a similar distribution to th@obe set and themate eﬁfor example, high recall can be achieved by returning a large

set, otherwise, the use of the background set will not effectiv sult set, but a large result set will also lead to lower precision),

demonstrates the search performan_ce that WOU|_d be seen W'tgoawe summarize the overall closed-set face search performance
large gallery of images with more uniform properties.

usingmean Average PrecisiofmAP), which is also widely used
for search system evaluatior][ mAP is defined as follows: given

In particular, LFW and 1JB-A are from news images (with [JB-

W= Genuine: LFW vs. LFW
m impostor: LFW vs. LFW
B Impostor: LFW vs. Web-Face|

W Genuine: |JB-A vs. IJB-A

= oo oA 1o aset ofn probe face image@ = {x},x,.. ., Xy} and a gallery

W Impostor: IJB-A vs. Web-Face|

set with NV images, theverage precisionf x; is:

Normalized Count [%]
%
Normalized Count [%]

N
avgP(xy) = Y P(xq, ) x [R(xg,5) — R(xg,j —1)] (@)
j=1

where P(x, ) is precision at the j-th position for x, and

Cosie imiarties of ecp Feture R(x,j) is recall at thej-th position forx}, (R(0) = 0). Note
that this measure includes the ranks of all gallery images matching
Fig. 11. Distributions of cosine similarities of the genuine pairs, within-

- ) - ) a given query, so having more gallery images is not a strictly easier
dataset impostor pairs and between-dataset impostor pairs for the 9 query 9 9 y Y y

combinations of LFW+Web-Face (left) and IJB-A+Web-Face (right). problem. The mean Average Precision (mAP) of the entire probe
set is:

To examine the differences between the Web-Face and labeled
datasets (LFW and 1JB-A), we first randomly samplK images

I
04 -02 0.0 02 0.4 06 08 1o
Cosine Similarities of Deep Feature

mAP(Q) = mean(ang(xf])),i =1,2,...,n
18. The links to these web images were provided by a different reseaVY1hen the gallery sizeV is t00 large, for efficiency, we compute

I .. . . .
collaborator. We downloaded the raw web images, and filtered out all nd%le average precisiosing the toptOOK ret”eVa|.reSU|tS- Since
face-detectable web images using the DLIB face detector. MAP uses the unweighted average, each query image has the same
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impact on the aggregate, regardless of the number of matchiNgon log scale; the performance gap betweeh08K gallery
gallery images. and a5M gallery is about the same as the performance gap
In the open-set scenario, we evaluate search performance agtaveen &M gallery and an80M gallery. While deep features
trade-off between mean average precision (mAP) and false acoeptiperform the COTS matcher alone, the proposed cascaded
rate (FAR) (the fraction of impostor probe images which are nédce search system (which leverages both deep features and the
rejected at a given threshold). Given a genuine probeviessage COTS matcher) gives better search accuracy than either method
precisionis set to0 if it is rejected at a given threshold, otherwisejndividually. Results on the IJB-A dataset are similar to the LFW
its average precisiolis computed using Egt. results, except for a lower overall accuracy. The lower accuracy
For a large background gallery dataset like ®#@ million on IJB-A data is to be expected given that IJB-A contains more
Web-Face used here, it is difficult to ensure that there are oballenging face images.
subjects which overlap between the query and background sets.
As a result, in our evaluation, if one of the unlabeled backgrourpds Open-set Face Search

images is actually the same person as the query image, we cons} eén set search is important for several practical applications
it an “incorrect” retrieval result. In other words, while we canno P P P pp

guarantee that no images in the background set have the s fnd- de-duplication), one cannot assume that the gallery will

identity as the query image, any such images, if present, will pi§Ntain images of all potential probe subjects. We evaluate open-
our results in the direction of lower accuracy. set search performance on tBeM gallery, and plot the search

performance (mAP) at varying FAR values in Figs.

6.4 Closed-set Face Search

©
~

— Deep Features (LFW)
—DF - COTS (LFW)

- - Deep Features (1JB-A)
‘‘‘‘‘ DF - COTS (IJB-A)

We examine closed-set face search performance with the gallery
size N ranging from100K to 80M. Enrolling the complet&OM
gallery in the COTS matcher would take a prohibitive amount of
time (over80 days), due to limitations of the SDK we have, so the
maximum gallery set used for the COTS matcheblé. For the
proposed face search scheme DF—COTS, we chose the size ¢
candidate set using the heuristi& = 1/100N when the gallery
size is smaller thabM and k = 1, 000 when the gallery set size

is 80M. We use a fixedc for the full 80M gallery since using a
largerk would take a prohibitive amount of time, due to the need
to enroll the filtered images in the COTS matcher. Experimental
results for the LFW and 1IB-A datasets under closed-set searct
are shown in Figl2.

o
w

Detection and Mean Average Precision
o
N

©
[

1 10
False Accept Rate (%)
0.9 ~—Deep Features (LFW) = Deep Features (IJB-A) || Open-set Search Evaluation on LFW and IJB-A datasets
: -=-COTS (LFW) & COTS (IJB-A)
©-DF — COTS (LFW) ©DF — COTS (JB-A) Fig. 13. Open-set face search performance (MmAP) vs. false accept

rate (FAR) on LFW and IJB-A datasets, using the 80M face gallery.
The performance of COTS matcher is not shown due to computational
issues. FAR is shown only up to 10% since operational systems are not
likely to operate beyond this value.

For both the LFW and IJB-A datasets, the open-set face
search problem is much harder than closed-set face search. At
a FAR of 1%, the search performance (mAP) of both algorithms
is much lower than the closed-set face search at 80M show in
Fig. 12, indicating that a large number of genuine probe images
are rejected at the threshold needed to atidinFAR.

O l Il 1
0.1M IM 2M  5M 80M

Gallery Size N (million) 6.6 Scalability

In addition to the mAP performance measure, we also report the
search times in Tablé. We run all the experiments on a PC with
Fig. 12. Closed-set face search performance (mAP) vs. gallery size N an Intel(R) Xeon(R) CPU (E5-2687W) clocked at 3.10GHz. For
(log-scale), on LFW and IJB-A datasets. The performance of COTS g fair comparison, all the compared algorithms use only one CPU

Closed-set Search Evaluation on LFW and 1JB-A datasets

matcher on 80M gallery is not shown, since enrolling the complete 80M : :
gallery with the COTS matcher would have taken a prohibitive amount core. The deep features are extracted using a Tesla K40 graphics

of time (over 80 days). card.
In our experiments, template generation for the entire gallery is
For both LFW and IJB-A face images, as expected, thdone off-line and the gallery is indexed using product quantization
recognition performance of all three face search schemes evaludtefbre processing the probe images. Gallery images (up to 5M) are
here decreases with increasing gallery set size. In particular, foretirolled into the COTS matcher. The run time of the proposed face
the search schemes, mAP linearly decreases with the gallery siearch system after the gallery is enrolled and indexed consists of
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TABLE 6 Klontz and Jain §5] made an attempt to identify the face
The average Sear%h time (Seﬁond?) per probe E‘;e and the images of the Boston marathon bombing suspects in a 1M gallery
corresponding search performance (mAP). of mugshot images. Video frames of the two suspects were
| 5M Face Gallery | 80M Face Gallery matched against a background set of mugshots using two state-
cors b DFICOTS | oo oo DFCOTS of-the-art COTS face matchers. Five low resolution images (1a,
@50K @1K 1b, 2a, 2b, 2c) of the two suspects, released by the FBI (shown in
Enrollment | 0.09  0.05 0.14 0.09 0.5 0.14 the left side of Fig14) were used as probe images, and six images
Search 30 084 115 480.0 663 6.64 (1%, 1y, 1z, 2x, 2y, 2z) of the suspects released by the media
Total Time | 30.09  0.89 1.29 480.1°  6.68 6.88 : . . : .
- (shown in the right side of Figl4) were used as the mates in
mMAP | 0.36 0.52 0.62 | N/A 0.34 0.40

the gallery. These mated images were augmented ittillion
* Estimated by assuming that search time increases linearly with gallery size. mugshot images. One of the COTS matchers was successful in
finding the true mate (2y) of one of the probe image (2c) of
two parts: i)enrollment timeincluding face detection, alignmentDzhokhar Tsarnaev at rank Neither of the two probe images
and feature extraction, and #earch timeconsisting of the time for the older brother could retrieve the true mates at a reasonable
taken to find the togs search results given the probe templatgank.
Since we did not enroll al80M gallery images using the COTS  To evaluate the performance of our cascaded face search
matcher, we estimate the query time for tReM gallery by system, we construct a similar search problem under more chal-
assuming that search time increases linearly with the gallery sizenging conditions by adding the gallery images to a background
Using product quantization for fast matching based on despt of up to80 million web faces. In addition, we also use one
features, we can retrieve the tépeandidate faces in abolt9 sketch image (1c in Figl4) of the older brother as the probe
seconds for &M image gallery and in about.7 seconds for an image. We argue that the unconstrained web faces are more
80M gallery. On the other hand, the COTS matcher takes abautnsistent with the quality of the images of the suspects used
30 and480 seconds to carry out brute-force comparison over thie the gallery than mugshot images and therefore comprise a more
complete galleries df and80 million images, respectively. In the meaningful gallery set. We evaluate the search results using gallery
proposed cascaded face search system, we mitigate the impactizd#s of 5M an®B0M leveraging the same background set used in
the slow exhaustive search required by the COTS matcher by onlyr prior search experiments.
using it on a short candidate list. The proposed cascaded schemeThe search results are shown in Table Considering the
takes about 1 second for théV gallery and about.9 seconds images of subject 1, although the performance of deep features
for the 80OM gallery, which is only a minor increase over the timds better than the COTS matcher, both the deep features and the
taken using deep features alorie68 seconds). While the searchCOTS matcher return the matching gallery images at excessively
time could be further reduced by using a non-exhaustive seatiijh ranks for all three probe images. We noticed that the retrieval
method, it would most likely result in a significant loss in searcperformance of the sketch image (1c) is much better than the
accuracy. retrieval results of the two probe faces extracted from video frames
(1a and 1b). Still, even for the sketch image, the best retrieval
probe images ‘ gallery images result is a true match at rank 66,427 on the 5M gallery.
| For the second subject, results are relatively better. For the

1 1b 1 1 1
C\ . . . 5M gallery, the COTS matcher found a mate (2y) for probe 2c at
;'l - RO ‘@* o rank 625, while the deep features returned gallery image 2x for
’;‘/ <\ N/ probe 2c at rank. The proposed cascaded search system returned

gallery image 2y at rank, by combining the COTS matcher and

2a 2b 2c 2x 2y 2z

- a - deep features to re-rank the top 1K or top 10K candidate faces,
ﬁ ﬁ ﬁ @ demonstrating the strength of the proposed cascade framework.

\ (41 | 4 e The retrieval results for probe 2c are slightly worse on &G

image gallery, which is to be expected. Using deep features alone,

Fig. 14. Probe and gallery images of Dzhokhar Tsarnaev and Tamerlan we now find gallery image 2X. at rank09 and gallery image
Tsarnaev, responsible for the April 15, 2013 Boston marathon bombing.  2Y @t rank2,952. However, using the cascaded search system,
Face images la and 1b are the two probe images used for Suspect 1 ~ we retrieve gallery image 2x at ranl6 by re-ranking the top-
(Tamerlan Tsarnaev), and 1c is his sketch image drawn by a forensic 1K faces, and retrieve gallery image 2y at ratloy re-ranking

sketch artist based on la and 1b. Face images 2a, 2b and 2c are : ;
the three probe images used for Suspect 2 (Dzhokhar Tsarnaev). The the top10K faces. So, even with aBOM image gallery, we can

gallery images of the two suspects became available on media websites ~ successfully find a match for one of the probe images (2c) within
following the identification of the two suspects based on investigative  the top-10 retrieved faces. The face search results foRthé
leads. Face imgges 1x, 1y and 1z are the three gallery i_mages for galleries are shown in Fig.5.

Suspect 1 and images 2x, 2y and 2z are the three gallery images for

Suspect 2.

8 CONCLUSIONS
7 BOSTON MARATHON BOMBING CASE STUDY

In addition to the large-scale face search experiments repor}élg have proposed a cascaded search system suitable for large-

P . . ale face search problems. We have developed a deep learning
above, we report on a case-study: finding the identity of Bost 4 . . - .
marathon bombing suspettsn an80M face gallery. @ased face representation trained on the publicly available CASIA

dataset §]. The deep features are used in a product quantization
19. https://en.wikipedia.org/wiki/BostoMarathon bombing based approximaté-NN search to first obtain a short list of
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TABLE 7
Rank retrieval results of the two Boston bomber suspects based on 5M and 80M face gallery. The six probe images are designated as 1a, 1b, 1c,
2a, 2b, and 2c. The six mated images in the gallery are designated as 1x, 1y, 1z, 2x, 2y, and 2z. The corresponding images are shown in Fig. 14

| COTS (5M Gallery) | Deep Features (5M Gallery) | Deep Features (80M Gallery)
| 1x 1y 1z | 1x 1y 1z | 1x 1y 1z
la 2,041,004 595,265  1,750,30 132,613 232,275 1,401,474 2,566,917 5,398,454 31,960,091
1b 3,816,874 3,688,368  2,756,64{L 1,511,123 1,153,036 1,699,951 33,783,360 27,439,526 44,282,173
1c 126,217 608,899 535,81 66,427 199,083  1,529,16 753,653 2,408,392 29,383,945
| 2X 2y 2z | 2y 2z | 2X 2y 2z
2a 67,766 86,747 301,86 174,440 39,417 10587 2,461,664 875,168 1,547,895
2b 352,062 48,335 865,04 71, 795 26,525 84,01 1,417,768 972,411 1,367,694
2c 158,341 625 515,85 341 9,975 109 2,952 136,651
Proposed Cascaded Face Search System
2c | DF—-COTS@1K 7 1 9,975 46 2,952 136,651
2c DF—COTS@10K 10 1 1,580 160 8 136,651
Method ‘ Probe ‘ Top 10 most similar retrieved images from an 80M face gallery
B r‘
la
Features
», y‘ == o
Features ‘ '
N, F = ) j ” .
v | o) B , '?”
Features p -"_j* e L 4
— . e
Deep y * ‘ §
Features 2a "' # L
ea <™ ) ] &
-
Features __
Deep v -
Features 2¢c ﬂ
DF—COTS
@10K

Fig. 15. Top 10 search results for the two Boston marathon bombers on the 80M face gallery. The first three probe faces (1c is a sketch) are of
the older brother (Tamerlan Tsarnaev) and the last three probe faces are of the younger brother (Dzhokhar Tsarnaev). For each probe face, the
retrieved gallery image with green border is the correctly retrieved image. Images with the red border are “near-duplicate” images present in the
gallery. Note that we were not aware of the existence of these near-duplicate images in the 80M gallery before the search.

candidate faces. This short list of candidate faces is then raillion face gallery, and show that the proposed scheme offers an
ranked using the similarity scores provided by a state-of-the-attractive tradeoff between recognition accuracy and runtime. We
COTS face matcher. We demonstrate the performance of @lso demonstrate search performance on an operational case study
deep features on three face recognition datasets, of increasm@lving the video frames of the Tsarnaev brothers implicated
difficulty: the PCSO mugshot dataset, the LFW unconstrainéd the 2013 Boston marathon bombing. In this case study, the
face dataset, and the 1JB-A dataset. On the mugshot dgiegposed system can find one of the suspects’ images at rank 1 in
deep feature performance (TAR 68.5% at FAR of 0.01%) 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M
is worse than a COTS matched8(5%), but fusing our deep gallery.

features with the COTS matcher does improve the overall

performance 99.2%). Our performance on the standard LFW We consider non-exhaustive face search an avenue for further
protocol ©8.20% accuracy) is comparable to state-of-the-ar

fesearch. Although we made an attempt to employ indexing

accuracies reported in the_ Iiterature. On the BLUFR protocol f&gethods they resulted in a drastic decrease in search performance.
the LFW database we attain the best reported performance to £ Iy a few searches need to be made, the current system’s search
(TAR of 88.03% at FAR Of(.)'l%)' Our deep features OUIperfom_]speed is adequate, but if the number of searches required is on the
the benchmarks reported i][on th.e IJ_B-A.dataset, as _follows. order of the gallery size, the current runtime is inadequate. We are
TAR of 51.0% at FAR ofO..l% (verification); Rank 1 retrieval of also interested in improving the underlying face representation,
82.2% (closed-set search); FNIR 6f.5% at FAR of 1% (open- via improved network architectures (e.g. joint-training of multiple

set search). In addition to the evaluations on the LFW and the 1J tches, and using different kinds of layers), or by using larger
A benchmarks, we evaluate the proposed search scheme on al %ﬁlng :'sets '
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