
0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2582166, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TPAMI) 1

Face Search at Scale
Dayong Wang, Member, IEEE, Charles Otto, Student Member, IEEE, Anil K. Jain, Fellow, IEEE

Abstract—Given the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to
search for persons of interest among the billions of shared photos on these websites. Despite significant progress in face recognition,
searching a large collection of unconstrained face images remains a difficult problem. To address this challenge, we propose a face
search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a
cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using features
learned by a convolutional neural network. The k retrieved candidates are re-ranked by combining similarities based on deep features
and those output by the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million
web-downloaded face images. Experimental results demonstrate that while the deep features perform worse than the COTS matcher
on a mugshot dataset (93.7% vs. 98.6% TAR@FAR of 0.01%), fusing the deep features with the COTS matcher improves the overall
performance (99.5% TAR@FAR of 0.01%). This shows that the learned deep features provide complementary information over
representations used in state-of-the-art face matchers. On the unconstrained face image benchmarks, the performance of the learned
deep features is competitive with reported accuracies. LFW database: 98.20% accuracy under the standard protocol and 88.03%

TAR@FAR of 0.1% under the BLUFR protocol; IJB-A benchmark: 51.0% TAR@FAR of 0.1% (verification), rank 1 retrieval of 82.2%
(closed-set search), 61.5% FNIR@FAR of 1% (open-set search). The proposed face search system offers an excellent trade-off
between accuracy and scalability on galleries with millions of images. Additionally, in a face search experiment involving photos of the
Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed cascade face search system could find the younger
brother’s (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M gallery.

Index Terms—face search, unconstrained face recognition, deep learning, large face collections, cascaded system, scalability.

✦

1 INTRODUCTION

Social media has become pervasive in our society. One popular
aspect of social media is the sharing of personal photographs.
Facebook, in a 2013 white paper, revealed that its users have
uploaded more than 250 billion photos, and are uploading 350
million new photos each day1. To enable automatic tagging of
these images, accurate and robust face recognition capabilities
are needed. Given an uploaded photo, Facebook and Google’s
tag suggestion systems automatically detect faces and then
suggest possible name tags based on the similarity between facial
templates generated from the input photo and previously tagged
photographs in their datasets. In the law enforcement domain,
the FBI plans to include over50 million photographs in its
Next Generation Identification (NGI) dataset2, with the goal of
providing investigative leads by searching the gallery for images
similar to a suspect’s photo. Both tag suggestion in social networks
and searching for a suspect in criminal investigations are examples
of face search at scale (Fig.1). We address the large-scale face
search problem in the context of social media and other web
applications where face images are generally unconstrained in
terms of pose, expression, and illumination [1], [2].

A major focus in face recognition has been to improve un-
constrained face recognition accuracy, particularly on the Labeled
Faces in the Wild (LFW) benchmark [3]. But, the problem of
scale in face recognition has not been adequately addressed3. It
is now generally agreed that the small size of the LFW dataset
(13, 233 images of5, 749 subjects) and the limitations in the
LFW protocol do not address the two major challenges in large-

1. http://phys.org/news/2016-01-facebook.html
2. goo.gl/UYlT8p
3. Our preliminary work on this topic appeared in the Proc. IEEE

International Conference on Biometrics (ICB), Phuket, June 2015 [4]. A
technical report describing this work appeared in [37]
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Fig. 1. An example of large-scale face search problem.

scale face search: (i) loss in search accuracy, and (ii) increase in
computational complexity with increase gallery size.

The typical approach to scalability (used in e.g. content-based
image retrieval [2]) is to represent objects with feature vectors
and employ an indexing or approximate search scheme in the
feature space. A vast majority of face recognition approaches,
irrespective of the representation scheme, are ultimately based
on fixed length feature vectors, so employing feature space
methods is feasible. However, some techniques for improving
face recognition accuracy, such as pairwise comparison models
(e.g. Joint-Bayes [5]), are not compatible with feature space
approaches. Additionally, most COTS face recognition SDKs
define pairwise comparison scores but do not reveal the underlying
feature vectors, so they are also incompatible with feature-space
approaches. Therefore, using a feature space based approximation
method alone may not be sufficient for large-scale search.

To address the tradeoff between search performance and search

http://phys.org/news/2016-01-facebook.html
goo.gl/UYlT8p
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time at scale (80M face images used here), we propose a cascaded
face search framework (Fig.2). In essence, we decompose the
search problem into two steps: (i) a fast filtering step, which
uses an approximation method to return a short candidate list,
and (ii) a re-ranking step, which re-ranks the candidate list with
a slower pairwise comparison operation, resulting in a more
accurate search. The fast filtering step utilizes a deep convolutional
network (ConvNet), which is an efficient implementation of the
architecture in [6], with product quantization (PQ) [7] to speed up
retrieval. For the re-ranking step, a COTS face matcher (one of
the top performers in the 2014 NIST FRVT [8]) is used. The main
contributions of this paper are as follows:

• An efficient deep convolutional network for face recogni-
tion, trained on a large public domain data (CASIA [6]),
which improves upon the baseline results reported in [6].

• A large-scale face search system, leveraging the deep
network representation combined with a state-of-the-art
COTS face matcher in a cascaded scheme.

• Studies on three face datasets of increasing complexity:
PCSO mugshot dataset, LFW dataset (only contains faces
detectable by Viola-Jones face detector), and the IJB-A
dataset (contains several faces which are not detectable by
the Viola-Jones detector).

• The largest face search experiments conducted to date on
the LFW [3] and IJB-A [9] benchmarks, with an80M
gallery.

• Using face images of the Tsarnaev brothers involved in
the Boston Marathon bombing as queries, we show that
Dzhokhar Tsarnaev’s photo could be identified at rank8
when searching against the80M gallery.

2 RELATED WORK

Face search has been extensively studied in multimedia and
computer vision literature [20]. Early studies primarily focused
on faces captured under constrained conditions, e.g. the FERET
dataset [14]. However, due to the growing need for strong
face recognition capability in the social media context, ongoing
research is focused on faces captured under more challenging
conditions in terms of large variations in pose, expression,
illumination and aging, similar to images in the LFW [3] and
IJB-A [9] datasets.

The three main challenges in large-scale face search are:
i) face representation, ii) approximatek-NN search, and iii)
gallery selection and evaluation protocol. For face representation,
features learned from deep convolutional networks (deep features)
have been shown to saturate performance on the standard LFW
evaluation protocol4.

The best accuracy to date on LFW is reported by Baidu [21]
which is99.77%; it leverages70 deep learning models trained on
1.2M images of18K individuals. A comparable result (99.63%)
was achieved by Google [22] using a deep model and a training set
with over150M images of8M subjects. It has even been reported
that deep features exceed the human face recognition accuracy
(99.20% [10]) on the LFW dataset. In order to recognize faces
in web downloaded images, we also adopt a deep ConvNet based
face representation by improving the architecture outlined in [6].

Given our goal of using deep features to filter a large gallery
to a small set of candidate face images, we use an approximate

4. http://vis-www.cs.umass.edu/lfw/results.html

k-NN search method to improve scalability. There are three main
approaches for approximate face search:

• Inverted Indexing. Following the traditional bag-of-words
representation, Wu et al. [2] designed a component-based
local face representation for inverted indexing. They first
split aligned face images into a set of small blocks
around the detected facial landmarks and then quantized
each block into a visual word using an identity-based
quantization scheme. The candidate images were retrieved
from the inverted index of visual words. Chen et al. [1]
improved the search performance in [2] by leveraging
human attributes.

• Hashing. Yan et al. [15] proposed a spectral regression
algorithm to project facial features into a discriminative
space; a cascaded hashing scheme (similarity hashing) was
used for efficient search. Wang et al. [23] proposed a weak
label regularized sparse coding to enhance facial features
and adopted the Locality-Sensitive Hash (LSH) [24] to
index the gallery.

• Product Quantization (PQ). Unlike inverted indexing and
hashing which require index vectors to be stored in
main memory, PQ [7] is a compact discrete encoding
method that can be used either for exhaustive search or
inverted indexing search. In this work, we adopt product
quantization for fast filtering.

In the literature, face search systems have mainly been evalu-
ated under the closed-set protocol (Table1), which assumes that
the subject in the probe image is present in the gallery. However,
in many large scale applications (e.g., surveillance and watch list
scenarios), open-set search protocol, where the probe subject may
not be present in the gallery, is more appropriate. Recognizing
this, several new protocols for unconstrained face recognition
based on the LFW dataset have been proposed, including the
open-set identification protocol [18] and the Benchmark of Large-
scale Unconstrained Face Recognition (BLUFR) protocol [19].
However, even for these two protocols, the gallery sizes are fairly
small (a few thousand images), due to the inherent small size of the
LFW dataset. Table1 shows that the largest face gallery reported
in the literature to date is about1M, which is not even close to
being a representative of social media and forensic applications.
To tackle these two limitations, we evaluate the proposed cascaded
face search system with an80M face gallery5 under both closed-
set and open-set protocols.

3 FACE SEARCH FRAMEWORK

Given a probe image, a face search system aims to find the top-k
most similar face images in the gallery. To handle large galleries
containing tens of millions of images, we propose a cascaded face
search structure similar to [13], [25], designed to speed up the
search process while achieving acceptable accuracy.

Figure 2 outlines the proposed face search architecture con-
sisting of three main steps: i)template generationmodule which
extracts features for theN gallery faces (offline) as well as for
the probe face (online); ii)face filteringmodule which compares
the probe representation against the gallery representations using
product quantization to retrieve the top-k most similar candidates

5. We got the links to these web images from a research collaborator, who
was unwilling to release these images publicly. Our approach will also work
on any other gallery size.

http://vis-www.cs.umass.edu/lfw/results.html
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TABLE 1
A summary of face search systems reported in the literature

Authors
Probe Gallery

Dataset Search Protocol
# Images # Subjects # Images # Subjects

Wu et al. [2] 220 N/A 1M+ N/A LFW [ 3] + web facesa closed set
Chen et al. [1] 120 12 13, 113 5, 749 LFW [3] closed set

4, 300 43 54, 497 200 Pubfig [10] closed set
Miller et al. [11] 4, 000 80 1M+ N/A FaceScrub [12] + Yahoo Imagesb closed set
Yi et al. [13] 1, 195 N/A 201, 196 N/A FERET [14] + web faces closed set
Yan et al. [15] 16, 028 N/A 116, 028 N/A FRGC [16] + web faces closed set
Klare et al. [17] 840 840 840 840 LFW [3] closed set

25, 000 25, 000 25, 000 25, 000 PCSO [17] closed set
Best-Rowden et al. [18] 10, 090 5, 153 3, 143 596 LFW [3] closed & open set
Liao et al. [19] 8, 707 4, 249 1, 000 1, 000 LFW [3] closed & open set

Proposed System 7, 370 5, 507 80M+ N/A LFW [ 3] + web faces closed & open set
14, 868 4, 500 80M+ N/A IJB-A [ 9] + web faces closed & open set

a. Face images are downloaded from the web and used to augment the gallery; different face search systems use their own web downloaded face datasets.
b. http://labs.yahoo.com/news/yfcc100m/
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Fig. 2. Illustration of the proposed large-scale face search system.

(k ≪ N ); and (iii) re-ranking module which fuses similarity
scores of deep features with scores from a COTS face matcher to
generate a new ordering of thek candidates. These three modules
are discussed in detail in the remainder of this section.

3.1 Template Generation

Given a face imageI, the template generator is a non-linear
mapping function

F(I) = x ∈ R
d (1)

which projectsI into a d-dimensional feature space. The dis-
criminative ability of the template is critical for search system
accuracy. Given state-of-the-art performance of deep learning
techniques in various machine learning applications, particularly
face recognition, we adopt deep learning for template generation.

The architecture of the proposed network (Fig.3) is inspired
by [6], [26]. There are four main differences between the proposed
network and the one in [6]: i) input to the network is color images
instead of gray scale images; ii) use of a robust face alignment
procedure; iii) an additional data argumentation step that randomly
crops a100× 100 region from the110× 110 input color image,
followed by a horizontal reflection to generate additional images
to train the network; and iv) deleting the contrastive cost layer for
computational efficiency.

For the network’s convolution layers, we adopt a very deep
architecture [27] (10 convolution layers in total) and use filters
with a small size (3 × 3). The small filter size reduces the total
number of parameters to be learned, and the deep architecture

enhances the non-linearity of the network [27]. The network
output is a320-dimensional feature vector.

Fig. 3. Proposed deep convolutional neural network (ConvNet).

The input layer accepts the RGB pixel values of the aligned
face images. Faces are aligned as follows: i. Use the DLIB6

implementation of Kazemi and Sullivan’s ensemble of regression
trees method [28] to detect68 facial landmarks (see Fig.4); ii.
rotate the face in the image plane to make it upright based on the
eye positions; iii. find a central point on the face (the blue point in
Fig. 4) by taking the mid-point between the leftmost and rightmost
landmarks; the center points of the eyes and mouth (red points in
Fig. 4) are found by averaging all the landmarks in the eye and
mouth regions, respectively; iv. center the faces along the x-axis,
based on the central point (blue point); v. keep the aspect ratio and
fix the position along the y-axis by placing the eye center point at
45% from the top of the image and the mouth center point at25%
from the bottom of the image, respectively; vi. resize the width and
height of the image to110×110. Note that the computed midpoint
is not consistent across pose. In faces exhibiting significant yaw,
the computed midpoint will be different from the one computed in
a frontal image, so facial landmarks are not aligned consistently
across yaw.

Following the input layer, there are10 convolutional layers,
4 max-pooling layers, and1 average-pooling layer. Every pair of

6. http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html

http://labs.yahoo.com/news/yfcc100m/
http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html
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(a) (b) (c)

Fig. 4. A face image alignment example. The original image is shown in
(a); (b) shows the 68 landmark points detected by the method in [28],
and (c) is the final aligned face image, where the blue circle was used
to center the face image along the x-axis, and the red circles denote the
two points used for face cropping.

convolutional layers is grouped together and connected sequen-
tially. The first four groups of convolutional layers are followed
by a max-pooling layer with a2 × 2 filter and a stride of2,
while the last group of convolutional layers is followed by an
average-pooling layer with a7 × 7 filter. The dimensionality of
the feature representation layer is the same as the number of filters
in the last convolutional layer. As discussed in [6], the ReLU [29]
node produces a sparse vector, which is undesirable for a face
representation layer. In our network, we use ReLU nodes [29] in
all the convolutional layers, except the last one, which is combined
with an average-pooling layer to generate a320-dimensional face
representation.

Although multiple fully-connected layers are used in [26],
[29], in our network we directly feed the deep features generated
by the feature layer to aP -way softmax, whereP is the
number of subjects in the training set. We regularize the feature
representation layer using dropout [30], keeping 60% of the
feature components as-is and randomly setting the remaining40%
to zero during training.

We use a softmax loss function for our network, and train
it using the standard back-propagation method. The network is
implemented using open source cuda-convnet27 library; weight
decay is set to5× 10−4. The learning rate for stochastic gradient
descent (SGD) is initialized to10−2, and gradually reduced to
10−5.

3.2 Face Filtering

Given a probe faceI and a template generation functionF , finding
the top-k most similar facesCk(I) in the galleryG is formulated
as follows:

Ck(I) = Rankk({S(F(I),F(Ji))|Ji=1,2,...,N ∈ G}) (2)

where N is the size of galleryG, S is a function which
measures the similarity of the probe faceI and the gallery
imageJi, andRank(·) is a function that finds the top-k largest
values in an array. The computational complexity of naı̈ve face
comparison functions is linear with respect to the gallery sizeN
and the feature dimensionalityd. To address large-scale search,
approximate nearest neighbor (ANN) algorithms, which improve
runtime without a significant loss in accuracy, have become
popular.

Hashing based algorithms use compact binary representations
to conduct an exhaustive nearest neighbor search in Hamming

7. https://code.google.com/p/cuda-convnet2/

space. Although multiple hash tables [24] can significantly
improve performance and reduce distortion, their performance
degrades quickly with increasing gallery size in face recognition
applications. Product quantization (PQ) [7], where the feature
template space is decomposed into a Cartesian product of low
dimensional subspaces (each subspace is quantized separately)
has been shown to achieve excellent search results [7]. Details
of product quantization used in our implementation are described
below.

Under the assumption that the feature dimensionality is a
multiple ofm, wherem is an integer, any feature vectorx ∈ R

d

can be written as a concatenation(x1,x2, . . . ,xm) of m sub-
vectors, each of dimensiond/m. In thei-th subspaceRd/m, given
a sub-codebookCi = {cij=1,2,...,z|c

i
j ∈ R

d/m}, wherez is the
size of codebook, the sub-vectorx

i can be mapped to a codeword
c
i
j in the codebookCi, with j as the index value. The indexj

can then be represented by a binary code withlog2(z) bits. In our
system, each codebook is generated using thek-means clustering
algorithm. Given all them sub-codebooks{C1, C1, . . . , Cm}, the
product quantizer of feature templatex is

q(x) = (q1(x1), . . . , qm(xm))

where qj(xj) ∈ Cj is the nearest sub-centroid of sub-vector
x
j in Cj , for j = 1, 2, . . . ,m, and the quantizerq(x) requires

m log2(z) bits. Given another feature templatey, the asymmetric
squared Euclidean distance betweenx andy is approximated by

D(y,x) = ‖y− q(x)‖2 =
m∑

j=1

‖yj − qj(xj)‖2

where qj(xj) ∈ Cj, and the distances‖yj − qj(xj)‖ are
pre-computed for each sub-vector ofyj , j = 1, 2, . . . ,m and
each sub-centroid inCj, j = 1, 2, . . . ,m. Since the distance
computation requiresO(m) lookup and add operations [7],
approximate nearest neighbor search with product quantizers is
fast, and significantly reduces the memory requirements with
binary coding. If no additional hashing scheme is used, this
method isO(N) with dataset size.

To further reduce the search time, a non-exhaustive search
scheme was proposed in [7] and [31] based on an inverted
file system and a coarse quantizer; the query image is only
compared against a portion of the image gallery, based on the
coarse quantizer. However, we found that non-exhaustive search
significantly reduces face search performance when used with the
proposed feature vector.

Two important parameters in product quantization are the
number of sub-vectorsm and the size of the sub-codebookz,
which together determine the length of the quantization code:
m log2 z. Typically, z is set to 256. To find the optimalm,
we empirically evaluate search accuracy and time per query for
various values ofm, based on a1 million face gallery and over
3, 000 queries. We noticed that the performance gap between
product quantization (PQ) and brute force search becomes small
when the length of the quantization code is longer than512 bits
(m = 64). Considering search time, the PQ-based approximate
search is an order of magnitude faster than the brute force
search. As a trade-off between efficiency and effectiveness, we
set the number of sub-vectorsm to 64; the quantization code is
64 log2(256) = 512 bits long.

Although we use product quantization to compute face similar-
ity scores, we also need to pick a distance or similarity metric. We

https://code.google.com/p/cuda-convnet2/
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evaluated cosine similarity8, L1 distance, and L2 distance using a
5M gallery. The cosine similarity achieves the best performance
among those three metrics, although the normalized L2 distance
has identical performance.

3.3 Re-Ranking

Given the short candidate list, there-ranking moduleaims to
improve search accuracy by using additional face matchers to re-
rank the candidate list. In particular, given a probe faceI and
its top-k most nearest faces returned from the filtering module
(denoted withCk(I)), the k candidate faces are re-ranked by
fusing the similarity scores fromL different matchers. The re-
ranking module is formulated as:

Re-Rank({Fusion(Sj=1,...,L(I, Ji))|Ji=1,...,k ∈ Ck(I)}) (3)

whereSj is the j-th matcher, andRe-Rank function sorts top-
k samples in the descending order. To make our system simple
yet effective; we setL = 2 and generate the final similarity
score using sum-rule fusion [32] between cosine similarity scores
computed from the learned deep features and the similarity scores
generated by the COTS face matcher9. To reduce the effect of scale
in sum-rule fusion, we adopt z-score normalization [33] over the
top-k similarity values for each face matcher, respectively.

The main benefit of combining the similarities derived from
deep features and scores output by a COTS matcher is to utilize
the strength of two different face representations. We noticed
that the set of impostor face images that are incorrectly assigned
high similarity scores by deep features and the COTS matcher do
not overlap, suggesting their representations are complementary,
which is necessary for the success of fusion [32]. Since COTS
matchers are widely deployed in many real world applications [8],
the proposed cascade fusion scheme can be easily integrated in
existing applications to improve both scalability and performance.

3.3.1 Impact of Candidate Set Size (k)
In the proposed cascaded face search system, the size of candidate
list k is a key parameter. In general, we expect the optimal value of
k to be related to the gallery sizeN (a larger gallery would require
a larger candidate list to maintain good search performance). We
evaluate the relationship betweenk andN by computing the mean
average precision (mAP) as the gallery size (N ) is increased from
100K to 5M and the size of candidate list (k) is increased from
50 to 500K.

Fig. 6 (a) shows that the search performance, as expected,
decreases with increasing gallery size. Further, for a fixedN ,
search performance initially increases, then drops off whenk gets
too large. The optimal candidate set sizek scales linearly with the
gallery sizeN . Because the plots in Fig6 (a) flatten out for large
k, a near optimal value ofk (e.g.,k = 0.01N) can drastically
reduce the candidate list with a very small loss in accuracy.

3.3.2 Fusion Method
Another important issue is the choice of fusion scheme to
combine similarity scores from deep features (DF) and COTS.
We empirically evaluated the following four fusion strategies:

• DF+COTS: Fusion of similarity scores based on deep
features and the COTS matcher, without any filtering.

8. https://en.wikipedia.org/wiki/Cosinesimilarity
9. We enforce the COTS matcher to compare two face images directly

without using any metadata.
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Fig. 6. (a) Impact of candidate set size (k) as a function of the gallery size
(N ) on the search performance as measured in terms of Mean Average
Precision (mAP). Red points mark the optimal value of k for different
values of N . (b) Comparison of fusion strategies based on a 1M gallery
and 3K probes.

• DF→COTS: Filter the gallery using deep features, then
re-rank the candidate list based on fusion of similarity
scores from deep features and the COTS matcher.

• DF→COTSonly: Only use the similarity scores of COTS
matcher to rank thek candidate faces output by deep
features.

• DF→COTSrank: Filter the gallery using deep features,
and rankk candidate faces using similarity scores of deep
features and the COTS matcher, respectively, and then
finally, combine two ranked lists using rank-level fusion.
This is useful when the COTS matcher does not report
similarity scores.

To keep the evaluation tractable, different fusion methods were
evaluated using about3K probes and a1M face gallery. The
average precisionvs. average recallcurves of these four fusion
strategies are shown in Fig.6 (b). As a baseline, we also show the
retrieval performances of using DF and COTS alone. The fusion
scheme (DF→COTS) consistently outperforms the other fusion
methods, as well as simply using DF and COTS alone. Note that
omitting the filtering step leads to poor retrieval results compared
to the cascaded approach, which is consistent with results in
the previous section: whenk approachesN , the search accuracy
decreases.

4 FACE DATASETS

We use one mugshot dataset and four different web face datasets in
our experiments: PCSO, LFW [3], IJB-A [9], CASIA-WebFace [6]
(abbreviated as “CASIA” in the following sections), and general
web face images, referred to as “Web-Face”. We briefly introduce
these datasets and show example face images from each dataset in
Fig. 5.

• PCSO: This dataset is a subset of a large collection of
mugshot images acquired from the Pinellas County Sher-
iff’s Office (PCSO) dataset, which contains1, 447, 607
images of403, 619 subjects.

• LFW [3]: The LFW dataset is a collection of13, 233 face
images of5, 749 individuals, downloaded from the web.
Face images in this dataset contain significant variations in
pose, illumination, and expression. All the images in this
dataset contain faces that can be detected by the Viola-
Jones face detector [3], [34].

• IJB-A [9] IARPA Janus Benchmark-A (IJB-A) contains
500 subjects with a total of25, 813 images (5, 399 still

https://en.wikipedia.org/wiki/Cosine_similarity
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(a) PCSO (b) LFW [3] (c) IJB-A [9] (d) CASIA [6] (e) Web-Face

Fig. 5. Examples of face images in five face datasets used in our experiments.

images and20, 414 video frames). Compared to the LFW
dataset, the IJB-A dataset is more challenging.

• CASIA [6] dataset provides a large collection of face
images labeled with the subjects’ identities, suitable for
training deep networks. It contains494, 414 face images
of 10, 575 subjects. There are22 overlapping subjects
between the CASIA and IJB-A datasets. After removing
the images of these 22 subjects and all images where
face detection failed, we are left with404, 992 images
of 10, 553 subjects in the CASIA dataset.

4.1 Gallery Augmentation: 80 Million Web Faces

To conduct face search at scale, we used a crawler to automatically
download millions of web images (The links to these web images
were provided by a different research collaborator). Following
that, we filtered out all the non-face-detectable web images with
the DLIB face detector10. A total of 80 million face images were
collected in this manner. Since these images are unlabeled, we
use them to augment the gallery size in our large-scale search
experiments. We call this database “Web-Face.”

We first evaluate the DLIB face detector on the unconstrained
face detection benchmark FDDB [39], which contains5, 171
faces extracted from2, 845 Yahoo news images. Using default
parameters provided by the DLIB face detector, the number of
detected false positive faces is140, and the corresponding true
positive rate (TPR) is about81.6% using discrete score evaluation
metric [39]. Fixing the same number of false positive faces, the
true positive rate (TPR) of the best commercial face detector11

and academic face detector [40] are around91% and 89%,
respectively.

We further manually examined10, 000 randomly drawn
samples from the entire80 million dataset. A total of50 non-face
images and164 non-human faces were detected, which indicates
that approximately2.1% of the 80 million web downloaded
face images may be false positives. In Figure7 we show some
examples of non-face and non-human face images from the Web-
Face dataset.

We made a rough estimate of the number of identities in
this dataset by combing the full LFW dataset with the 80
million images, performing clustering using the method outlined
in [41], and selecting the distance threshold which attained
the best possible performance on the LFW data. We acquired

10. http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html
11. http://idl.baidu.com/

approximately 6.7 million non-singleton clusters by this method,
and consider that an estimated lower bound on the potential true
number of discrete identities.

(a) (b)

Fig. 7. Examples of false positive samples detected by DLIB face
detector. (a) non-face images, (b) non-human face images.

5 FACE RECOGNITION EVALUATION

In this section, we first evaluate the proposed deep ConvNet on a
mugshot dataset (PCSO), followed by evaluations on two publicly
available unconstrained face recognition benchmarks (LFW [3]
and IJB-A [9]) to establish its performance relative to state-of-the-
art results.

5.1 Mugshot Evaluation

We evaluate the proposed deep model on mugshot data obtained
from PCSO. Some example mugshots are shown in Fig.5 (a).
Mugshot faces are captured in constrained environments (e.g., a
police station) with near frontal views of the face. We compare
the performance of our deep features with a state-of-the-art COTS
face matcher. The COTS matcher used here was designed to work
with mugshot-style images, and is one of the top performers in the
2014 NIST FRVT [8].

Since mugshot data is qualitatively different from the CASI-
A [9] dataset that we initially used to train our deep network,
we first retrained the network with a subset of471, 130 mugshot
images of29, 674 subjects taken from the full PCSO mugshot
dataset. For evaluation, we compared deep features with the COTS
matcher on a test subset of the PCSO dataset containing100, 00
images of63, 670 subjects, which does not contain any of the
subjects and images included in the training set. We conduct
the face verification experiment using 10-fold cross-validation;
there are approximately340K genuine comparisons and4 billion
impostor comparisons, on average in each fold.

Experimental results show that the COTS matcher outperforms
the deep features, especially at low False Accept Rates (FAR)12.

12. False Accept Rate (FAR) is defined as the fraction of impostor pairs
incorrectly accepted at a particular threshold.

http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html
http://idl.baidu.com/
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For example, at a FAR of0.01%, the True Accept Rates (TAR)13

of deep features and the COTS matcher are98.6% ± 0.1%
and 93.7% ± 0.1%, respectively. However, a score-level fusion
between the deep features and COTS scores results in an improved
overall performance:99.5% ± 0.3%14. This result suggests the
following: (i) deep features are not superior to other state-of-
the-art face recognition approaches for all tasks, especially near
frontal photos with neutral expression and controlled illumination,
and (ii) Deep features and state-of-the-art COTS matchers provide
complementary information.

5.2 LFW Evaluation

While mugshot data is of interest in several applications, many
other applications require recognizing more difficult, uncon-
strained face images. We now evaluate the proposed deep models
on the benchmark LFW [3] unconstrained face dataset, using
two protocols: the standard LFW [3] protocol and the BLUFR
protocol [19].

5.2.1 Standard Protocol
The standard LFW evaluation protocol defines a verification
experiment under 10-fold cross-validation with300 genuine
comparisons and300 impostor comparisons per fold, involving
a total of7, 701 images of4, 281 subjects. In Table2, following
the standard protocol, we present the mean verification accuracy
of the proposed deep models and the same COTS face matcher
evaluated in section5.1 for the mugshot dataset. More evaluation
results are available on the LFW leaderboard.15

TABLE 2
Performance of various face recognition methods on the

standard LFW verification protocol.

Method #Nets Mean accuracy± s.d.

COTS N/A 90.4%±1.3%
Proposed Deep Model 1 96.2%±0.9%
Proposed Deep Model 9 98.2%±0.6%

We notice that the COTS matcher performs poorly relative to
the deep learning based algorithms. This is to be expected since
unlike deep models, most COTS matchers have been trained to
handle face images captured in constrained environments, e.g.
mugshot or driver license photos. Almost all the top-ranking
algorithms on the LFW leaderboard are deep learning based
algorithms. The superior performance of deep learning based
algorithms can be attributed to (a) large number of training images
of large number of subjects (> 100K) [22], (b) data augmentation
methods, e.g., use of multiple deep models [21], and (c) supervised
learning algorithms, such as Joint-Bayes [5], used to learn a
verification model for a pair of faces in the training set.

To generate multiple deep models, we first trained three
deep ConvNets independently based on training data that was
preprocessed using the alignment method in Section3.1. In
addition, we cropped six different sub-regions from the aligned
face images (by centering the positions of the left-eye, right-eye,
nose, mouth, left-brow, and right-brow) and trained six additional

13. True Accept Rate (TAR) is defined as the fraction of genuine pairs
correctly accepted at a particular threshold

14. The two-tailedP value equals 0.0001, which indicates the performance
improvement of fusion scheme is statistically significant.

15. http://vis-www.cs.umass.edu/lfw/results.html

networks. By combining these nine deep models together and
using Joint-Bayes [5], the mean verification accuracy of our deep
model improves to98.20% from 96.20% for a single network
using the cosine similarity. Despite relying only on publicly
available training data, the performance of our deep model is
competitive with state-of-the-art on the standard LFW protocol
as shown on the leaderboard.

5.2.2 BLUFR Protocol
It has been argued that the standard LFW evaluation protocol
is not appropriate for many face recognition applications, which
require high True Accept Rates (TAR) at low False Accept Rates
(e.g. FAR= 0.1%). In this experiment, we further evaluate the
proposed deep models using the BLUFR [19] protocol, which
defines both10-fold cross-validation face verification and open-
set identification tests involving larger number of genuine and
impostor comparisons.

For face verification, in each trial, the test set contains9, 708
face images of4, 249 subjects, on average. As a result, over47
million face comparison scores need to be computed in each trial.
For open-set identification, in each trial, the genuine probe set
contains4, 350 face images of1, 000 subjects, the impostor probe
set contains4, 357 images of3, 249 subjects, on average, and the
gallery set contains1, 000 images. Following the protocol in [19],
we report the True Accept Rate (TAR) at a False Accept Rate
(FAR) of 0.1% for face verification16. For open-set identification,
we report the detection and identification rate (DIR) at Rank-1
corresponding to a False Accept Rate (FAR) of1%. See Table3
for results.

TABLE 3
Performance of various face recognition methods on LFW using the
BLUFR protocol reported as True Accept Rate (TAR) and Detection

and Identification Rate (DIR).

Method #Nets TAR DIR@FAR=1%
@FAR=0.1% Rank=1

Li et al. [6] 1 80.3% 28.9%
COTS N/A 60.0%± 1.5% 37.9%± 1.5%
Proposed Deep Model 1 85.0%± 1.9% 49.1%± 2.8%
Proposed Deep Model 9 89.8%± 1.8% 55.9%± 3.3%

We notice that the TAR at a FAR of0.1% under the
BLUFR protocol is much lower than the accuracies reported
on the standard LFW protocol. For example, the performance
of the COTS matcher is only58.56% under the BLUFR pro-
tocol compared to90.35% in the standard LFW protocol.
This indicates that the performance metrics for the BLUFR
protocol are more stringent than those of the standard LFW
protocol; however, as previously discussed practical applications
require good performance at low FAR operating points. The
deep models still outperform the COTS matcher. Using cosine
similarity and a single deep model, our method achieves better
performance (83.08%) than the one in [6], which indicates that
our modifications to the network design (using RGB input, random
cropping, and improved face alignment) help boost the recognition
performance. Our performance is further improved to88.03%
when we fuse nine deep models. In this experiment, the Joint-
Bayes approach [5] did not improve accuracy. In the open-set
recognition results, a single deep model achieves a significantly

16. The original BLUFR protocol uses Verification Rate (VR). We changed
it to True Accept Rate (TAR) for consistency in reporting our results.

http://vis-www.cs.umass.edu/lfw/results.html
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better performance (55.90%) than the previous best reported result
of 28.90% [6], as well as the COTS matcher (36.44%).

5.3 IJB-A Evaluation

The IJB-A dataset [9] was released in 2015 in an attempt to
push the frontiers of unconstrained face recognition. Given that
recognition performance on the LFW dataset has saturated under
the standard protocol, the IJB-A dataset contains more challenging
face images and specifies both verification and identification (open
and close sets) protocols. The basic protocol consists of 10-fold
cross-validation on pre-defined splits of the dataset, with a disjoint
training set defined for each split.

One unique aspect of the IJB-A evaluation protocol is that it
defines “templates,” consisting of one or more images (still images
or video frames), and defines set-to-set comparisons, rather than
face-to-face comparisons, as shown in Fig.9. In particular, in the
IJB-A evaluation protocol the number of images per template
ranges from a single image to a maximum of202 images.
Both the search task (1:N comparisons) and verification task
(1:1 comparison) are defined in terms of comparisons between
templates (consisting of several face images), rather than single
face images.

The verification protocol in IJB-A consists of10 sets of pre-
defined comparisons between templates (groups of images). Each
set contains about11, 748 pairs of templates (1, 756 genuine
plus 9, 992 impostor pairs), on average. For the search protocol,
which evaluates both closed-set and open-set performance,10
corresponding gallery and probe sets are defined, with both the
gallery and probe sets consisting of templates. In each search
fold, there are about1, 187 genuine probe templates,576 impostor
probe templates, and112 gallery templates, on average.

Given an image or video frame from the IJB-A dataset, we first
attempt to automatically detect68 facial landmarks with DLIB. If
the landmarks are successfully detected, we align the detected
face using the alignment method proposed in Section3.1. We call
the images with automatically detected landmarkswell-aligned
images. If the landmarks cannot be automatically detected, as is
the case for profile faces or when only the back of the head is
showing (Fig.8), we align the face based on the ground-truth
landmarks provided with the IJB-A protocol. The ground truth
landmarks consist of the left eye, right eye, and nose tip, but since
these points are not visible in every image, landmarks which are
not clearly visible are omitted. For example, in faces exhibiting
a high degree of yaw, only one eye is typically visible, so the
other eye will not be included in the ground truth landmarks.
If all the three landmarks are available, we estimate the mouth
position and align the face images using the alignment method in
Section3.1; otherwise, we directly crop a square face region using
the provided ground-truth face region. We call images for which
automatic landmark detection failspoorly-aligned images. Fig.8
shows some face alignment examples in the IJB-A dataset.

The IJB-A protocol allows training for each fold. Since the
IJB-A dataset is qualitatively different from the CASIA dataset
that we used to train our network, we retrain our deep model using
the IJB-A training set for each fold. The final face representations
consists of a concatenation of the deep features from five different
deep models trained just on the CASIA dataset, and one re-trained
on the IJB-A training set for the current fold. We then use Principal
Component Analysis (PCA) to reduce the dimensionality of the
combined face representation to100, which is the lowest value
without performance reduction over the training set.

(a) (b) (c) (d)

Fig. 8. Examples of web images in the IJB-A dataset with overlayed
landmarks (top row), and the corresponding aligned face images
(bottom row); (a) example of a well-aligned image obtained using
automatically detected landmarks by DLIB [28]; (b), (c), and (d)
examples of poorly-aligned images with 3, 2, and 0 ground-truth
landmarks provided in IJB-A, respectively. DLIB fails to output landmarks
for (b)-(d). The images in the top row have been cropped around the
relevant face regions from the original images.

Since all the IJB-A comparisons are defined between sets of
faces, we need to determine an appropriate set-to-set comparison
method. Our set-to-set comparison strategy first determines if there
are one or morewell-aligned images in a template. If so, we
only use thewell-aligned images for the set comparison; we call
the corresponding templateswell-aligned templates. Otherwise,
we use thepoorly-aligned images, calling the corresponding
templatespoorly-aligned templates. The pairwise face-to-face
similarity scores are computed using the cosine similarity, and
the average score over the selected subset of images is the final
set-to-set similarity score.

Key results of the proposed method, along with the baseline
results reported in [9] and DCNN [36] are shown in Table4.
Our deep network based method performs significant better than
the two baselines at all evaluated operating points, and slightly
worse than DCNN [36]17. DCNN uses a similar network structure
and the same training dataset as our deep model; however, it
incorporates the recently proposed parametric rectified linear unit
(PReLu) [38], instead of the rectified linear unit (ReLu) [29] used
in our deep model. This indicates that the performance of our
deep model could also be further improved using updated network
architectures. Still, the main focus of this paper is to address the
large-scale face retrieval problem.

Fig. 9 shows face search results for two probe templates, one
where rank-1 retrieval is successful and the other where rank-1
retrieval is not successful. A template containing a single poorly-
aligned image is much harder to recognize than the templates
containing one or more well-aligned images. Fig.10 shows the
distribution of well-aligned images and poorly-aligned images
in probe templates. Compared to the distribution of poorly
aligned templates in the overall dataset, we fail to recognize
a disproportionate number of templates containing only poorly-
aligned face images.

6 LARGE-SCALE FACE SEARCH

In this section, we evaluate our face search system using an
80M gallery. The test datasets we use consist of LFW and IJB-
A images. We use the images to construct the mated portion of a

17. DCNN was published after an earlier version of this paper [37] appeared
on arXiv.
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Probe Template
Retrieved templates from the gallery under the closed-set search protocol of IJB-A

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

TID:234 (#=2) TID:226 (#=34) TID:5754 (#=10) TID:234 (#=27) TID:234 (#=42) TID:234 (#=4)

TID:414 (#=1) TID:2176 (#=68) TID:3779 (#=4) TID:2572 (#=4) TID:410 (#=6) TID:2859 (#=32)

Fig. 9. Examples of face search in the first fold of the IJB-A closed-set search protocol, using “templates.” The first column contains the probe
templates, and the following 5 columns contain the corresponding top-5 ranked gallery templates, where red text highlights the correct mated
gallery template and the number of faces in the corresponding template is denoted with #. There are 112 gallery templates in total; only a subset
(at most four) of the images for each template are shown.

TABLE 4
Recognition accuracies under the IJB-A protocol. Results for GOTS and OpenBR are taken from [9]. Results reported are the average ± standard

deviation over the 10 folds specified in the IJB-A protocol.

TAR @ FAR (verification) CMC⋆ (closed-set search) FNIR @ FAR† (open-set search):

Algorithm 10% 1% 0.1% Rank-1 Rank-5 10% 1%

GOTS 62.7%± 1.2% 40.6%± 1.4% 19.8%± 0.8% 44.3%± 2.1% 59.5%± 2.0% 76.5%± 3.3% 95.3%± 2.4%

OpenBR 43.3%± 0.6% 23.6%± 0.9% 10.4%± 1.4% 24.6%± 1.1% 37.5%± 0.8% 85.1%± 2.8% 93.4%± 1.7%

DCNNall [36] 94.7%± 1.1% 78.7%± 4.3% N/A 86.0%± 2.3% 94.3%± 1.7% N/A N/A
Proposed Deep Model 89.3%± 1.4% 72.9%± 3.5% 51.0%± 6.1% 82.2%± 2.3% 93.1%± 1.4% 39.2%± 2.7% 61.5%± 4.6%

⋆ Cumulative Match Characteristic (CMC) computes the fraction of genuine samples retrieved at or below a specific rank.
† For consistency, we use False Accept Rate (FAR) in place of the False Positive Identification Rate (FPIR) term used in [9]. This quantity is the fraction of

impostor probe images accepted at a given threshold, and False Negative Identification Rate (FNIR) is the fraction of genuine probe images rejected at the
same threshold.

70% 78%

34%

30% 22%

66%

0%

50%

100%

All Probe 

Templates

Correct 

Match@Rank-1

Incorrect 

Match@Rank1

Well-aligned Templates Poorly-aligned Templates

Fig. 10. Distribution of well-aligned templates and poorly-aligned
templates in 1:N search protocol of IJB-A, averaged over 10 folds.
Correct Match@Rank-1 means that the mated gallery template is
correctly retrieved at rank 1. Landmarks in well-aligned images can
be automatically detected by DLIB [28]. Poorly-aligned images mainly
consist of profile views of faces. We align these images using the three
ground-truth landmarks when available, or else by cropping the entire
face region.

retrieval database with an extended gallery, rather than following
the standard protocols for those datasets. We report search results
under both open-set and closed-set protocols with increasing
gallery size, up to 80M faces. We evaluate the following three
face search schemes:

• Deep Features (DF): Use our deep features with product
quantization (PQ) to directly retrieve the top-k most
similar faces to the probe (no re-ranking step).

• COTS: Use a state-of-the-art COTS face matcher to
compare the probe image with each gallery face, and
output the top-k most similar faces to the probe (no

filtering step).
• DF→COTS: First filter the gallery using deep features.

Next, re-rank the top-k candidate faces by fusing cosine
similarities computed from deep features with the COTS
matcher’s similarity scores for thek candidate faces.

For closed-set face search, we assume that the probe always
has at least one corresponding face image in the gallery. For
open-set face search, given a probe we first decide whether a
corresponding image is present in the gallery. If it is determined
that the probe’s identity is represented in the gallery, then we
return the search results. For open-set performance evaluation, the
probe set consists of two groups: i. genuine probe set that has
mated images in the gallery, and ii. impostor probe set that has no
mated images in the gallery.

6.1 Search Dataset

We construct a large-scale search dataset using the four face
datasets introduced in Section4. The dataset consists of five parts,
as shown in Table5: 1) training set, which is used to train our
deep network; 2)genuine probeset, the probe set which has
corresponding gallery images; 3)mateset, the part of the gallery
containing the same subjects as thegenuine probeset; 4)impostor
probe set, which has no overlapping subjects with thegenuine
probeset; 5)backgroundset, which has no identity labels and is
simply used as background images to enlarge the gallery size.

We use the LFW and IJB-A datasets to construct thegenuine
probeset and the correspondingmateset. For the LFW dataset, we
first remove all the subjects who have only a single image, leaving
1, 507 subjects with 2 or more images. For each of these subjects,
we take half of the images for thegenuine probeset and use
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the remaining images for themateset in the gallery. We repeat
this process10 times to generate10 groups of probe and mate
sets. To construct theimpostor probeset, we take4, 000 subjects
from LFW, each having only one image. For the IJB-A dataset,
a similar process is adopted to generate10 groups of probe and
mate sets. To build a large-scalebackgroundset, a crawler was
used to download millions of web images from the Internet, then
filter them to only include those with detectable faces by DLIB18.
By combining themateset andbackgroundset, we compose an
80 million image gallery. More details are shown in Table5.

TABLE 5
Large-scale web face search dataset overview.

Source # Subjects # Images

Training Set CASIA [6] 10,553 404,992

LFW based probe and mate sets
Genuine Probe Set LFW [3] 1,507 3,370
Mate Set LFW [3] 1,507 3,845

IJB-A based probe and mate sets
Genuine Probe Set IJB-A [9] 500 10,868
Mate Set IJB-A [9] 500 10,626

Impostor Probe Set LFW [3] 4,000 4,000
Background Set Web-Faces N/A 80,000,000

6.2 Dataset Segmentation

In the retrieval experiments, we use LFW or IJB-A for the
probe and mate sets, and 80M web faces for thebackground
set. Although all the three datasets consist of unconstrained face
images from the web, they are collected from different sources.
In particular, LFW and IJB-A are from news images (with IJB-A
containing more challenging images) and Web-Face is from photos
on social media websites. As such, the different characteristics
of the datasets may lead to a segmentation effect, where images
from one dataset may easily be distinguished from others based
on differing image acquisition properties, rather than the identities
of the faces being compared. In other words, thebackgroundset
should have a similar distribution to theprobe set and themate
set, otherwise, the use of the background set will not effectively
demonstrates the search performance that would be seen with a
large gallery of images with more uniform properties.

Fig. 11. Distributions of cosine similarities of the genuine pairs, within-
dataset impostor pairs and between-dataset impostor pairs for the
combinations of LFW+Web-Face (left) and IJB-A+Web-Face (right).

To examine the differences between the Web-Face and labeled
datasets (LFW and IJB-A), we first randomly sample10K images

18. The links to these web images were provided by a different research
collaborator. We downloaded the raw web images, and filtered out all non-
face-detectable web images using the DLIB face detector.

from the Web-Face dataset, and combine this subset with the LFW
and IJB-A datasets, respectively. We then extract features using the
proposed deep model, and compute all pairwise cosine similarities.
We examine the distributions of these scores in Fig.11, which
plots the genuine, within-dataset impostor, and between-dataset
impostor score distributions for both the LFW+Web-Face and IJB-
A+Web-Face datasets.

We observe that for both LFW and IJB-A datasets the
distributions of cosine similarities of the within-dataset and
between-dataset impostor pairs have a significant overlap, but the
distribution of cosine similarities of the between-dataset impostor
pairs is left-shifted. This indicates that the “effective” background
gallery size is smaller than80 million, since typical impostor
images from the background dataset score relatively lower than
impostors from the labeled datasets. We analyze this effect in
terms of the verification problem, by estimating what size sample
from the within-dataset impostor would result in the same total
number of false accepts seen from the cross-dataset impostor
score distribution (using the empirical score distributions directly).
For the 1% False Reject Rate operating point, a sample of
approximately 23 million images following the observed within-
LFW impostor score distribution would generate as many false
accept errors as were generated from the full 80 million Web-Face
dataset. For a lower FRR of 0.01%, matching the number of false
accepts generated from the cross-dataset impostor distribution
would require approximately 72 million images following the
within-LFW impostor score distribution.

6.3 Performance Measures

Face search aims to find all the mated faces in the gallery, which is
broader than the traditional biometric problems, e.g. authentication
(1:1 search) or identification (1:N search). Hence, we evaluate
our face search system with the widely used retrieval evaluation
metrics: precision, the fraction of the search set consisting of
mated face images, andrecall, the fraction of all mated face
images for a given probe face that were returned in the search
results.

Various trade-offs betweenprecisionand recall are possible
(for example, high recall can be achieved by returning a large
result set, but a large result set will also lead to lower precision),
so we summarize the overall closed-set face search performance
usingmean Average Precision(mAP), which is also widely used
for search system evaluation [7]. mAP is defined as follows: given
a set ofn probe face imagesQ = {x1

q,x
2
q , . . . ,x

n
q } and a gallery

set withN images, theaverage precisionof xi
q is:

avgP(xi
q) =

N∑

j=1

P (xi
q, j)× [R(xi

q, j)−R(xi
q, j − 1)] (4)

where P (xi
q , j) is precision at the j-th position for xi

q and
R(xi

q, j) is recall at thej-th position forxi
q (R(0) = 0). Note

that this measure includes the ranks of all gallery images matching
a given query, so having more gallery images is not a strictly easier
problem. The mean Average Precision (mAP) of the entire probe
set is:

mAP(Q) = mean(avgP(xi
q)), i = 1, 2, . . . , n

When the gallery sizeN is too large, for efficiency, we compute
the average precisionusing the top-100K retrieval results. Since
mAP uses the unweighted average, each query image has the same
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impact on the aggregate, regardless of the number of matching
gallery images.

In the open-set scenario, we evaluate search performance as a
trade-off between mean average precision (mAP) and false accept
rate (FAR) (the fraction of impostor probe images which are not
rejected at a given threshold). Given a genuine probe, itsaverage
precisionis set to0 if it is rejected at a given threshold, otherwise,
its average precisionis computed using Eq.4.

For a large background gallery dataset like the80 million
Web-Face used here, it is difficult to ensure that there are no
subjects which overlap between the query and background sets.
As a result, in our evaluation, if one of the unlabeled background
images is actually the same person as the query image, we consider
it an “incorrect” retrieval result. In other words, while we cannot
guarantee that no images in the background set have the same
identity as the query image, any such images, if present, will bias
our results in the direction of lower accuracy.

6.4 Closed-set Face Search

We examine closed-set face search performance with the gallery
sizeN ranging from100K to 80M. Enrolling the complete80M
gallery in the COTS matcher would take a prohibitive amount of
time (over80 days), due to limitations of the SDK we have, so the
maximum gallery set used for the COTS matcher is5M. For the
proposed face search scheme DF→COTS, we chose the size of
candidate setk using the heuristick = 1/100N when the gallery
size is smaller than5M andk = 1, 000 when the gallery set size
is 80M. We use a fixedk for the full 80M gallery since using a
largerk would take a prohibitive amount of time, due to the need
to enroll the filtered images in the COTS matcher. Experimental
results for the LFW and IJB-A datasets under closed-set search
are shown in Fig.12.
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Closed-set Search Evaluation on LFW and IJB-A datasets

Fig. 12. Closed-set face search performance (mAP) vs. gallery size N

(log-scale), on LFW and IJB-A datasets. The performance of COTS
matcher on 80M gallery is not shown, since enrolling the complete 80M
gallery with the COTS matcher would have taken a prohibitive amount
of time (over 80 days).

For both LFW and IJB-A face images, as expected, the
recognition performance of all three face search schemes evaluated
here decreases with increasing gallery set size. In particular, for all
the search schemes, mAP linearly decreases with the gallery size

N on log scale; the performance gap between a100K gallery
and a 5M gallery is about the same as the performance gap
between a5M gallery and an80M gallery. While deep features
outperform the COTS matcher alone, the proposed cascaded
face search system (which leverages both deep features and the
COTS matcher) gives better search accuracy than either method
individually. Results on the IJB-A dataset are similar to the LFW
results, except for a lower overall accuracy. The lower accuracy
on IJB-A data is to be expected given that IJB-A contains more
challenging face images.

6.5 Open-set Face Search

Open-set search is important for several practical applications
(e.g., de-duplication), one cannot assume that the gallery will
contain images of all potential probe subjects. We evaluate open-
set search performance on the80M gallery, and plot the search
performance (mAP) at varying FAR values in Figs.13.
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Fig. 13. Open-set face search performance (mAP) vs. false accept
rate (FAR) on LFW and IJB-A datasets, using the 80M face gallery.
The performance of COTS matcher is not shown due to computational
issues. FAR is shown only up to 10% since operational systems are not
likely to operate beyond this value.

For both the LFW and IJB-A datasets, the open-set face
search problem is much harder than closed-set face search. At
a FAR of1%, the search performance (mAP) of both algorithms
is much lower than the closed-set face search at 80M show in
Fig. 12, indicating that a large number of genuine probe images
are rejected at the threshold needed to attain1% FAR.

6.6 Scalability

In addition to the mAP performance measure, we also report the
search times in Table6. We run all the experiments on a PC with
an Intel(R) Xeon(R) CPU (E5-2687W) clocked at 3.10GHz. For
a fair comparison, all the compared algorithms use only one CPU
core. The deep features are extracted using a Tesla K40 graphics
card.

In our experiments, template generation for the entire gallery is
done off-line and the gallery is indexed using product quantization
before processing the probe images. Gallery images (up to 5M) are
enrolled into the COTS matcher. The run time of the proposed face
search system after the gallery is enrolled and indexed consists of
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TABLE 6
The average search time (seconds) per probe face and the

corresponding search performance (mAP).

5M Face Gallery 80M Face Gallery

COTS DF
DF→COTS

COTS DF
DF→COTS

@50K @1K

Enrollment 0.09 0.05 0.14 0.09 0.05 0.14
Search 30 0.84 1.15 480.0⋆ 6.63 6.64
Total Time 30.09 0.89 1.29 480.1⋆ 6.68 6.88

mAP 0.36 0.52 0.62 N/A 0.34 0.40

⋆ Estimated by assuming that search time increases linearly with gallery size.

two parts: i)enrollment timeincluding face detection, alignment
and feature extraction, and ii)search timeconsisting of the time
taken to find the top-k search results given the probe template.
Since we did not enroll all80M gallery images using the COTS
matcher, we estimate the query time for the80M gallery by
assuming that search time increases linearly with the gallery size.

Using product quantization for fast matching based on deep
features, we can retrieve the top-k candidate faces in about0.9
seconds for a5M image gallery and in about6.7 seconds for an
80M gallery. On the other hand, the COTS matcher takes about
30 and480 seconds to carry out brute-force comparison over the
complete galleries of5 and80 million images, respectively. In the
proposed cascaded face search system, we mitigate the impact of
the slow exhaustive search required by the COTS matcher by only
using it on a short candidate list. The proposed cascaded scheme
takes about 1 second for the5M gallery and about6.9 seconds
for the80M gallery, which is only a minor increase over the time
taken using deep features alone (6.68 seconds). While the search
time could be further reduced by using a non-exhaustive search
method, it would most likely result in a significant loss in search
accuracy.

probe images gallery images

1a 1b 1c 1x 1y 1z

2a 2b 2c 2x 2y 2z

Fig. 14. Probe and gallery images of Dzhokhar Tsarnaev and Tamerlan
Tsarnaev, responsible for the April 15, 2013 Boston marathon bombing.
Face images 1a and 1b are the two probe images used for Suspect 1
(Tamerlan Tsarnaev), and 1c is his sketch image drawn by a forensic
sketch artist based on 1a and 1b. Face images 2a, 2b and 2c are
the three probe images used for Suspect 2 (Dzhokhar Tsarnaev). The
gallery images of the two suspects became available on media websites
following the identification of the two suspects based on investigative
leads. Face images 1x, 1y and 1z are the three gallery images for
Suspect 1 and images 2x, 2y and 2z are the three gallery images for
Suspect 2.

7 BOSTON MARATHON BOMBING CASE STUDY

In addition to the large-scale face search experiments reported
above, we report on a case-study: finding the identity of Boston
marathon bombing suspects19 in an80M face gallery.

19. https://en.wikipedia.org/wiki/BostonMarathon bombing

Klontz and Jain [35] made an attempt to identify the face
images of the Boston marathon bombing suspects in a 1M gallery
of mugshot images. Video frames of the two suspects were
matched against a background set of mugshots using two state-
of-the-art COTS face matchers. Five low resolution images (1a,
1b, 2a, 2b, 2c) of the two suspects, released by the FBI (shown in
the left side of Fig.14) were used as probe images, and six images
(1x, 1y, 1z, 2x, 2y, 2z) of the suspects released by the media
(shown in the right side of Fig.14) were used as the mates in
the gallery. These mated images were augmented with1 million
mugshot images. One of the COTS matchers was successful in
finding the true mate (2y) of one of the probe image (2c) of
Dzhokhar Tsarnaev at rank1. Neither of the two probe images
for the older brother could retrieve the true mates at a reasonable
rank.

To evaluate the performance of our cascaded face search
system, we construct a similar search problem under more chal-
lenging conditions by adding the gallery images to a background
set of up to80 million web faces. In addition, we also use one
sketch image (1c in Fig.14) of the older brother as the probe
image. We argue that the unconstrained web faces are more
consistent with the quality of the images of the suspects used
in the gallery than mugshot images and therefore comprise a more
meaningful gallery set. We evaluate the search results using gallery
sizes of 5M and80M leveraging the same background set used in
our prior search experiments.

The search results are shown in Table7. Considering the
images of subject 1, although the performance of deep features
is better than the COTS matcher, both the deep features and the
COTS matcher return the matching gallery images at excessively
high ranks for all three probe images. We noticed that the retrieval
performance of the sketch image (1c) is much better than the
retrieval results of the two probe faces extracted from video frames
(1a and 1b). Still, even for the sketch image, the best retrieval
result is a true match at rank 66,427 on the 5M gallery.

For the second subject, results are relatively better. For the
5M gallery, the COTS matcher found a mate (2y) for probe 2c at
rank 625, while the deep features returned gallery image 2x for
probe 2c at rank9. The proposed cascaded search system returned
gallery image 2y at rank1, by combining the COTS matcher and
deep features to re-rank the top 1K or top 10K candidate faces,
demonstrating the strength of the proposed cascade framework.
The retrieval results for probe 2c are slightly worse on the80M
image gallery, which is to be expected. Using deep features alone,
we now find gallery image 2x at rank109 and gallery image
2y at rank2, 952. However, using the cascaded search system,
we retrieve gallery image 2x at rank46 by re-ranking the top-
1K faces, and retrieve gallery image 2y at rank8 by re-ranking
the top-10K faces. So, even with an80M image gallery, we can
successfully find a match for one of the probe images (2c) within
the top-10 retrieved faces. The face search results for the80M
galleries are shown in Fig.15.

8 CONCLUSIONS

We have proposed a cascaded search system suitable for large-
scale face search problems. We have developed a deep learning
based face representation trained on the publicly available CASIA
dataset [6]. The deep features are used in a product quantization
based approximatek-NN search to first obtain a short list of

https://en.wikipedia.org/wiki/Boston_Marathon_bombing
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TABLE 7
Rank retrieval results of the two Boston bomber suspects based on 5M and 80M face gallery. The six probe images are designated as 1a, 1b, 1c,
2a, 2b, and 2c. The six mated images in the gallery are designated as 1x, 1y, 1z, 2x, 2y, and 2z. The corresponding images are shown in Fig. 14

COTS (5M Gallery) Deep Features (5M Gallery) Deep Features (80M Gallery)

1x 1y 1z 1x 1y 1z 1x 1y 1z

1a 2,041,004 595,265 1,750,309 132,613 232,275 1,401,474 2,566,917 5,398,454 31,960,091
1b 3,816,874 3,688,368 2,756,641 1,511,123 1,153,036 1,699,951 33,783,360 27,439,526 44,282,173
1c 126,217 608,899 535,815 66,427 199,083 1,529,169 753,653 2,408,392 29,383,945

2x 2y 2z 2x 2y 2z 2x 2y 2z

2a 67,766 86,747 301,868 174,440 39,417 105879 2,461,664 875,168 1,547,895
2b 352,062 48,335 865,043 71,795 26,525 84,013 1,417,768 972,411 1,367,694
2c 158,341 625 515,851 9 341 9,975 109 2,952 136,651

Proposed Cascaded Face Search System

2c DF→COTS@1K 7 1 9,975 46 2,952 136,651
2c DF→COTS@10K 10 1 1,580 160 8 136,651

Method Probe Top 10 most similar retrieved images from an 80M face gallery

Deep

Features
1a

Deep

Features
1b

Deep

Features
1c

Deep

Features
2a

Deep

Features
2b

Deep

Features 2c

DF→COTS

@10K

Fig. 15. Top 10 search results for the two Boston marathon bombers on the 80M face gallery. The first three probe faces (1c is a sketch) are of
the older brother (Tamerlan Tsarnaev) and the last three probe faces are of the younger brother (Dzhokhar Tsarnaev). For each probe face, the
retrieved gallery image with green border is the correctly retrieved image. Images with the red border are “near-duplicate” images present in the
gallery. Note that we were not aware of the existence of these near-duplicate images in the 80M gallery before the search.

candidate faces. This short list of candidate faces is then re-
ranked using the similarity scores provided by a state-of-the-art
COTS face matcher. We demonstrate the performance of our
deep features on three face recognition datasets, of increasing
difficulty: the PCSO mugshot dataset, the LFW unconstrained
face dataset, and the IJB-A dataset. On the mugshot data,
deep feature performance (TAR of93.5% at FAR of 0.01%)
is worse than a COTS matcher (98.5%), but fusing our deep
features with the COTS matcher does improve the overall
performance (99.2%). Our performance on the standard LFW
protocol (98.20% accuracy) is comparable to state-of-the-art
accuracies reported in the literature. On the BLUFR protocol for
the LFW database we attain the best reported performance to date
(TAR of 88.03% at FAR of0.1%). Our deep features outperform
the benchmarks reported in [9] on the IJB-A dataset, as follows:
TAR of 51.0% at FAR of0.1% (verification); Rank 1 retrieval of
82.2% (closed-set search); FNIR of61.5% at FAR of1% (open-
set search). In addition to the evaluations on the LFW and the IJB-
A benchmarks, we evaluate the proposed search scheme on an 80

million face gallery, and show that the proposed scheme offers an
attractive tradeoff between recognition accuracy and runtime. We
also demonstrate search performance on an operational case study
involving the video frames of the Tsarnaev brothers implicated
in the 2013 Boston marathon bombing. In this case study, the
proposed system can find one of the suspects’ images at rank 1 in
1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M
gallery.

We consider non-exhaustive face search an avenue for further
research. Although we made an attempt to employ indexing
methods, they resulted in a drastic decrease in search performance.
If only a few searches need to be made, the current system’s search
speed is adequate, but if the number of searches required is on the
order of the gallery size, the current runtime is inadequate. We are
also interested in improving the underlying face representation,
via improved network architectures (e.g. joint-training of multiple
patches, and using different kinds of layers), or by using larger
training sets.
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