
1

Learning Continuous Face Age Progression: A
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Abstract—The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well studied
in the literature. This paper presents a novel generative adversarial network based approach to address the issues in a coupled
manner. It separately models the constraints for the intrinsic subject-specific characteristics and the age-specific facial changes with
respect to the elapsed time, ensuring that the generated faces present desired aging effects while simultaneously keeping personalized
properties stable. To ensure photo-realistic facial details, high-level age-specific features conveyed by the synthesized face are
estimated by a pyramidal adversarial discriminator at multiple scales, which simulates the aging effects with finer details. Further, an
adversarial learning scheme is introduced to simultaneously train a single generator and multiple parallel discriminators, resulting in
smooth continuous face aging sequences. The proposed method is applicable even in the presence of variations in pose, expression,
makeup, etc., achieving remarkably vivid aging effects. Quantitative evaluations by a COTS face recognition system demonstrate that
the target age distributions are accurately recovered, and 99.88% and 99.98% age progressed faces can be correctly verified at
0.001% FAR after age transformations of approximately 28 and 23 years elapsed time on the MORPH and CACD databases,
respectively. Both visual and quantitative assessments show that the approach advances the state-of-the-art.

Index Terms—Generative Adversarial Networks, age progression, face aging simulation, face verification, age estimation.
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1 INTRODUCTION

THE famed portrait ’Afghan girl’ gained worldwide
recognition when it was featured on the cover of Na-

tional Geographic Magazine in 1985, whereas the person in
the imagery remained anonymous for years until she was
identified in 2002 [1]. In thousands of similar cases of search-
ing for long-lost persons or fugitives, there are usually no
more clues than old photos. While human beings, especially
forensic artists, can attempt to conceive the aging process
on individuals’ faces, the output apparently depend on
their expertise and state of mind. The computer-aided age
progression1/regression technique is to aesthetically render
a given face image with natural aging/rejuvenating effects.
By generating an accurate likeness years prior to or after
the reference photo, it facilitates finding lost individuals
and suspect identification in law enforcement, and helps
guarding vulnerable population against serial offenders.
Furthermore, being described as ’half art and half science
[2]’, it also benefits anthropometry, biometrics, entertain-
ment, and cosmetology. Studying face age progression is
thus of great significance, and this paper focuses on this
problem.

Face aging is a process that happens throughout our
lives. The intrinsic particularity and complexity of physical
aging, the interferences caused by other factors (e.g., PIE
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1. We use aging simulation, aging synthesis, and age progression
alternately in this paper.
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Fig. 1: Demonstration of our age progression results of two
subjects from the CACD aging database (images in the first
column are input young faces of two subjects and the others
are synthesized older appearances at different age groups).

variations), and shortage of labeled aging data, collectively
make learning face age progression a rather difficult prob-
lem. Ever since Pittenger and Shaw [3] presented a theory of
event perception to simulate the craniofacial growth in 1975,
substantial efforts have been made to tackle the challenges
of aging simulation, where aging accuracy and identity
permanence are commonly acknowledged as the two under-
lying premises of its success [12] [16] [17] [8]. Technological
advancements have undergone a gradual transition from
computer graphics to computer vision, with deep generative
networks now dominating this community.

The pioneering studies on this issue mechanically sim-
ulated the profile growth and muscle changes w.r.t. the
elapsed time, where crania development theory and skin
wrinkle analysis were investigated [4] [5] [7]. These methods
provided the first insight into face aging synthesis; however,
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they heavily relied on the empirical knowledge, and gener-
ally worked in a complex manner, making them difficult
to generalize. Data-driven approaches followed, where age
progression was primarily carried out by applying the pro-
totype of aging details to test faces [12] [15], or by modeling
the dependency between longitudinal facial changes and
corresponding ages [11] [13] [14]. Although obvious signs
of aging were well synthesized, their aging functions can-
not formulate the complex mechanism accurately enough,
limiting the diversity of aging patterns.

Until quite recently, deep generative networks have ex-
hibited a remarkable capability in image generation [29] [35]
[36] [37] and have also been utilized for age progression
[19] [20] [21] [22]. While these approaches render faces with
more appealing aging effects and less ghosting artifacts
compared to the previous conventional approaches, the
problem has not been solved. Specifically, these approaches
focus more on modeling face transformation between two
age groups, where the age factor plays a dominant role
while the identity information plays a subordinate role, with
the result that aging accuracy and identity permanence can
hardly be simultaneously achieved, in particular for long-
term age progression [19] [22]. Furthermore, they mostly
require multiple face images of different ages of the same in-
dividual at the training stage, involving another intractable
issue, i.e. intra-individual aging face sequence collection [20]
[23]. Both the aforementioned facts underscore the need of
improving the capability of face age progression.

In this study, we propose a novel approach to face age
progression, which integrates the advantage of Generative
Adversarial Networks (GAN) in synthesizing visually plau-
sible images with prior domain knowledge in human aging.
Compared with existing methods in the literature, it is more
capable of handling the two critical requirements in age
progression, i.e. identity permanence and aging accuracy,
delivering continuous sequences with more realistic effects.
To be specific, the proposed approach uses a Convolutional
Neural Network (CNN) based generator to capture target
age distributions, and it separately models different face
attributes depending upon their changes over time. The
training critic thus incorporates the squared Euclidean loss
in the image space, the GAN loss that encourages generated
faces to be indistinguishable from the age progressed faces
in the training set in terms of age, and the identity loss
which minimizes the input-output distance by a high-level
feature representation embedding personalized characteris-
tics. It ensures that the resulting faces present desired effects
of aging while the identity properties remain stable.

In contrast to the previous techniques that primarily op-
erate on cropped facial areas (usually excluding foreheads)
[16] [20] [21] [22] [23], we highlight that synthesis of the
entire face is important since the parts of forehead and hair
also significantly impact the perceived age. To achieve this
and further enhance the aging details, our method leverages
the intrinsic hierarchy of deep networks. A discriminator of
the pyramid architecture is designed to estimate high-level
age-related clues in a fine-grained way. Our approach over-
comes the limitations of single age-specific representation
and handles age transformation both locally and globally.
As a result, more photorealistic imageries are generated (see
Fig. 1 for an illustration of aging results).

Additionally, through an extended GAN structure, con-
sisting of a single generator and multiple parallel discrimi-
nators, we can render the input face image to any arbitrary
age label and produce a continuous face aging sequence,
which tends to support more generalized application sce-
narios. As the data density of each individual age cluster is
jointly considered, the proposed approach does not demand
face pairs across two age domains or entire aging sequences
of the same person in the training phase as the majority of
the counterparts do, thus alleviating the problem of large
data collection.

More concisely, this study makes the following contribu-
tions:

1) A novel GAN based method for age progression, which
incorporates face verification and age estimation tech-
niques, thereby addressing the issues of aging effect
generation and identity cue preservation in a coupled
manner;

2) A pyramid-structured discriminator for GAN-based
face synthesis, which well simulates both global muscle
sagging and local subtle wrinkles;

3) An adversarial learning scheme to simultaneously train
a single generator and multiple parallel discriminators,
which is able to generate smooth continuous aging
sequences even if only faces from discrete age clusters
are provided;

4) New validation experiments in addition to existing pro-
tocols, including COTS face recognition system based
evaluation and robustness assessment to the changes in
expression, pose, and makeup.

A preliminary version of this paper was published in
[18]. This paper significantly improves [18] in the following
aspects. (i) We extend the model to incorporate the condi-
tional age information; the new model iteratively learns age
transformations for diverse target age groups, which simpli-
fies the complex training procedure that requires individual
training sessions for different target age groups in [18].
(ii) We extend the model to progressive aging simulation
covering any arbitrary age; whereas [18] merely approxi-
mates the age distributions of given face sets. (iii) Both face
age progression and regression results are refined, along
with more extensive evaluations and more comprehensive
discussions.

The rest of this paper is organized as follows. Section
2 reviews related work on face age progression. Section 3
details the proposed GAN based aging simulation method.
Section 4 displays and analyzes the experimental results on
three databases, followed by Section 5 concluding this paper
with perspectives.

2 RELATED WORK

The published studies on face age progression can be pri-
marily summarized into: (i) empirical knowledge based
models, (ii) conventional statistical learning based models,
and (iii) deep generative models. In the following, we briefly
review these approaches in terms of algorithm, database,
and evaluation metrics.

2.1 On Algorithm
I. Empirical knowledge based models. Such methods were
exploited in the initial explorations of face age progression
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TABLE 1: Summary of recent representative studies on face age progression

Methods Databases Quantitative Evaluations RemarksTraining Testing

Illumination-aware
Prototyping [15] 40K images FG-NET

Subjective preference votes are higher than that
of prior work for aging young children on 120
aged face pairs.

Age related high-frequency details
are smoothed out during computing
the templated aging mask.

Hidden Face Analysis
joint

Sparse Representation
[16]

IRIP
(2,100 images)

FG-NET,
MORPH,

IRIP

Perceived ages of the synthetic faces increase
along with target ages; Rank-1 recognition rates
on 20 random selected subjectsa exceed 70% for
the target age cluster of [31-40] on the listed
databases.

Aging patterns are linearly modeled.

Recurrent Face Aging
[20]

4,371 male
images, 6,264
female images

FG-NET

EER is lower in cross-age face verification on 916
synthetic pairsb than on original pairsc; subjective
preference votes are higher (58.67%) than that of
prior work (30.92%) on 246 aged face pairs.

Aging sequences are required for
training the network; testing is
inflexible.

Conditional Adversarial
Autoencoder (CAAE)

[21]
10,670 images FG-NET

48.38% age progressed faces can be verified in human
based evaluation on 856 synthetic pairsb; subjective
preference votes (52.77%) are higher than that of
prior work (28.99%) on 235 aged face pairs.

Aging details are inadequate due to
the insufficient representation ability
of the adversarial discriminator.

Temporal Non-Volume
Preserving (TNVP) [22]

AGFW(18,685
images), 6,437

aging sequences

FG-NET,
MORPH

On FG-NET, TAR at 0.01% FAR is 47.72% in age
invariant face verification including 1M distractors. Without identity consistency.

a The raw test faces in the Gallery set; their corresponding age-progressed faces in the Probe set.
b Consisting of an age-progressed face image and a ground-truth image.
c Consisting of a raw test face image and a ground-truth image.

to simulate the aging mechanisms of cranium and facial
muscles. Todd et al. [4] introduced a revised cardioidal-
strain transformation where head growth was modeled in a
computable geometric procedure. Based on skin’s anatom-
ical structure, Wu et al. [5] proposed a 3-layered dynamic
skin model to simulate wrinkles. Mechanical aging methods
were also incorporated by Ramanathan and Chellappa [7]
and Suo et al. [13]. Although promising results are reached,
it is not so straightforward to generalize these models, as
they highly depend on specialized rules and operate in a
sophisticated way.

II. Conventional statistical learning based models. The
aging patterns were basically learned from the training faces
covering a wide range of ages. Kemelmacher-Shlizerman
et al. [15] presented a prototype based method, and they
further took the illumination factor into account. Wang et
al. [14] built the mapping between corresponding down-
sampled and high-resolution faces in a tensor space, and
aging details were added on the latter. Yang et al. [16]
first settled the multi-attribute decomposition problem, and
progression was achieved by transforming only the age
component to a target age group. These methods indeed
improve the results; however, the aging prototypes or func-
tions cannot accurately fit the aging process, leading to lack
of aging diversity. Meanwhile, ghosting artifacts frequently
appear in the synthesized faces.

III. Deep generative models. These methods encode
facial variations in terms of age by hierarchically learned
deep features for simulation. In [20], Wang et al. transformed
faces across different ages smoothly by modeling the inter-
mediate transition states in an RNN model. But multiple
face images of various ages of each subject were required at
the training stage, and the exact age label of the probe face
was needed during test, thus greatly limiting its flexibility.
Under the framework of conditional adversarial autoen-
coder (CAAE) [21], facial muscle sagging caused by aging
was simulated, whereas only rough wrinkles were rendered
mainly due to the insufficient representation ability of the

discriminator. With the Temporal Non-Volume Preserving
(TNVP) aging approach [22], the short-term age progression
was accomplished by mapping the data densities of two
consecutive age groups with ResNet blocks [39], and the
long-term aging synthesis was finally reached by a chaining
of short-term stages. Its major weakness, however, was that
it merely considered the probability distribution of a set of
faces without any individuality information. As a result, the
synthesized faces in a complete aging sequence varied a lot
in color, expression, and even identity.

2.2 On Data

Two databases have been widely used in face age pro-
gression, namely FG-NET [24] and MORPH [25], and they
have greatly facilitated progress in the community. Since
FG-NET only contains 1,002 face images from 82 subjects,
it is commonly used in the test phase only [15] [17] [21].
The MORPH mugshot database is relatively large, which
consists of more than 50K images from over 13K subjects;
however, the intensive image acquisition time and limited
number of images per subject (the average time lapse per
subject is only 1.62 years and the average number of images
per subject is 4.03) does not make MORPH suitable for
approaches requiring the long-term aging sequence from an
individual. As a result, some studies, e.g., [17] [22] [23], make
use of their private databases or combine the existing ones
for training. Besides these databases, Cross-Age Celebrity
Dataset (CACD) [26] also incorporates longitudinal aging
variations, containing 163,446 images ’in the wild’ from
2,000 celebrities, which can be further exploited for mod-
eling face aging.

2.3 On Evaluation Metrics

Early research validated the proposed methods by compar-
ative visualizations between a few example face images and
their corresponding age progressed results. While visual
inspection is useful, it is subjective and not specific. The
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Face Age Progression Training Critic

Input face Identity Preservation Loss
Pre-trained deep face descriptor

Pixel Level LossAge progressed 
 face

Young? 
Senior? 
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Fig. 2: Framework of the proposed age progression method. A CNN based generator G learns the age transformation.
It takes a younger face and the conditional target age label as inputs, and outputs a corresponding aged likeness. The
training critic incorporates the squared Euclidean loss in the image space, the GAN loss that encourages generated faces
to be indistinguishable from the training elderly faces in terms of age, and the identity preservation loss minimizing the
input-output distance in a high-level feature representation which embeds the personalized characteristics.

two criteria for aging model evaluation, i.e. accuracy of
aging and preservation of identity, were then proposed
by Lanitis [9] and refined by Suo et al. [12]. They were
not only intuitively reasonable, but also quantitatively fea-
sible. Therefore, in the subsequent studies [16] [20] [21]
[22], face recognition/verification on the generated faces
was often conducted for performance assessment. To the
best of our knowledge, however, such evaluations were
mostly performed on a small number of faces, and the data
(images or subjects) used were often arbitrary and varied
from one study to another. Furthermore, evaluations on
the perceived/estimated age2 of the simulated faces have
received limited attention.

Table 1 presents a summary of the recent representa-
tive studies. Despite this progress, these approaches either
cannot fully address simulation accuracy or identity per-
manence, or neither; and the evaluation metrics have some
limitations. Apart from these issues, generating rich texture
still remains a challenge in many scenarios of face synthesis,
especially for the specific task of age progression, where
visually convincing wrinkles and age-related details are ex-
tremely essential to accurate perceived age and authenticity.

Our study makes use of the ability of image generation
by GAN and presents a different but effective method,
where the age-related GAN loss is adopted for aging model-
ing, the individual-dependent critic is used to keep the iden-
tity cue stable, and a multi-pathway discriminator architec-
ture is further applied to refine aging detail generation. This
solution is more powerful in dealing with the core issues of
age progression, i.e. age accuracy and identity preservation.
Meanwhile, it is able to produce continuous face aging
sequences without any strong assumptions on training data.
Additionally, it shows the robustness to expression, pose,
and makeup variations.

2. Perceived age: the individual age gauged by human subjects from
the visual appearance. Estimated age: The individual age recognized
by machine from the visual appearance [10].

3 METHOD

3.1 Overview

A classic GAN contains a generator G and a discriminator
D, which are iteratively trained via an adversarial process.
The generative function G tries to capture the underlying
data density and confuse the discriminative function D,
while the optimization procedure of D aims to achieve the
distinguishability and distinguish the natural face images
from the fake ones generated by G. Both G and D can be
approximated by neural networks, e.g., Multi-Layer Percep-
tron (MLP). The risk function of optimizing this minimax
two-player game can be written as:

V(D,G) =min
G

max
D

Ex∼Pdata
log[D(x)]

+ Ez∼Pz
log[1−D(G(z))]

(1)

where z is a noise sample from a prior probability distribu-
tion Pz , and x denotes a real face image following a certain
distribution Pdata. On convergence, the distribution of the
synthesized images PG is equivalent to Pdata.

Recently, the conditional GANs (cGANs) have been
actively studied, where the generative model G approx-
imates the dependency of the pre-images (or controlled
attributes) and their corresponding targets. cGANs have
shown promising results in video prediction [43], text to
image synthesis [33], image-to-image translation [35] [42],
etc. In our case, a CNN based generator takes the younger
face image and the target age label (or a target age group)
as inputs, and synthesizes an elder face image conditioned
on them.

In order to accurately achieve the aging effects while si-
multaneously maintaining the person-specific information,
a compound training critic is exploited in the offline phase,
which incorporates the traditional squared Euclidean loss
in the image space, the GAN loss that encourages generated
faces to be indistinguishable from the training elderly faces
in terms of age, and the identity loss minimizing the input-
output distance in a high-level feature representation em-



5

bedding the personalized characteristics. Note, in adversar-
ial training, a pyramid-structured discriminator is specially
designed to refine facial detail generation. The classic GAN
model is extended, where one single generator is utilized
along with a specific number of parallel discriminators, in
order to flexibly steer the age transformation to diverse
target age labels. The adversarial training scheme in our
method does not only contribute to the real-fake level clas-
sification, but also guides the model to converge towards
target age distributions. See Fig. 2 for an overview, and we
detail the method in the subsequent sections.

3.2 Generator

The proposed model enables one-step aging simulation.
Synthesizing age progressed faces only requires a forward
pass through the generator G. The generative network is
a cascade of encoder and decoder. With the input young
face x and the target age label (or age range) c, it first
exploits multiple stacked convolutional layers to encode
them to a latent space, capturing the facial properties that
tend to be stable w.r.t. the elapsed time, followed by four
residual blocks [39] modeling the common structure shared
by the input and output faces, similar to the settings in
[38]. Age transformation to a target image space is finally
achieved by three fractionally-strided convolutional layers,
yielding the age progression result y conditioned on the
inputs, G(x, c)→ y. Rather than using the max-pooling and
upsampling layers to calculate the feature maps, the 3 × 3
convolution kernels with a stride of 2 are employed here,
ensuring that every pixel contributes and the adjacent pixels
transform in a synergistic manner. All the convolutional
layers are followed by Instance Normalization and ReLU
non-linearity activation. Paddings are added to the layers
to make the input and output have exactly the same size.
A total variation regularization layer is stacked to the end
of G to reduce the spike artifacts. The detailed generator
architecture is shown in Section 4.2.

3.3 Adversarial Learning

To ensure the generated face images present proper aging
effects, we adopt the adversarial learning mechanism. We
first introduce how it is exploited to achieve age transfor-
mation to a domain corresponding to a specific target age
cluster and then illustrate how this method is generalized to
simulate the progressive aging procedure.

3.3.1 Aging Modeling
The system critic incorporates the prior knowledge of the
data density of the faces from the target age cluster c, and a
discriminative networkD is thus introduced, which outputs
a scalar representing the probability that x comes from
the data, x → D(x). We denote the distribution of young
faces as x ∼ Pyoung and the distribution of the generated
faces as G(x, c) ∼ PG. PG is supposed to be equivalent
to the distribution Pold of the target age cluster when age
transformation is learned. Assuming that we follow the
classic GANs [29], where a binary cross entropy classifier
is used, then the learning process amounts to minimizing
the following loss defined over G and D:

Label

D(ɸage(x))

1/0
1/0

0.9
0.2

3 × 3

12 × 3

12 × 3

Pathway 1 Pathway 2 Pathway 3 Pathway 4
fage 1 fage 2 fage 3 fage 4

Fig. 3: The scores of four pathways are finally concatenated
and jointly estimated by the discriminator Di (Di is an
estimator rather than a classifier; the Label does not need
to be a single scalar).

LGAN D =− Ex∼Pyoung,clog[1−D(G(x, c))]

− Ex∼Pold
log[D(x)]

(2)

It is always desirable that G and D converge coherently;
however, D frequently achieves the distinguishability faster
in practice and feeds back vanishing gradients for G to
learn, since the JS divergence is locally saturated. As ana-
lyzed in some recent studies, i.e. the Wasserstein GAN [30],
the Least Squares GAN [32], and the Loss-Sensitive GAN
[31], the most fundamental issue lies in how exactly the
distance between sequences of probability distributions is
defined. Here, we use the least squares loss substituting for
the negative log likelihood objective, which penalizes the
samples depending on how close they are to the decision
boundary in a metric space, minimizing the Pearson X 2

divergence. To achieve more evident and vivid age-specific
facial details, both the actual young faces and the generated
age-progressed faces are fed into D as negative samples
while the true elderly face of age range c as positive ones.
Accordingly, the training process alternately minimizes the
following:

LGAN G = Ex∼Pyoung,cH(1, D(φage(G(x, c)))) (3)

LGAN D = Ex∼Pyoung,y∼Pold,cH([1, 0, 0],

[D(φage(y)), D(φage(G(x, c))), D(φage(x))])
(4)

where H indicates the least squares distance. Note, in (3)
and (4), a function φage bridges G and D, which is espe-
cially introduced to extract age-related features conveyed
by faces, as shown in Fig. 2. Considering that human faces
of diverse age groups share a common configuration and
similar texture properties, a feature extractor φage is thus
exploited independently of D, which outputs high-level
feature representations to make the generated faces more
distinguishable from the true elderly faces in terms of age. In
particular, φage is pre-trained for a multi-label classification
task of age estimation with the VGG-16 structure [41], and
after convergence, we remove the fully connected layers
and integrate it into the framework. Further, since natural
images exhibit multi-scale characteristics and along the hier-
archical architecture, φage captures the properties gradually
from exact pixel values to high-level age-specific semantic
information, this study leverages the intrinsic pyramid hier-
archy. The pyramid facial feature representations are jointly
estimated by D at multiple scales, handling aging effect
generation in a fine-grained way.
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D
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(c)

Ladv3
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Synthetic
Age Cluster 3

Ladv1

Young

Synthetic
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Ladv2

Young

Synthetic
Age Cluster 2

D

X(real, synthetic)

φage
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Fig. 4: Comparison of several extensions of the original adversarial training scheme presented in Section 3.3.1. (a) The
general pipeline of original adversarial training; (b) Auxiliary Classifier GAN for progressive aging modeling; (c) D is
extended to output k logits handling the degree of aging; and (d) A specific number of discriminators are simultaneously
trained to steer the age transformation to different age domains.

(a)

(d)

(c)

(b)

Fig. 5: Comparison of the aging results achieved by different
extensions of the original adversarial training scheme. The
fist image in each column is the input face image and the
subsequent 3 images are the age progressed visualizations
achieved by the methods demonstrated in Figs. 4(b), 4(c),
and 4(d), respectively.

The outputs of the 2nd, 4th, 7th and 10th convolutional
layers of φage are used. They pass through the pathways of
D and finally result in a concatenated 12 × 3 representation.
The ’label’ applied here is thus a tensor of the same size
rather than a single scalar, fulfilled with ones (for the posi-
tive face samples) or zeros (for the negative face samples).
The least squares loss is minimized using the full feature
representation to jointly estimate the 4 pathways, as illus-
trated in Fig. 3. InD, all convolutional layers are followed by
Batch Normalization and LeakyReLU activation except the
last one. The detailed discriminator architecture is shown in
Section 4.2.

3.3.2 Progressive Aging Modeling
As face aging is a dynamic long-term procedure, we attempt
to synthesize progressive changes w.r.t the elapsed time
and generate complete aging sequences. Under the GAN
framework, a common practice is to leverage the age labels,
add an auxiliary classifier (on top of D or parallel to D),

and impose the age classification loss when optimizing both
G and D. The adversarial part of the original aging model
shown in Fig. 4 (a) is thus extended to that in Fig. 4 (b).
Such a variant has indeed been shown to be effective in
handling the data with high variability and improving the
quality of generated samples [34] [44]. Forcing the proposed
method to perform additional age classification, however,
does not boost the performance of the core task in this study,
i.e. aging effect synthesis, and this claim is supported both
mathematically and experimentally. To be specific, an AC-
GAN can be viewed as a GAN model with a hierarchical
classifier [45], and the objective is formulated as:

LGANac G = Ex∼Pyoung,cH(1, D(φage(G(x, c))))

+ Ex∼Pyoung,cH
′(v(c), C(G(x, c)))

(5)

LGANac D = Ex∼Pdata,cH([1, 0], [D(φage(x)), D(φage(G(x, c)))])

+ Ex∼Pdata,cH
′(v(c), C(x))

(6)
where C denotes the auxiliary classifier, H ′ indicates the

cross-entropy, and v(c) = [v1(c), ..., vk(c)] with vi(c) = 1 if
i = c; otherwise vi(c) = 0. The hierarchical connection of
adversarial training and classification inevitably brings the
issue that the former is actually missing when optimizing
the latter. As for our task of face age progression, D only
works at the real-fake level, but does not control the aging
degree. As shown in Fig. 5, with the faces in the first row
as inputs, we obtain the corresponding age-progressed faces
in the second row. While the age-related facial changes, e.g.
wrinkles around the eyes, indeed emerge, they are not as
natural as the real faces, which confirms the above analysis.

As the adversarial constraint is the key to guarantee the
convergence PG = Pold, the non-hierarchical structure as
shown in Fig. 4 (c) can be further considered, where the
discriminator D outputs k logits indicating the age range
that x belongs to. Theoretically, such adversarial training
covers all age clusters; however, using a single discriminator
is inadequate to accurately model the complex distribution
of multiple age domains, and the networks are more likely
to suffer mode collapse. See the examples of aging photos
shown in Fig. 5(c). The resulting images can still be recog-
nized as faces, but they are mainly credited to the pixel-
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level constraint and identity preservation loss that will be
illustrated in the next subsection.

To sufficiently leverage the intrinsic domain transfer
ability of GANs, different from original adversarial learning
and its two major variants (as in Figs. 4 (a), (b), and (c), re-
spectively), we replace the discriminator in (4) with k class-
wise discriminators, as shown in Fig. 4 (d). Assigning each
specific target age cluster a unique discriminator Di, the
objectives of the extended model can be finally formulated
as:

LGAN Gi
= Ex∼Pyoung,cH(1, Di(φage(G(x, ci)))) (7)

LGAN Di
= Ex∼Pyoung,y∼Pold,cH([1, 0, 0],

[Di(φage(y)), Di(φage(G(x, ci))), Di(φage(x))])
(8)

The discriminators synergistically guide the generator G
to learn age transformations to the domains associated with
label c. The simulation results are displayed in Fig. 5 (d), in
which the aging effects are more evident and closer to the
natural images.

Although the faces are manually divided into a number
of discrete clusters along the timeline, the data are intrin-
sically connected since face aging is an accumulation of
changes over time. Based on the latent manifold assumption
of images [46], we further make an inference that aging
procedure is a smooth transformation lying in a manifold,
and adding sufficient local constraints on the key points in
the temporal aspect probably enables the method to achieve
globally longitudinal aging. In this case, the method not
only accurately models the age distributions that indepen-
dently presented to the discriminators at the training period,
but also successfully simulates continuous aging sequences
covering any age label at the test phase.

3.4 Identity Preservation

One core issue of face age progression is keeping person-
dependent properties stable. Therefore, we incorporate the
associated constraint by measuring the input-output dis-
tance in a proper feature space, which is sensitive to the
identity change while relatively robust to other variations.
Specifically, the network of deep face descriptor [40] is utilized,
denoted as φid, to encode the personalized information and
further define the identity loss function. φid is trained with
a large face dataset containing millions of face images from
thousands of individuals3. It is originally bootstrapped by
recognizing N = 2, 622 unique individuals; and the last
classification layer is then removed and φid(x) is tuned
to improve the capability of verification in the Euclidean
space using a triplet-loss training scheme. In our case, φid
is clipped to 10 convolutional layers, and the identity loss is
formulated as:

Lidentity = Ex∼Pyoung,c d(φid(x), φid(G(x, c))) (9)

where d is the squared Euclidean distance between feature
representations. For more implementation details of deep face
descriptor, please refer to [40].

3. The face images are collected via the Google Image Search using
the names of 5K celebrities, purified by automatic and manual filtering.

3.5 Objective
Besides the specially designed age-related GAN critic and
the identity permanence penalty, a pixel-wise L2 loss in the
image space is also adopted for further bridging the input-
output gap, e.g., the color aberration, which is formulated
as:

Lpixel = Ex∼Pyoung,c
1

W ×H × C
‖G(x, c)− x‖22 (10)

where W , H , and C correspond to the image shape. Mean-
while, we make use of the total variation regularizer loss
encouraging the spatial smoothness, by stacking a TV regu-
larization layer to the end of G as in [38]. Finally, the system
training loss can be written as:

LG = λa
∑
i=1

LGAN Gi
+λpLpixel+λiLidentity+λtLtv (11)

LDi
= LGAN Di

(12)

We train the generator G and the discriminators Di (i =
1, 2, ..., k) alternately until optimality, and finally G learns
the desired age transformation and Di becomes a reliable
estimator.

4 EXPERIMENTAL RESULTS

To validate the proposed age progression approach, we
carry out extensive experiments and make fair comparison
to the state of the art counterparts. The face databases, im-
plementation details, and synthesized results are presented
in the subsequent.

4.1 Databases
There are three databases used in the experiments, namely
MORPH [25], Cross-Age Celebrity Dataset (CACD) [26], and
FG-NET [24] .

An extension of the MORPH aging database contains
52,099 color images with near-frontal pose, neutral expres-
sion, and uniform illumination (minor pose and expression
variations sometimes occur). The subject age ranges from 16
to 77 years old, with the average age being approximately
33. The longitudinal age span of a subject varies from 46
days to 33 years. CACD is a public dataset [26] collected via
the Google Image Search, containing 163,446 face images of
2,000 celebrities across 10 years, with age ranging from 14 to
62 years old. The dataset has the largest number of images
with age changes, showing variations in pose, illumina-
tion, expression, etc., with less controlled acquisition than
MORPH. We mainly use MORPH and CACD for training
and validation. FG-NET is also a very popular database
for evaluation of face aging methods. As its images are
inadequate to train the proposed deep model, we only adopt
it for testing to make comparison with prior work. More
properties of these databases are given in Table 2 and Figure
6.

4.2 Implementation Details
Allowing for the fact that the number of faces older than
60 years old is quite limited in both training databases of
MORPH and CACD, and neither contains images of chil-
dren, we only perform adult aging. We follow the time span
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TABLE 2: Statistics of face aging databases used for evaluation

Database Number of
images

Number of
subjects

Number of
images per subject

Time lapse
per subject (years)

Age span
(years old)

Average age
(years old)

MORPH [25] 52,099 12,938 1 - 53 (avg. 4.03) 0 - 33 (avg. 1.62) 16 - 77 33.07
CACD [26] 163,446 2,000 22 - 139 (avg. 81.72) 7 - 9 (avg. 8.99) 14 - 62 38.03

FG-NET [24] 1,002 82 6 - 18 (avg. 12.22) 11 - 54 (avg. 27.80) 0 - 69 15.84

(a) MORPH

1 -10

11 -20

21 - 30

31 - 40

41 - 50

51 - 60

61 + 0.50%

5.70%

21.29%

29.21%

27.55%

15.75%

0.00%

(b) CACD

1 -10

11 -20

21 - 30

31 - 40

41 - 50

51 - 60

61 + 0.96%

17.43%

24.36%

26.42%

24.93%

5.90%

0.00%

(c) FGNET

1 -10

11 -20

21 - 30

31 - 40

41 - 50

51 - 60

61 + 0.70%

1.40%

3.89%

6.89%

14.27%

31.84%

41.02%

Fig. 6: Age distributions of (a) MORPH, (b) CACD, and (c) FGNET.

of 10 years for each age cluster as reported in many previous
studies [12] [16] [20] [21] [22], and apply age progression on
the faces below 30 years old, synthesizing a sequence of
age-progressed renderings when they are in their 30s, 40s,
and 50s. Prior to feeding the images into the networks, the
faces are aligned using the eye locations provided by the
datasets themselves (FG-NET, CACD) or detected by the
online face analysis API of Face++ [47] (MORPH). Excluding
those images undetected in MORPH and that of children in
FG-NET, 489, 163,446, and 51,699 imageries from the three
datasets are finally adopted, respectively. A face image is
cropped to 224 × 224 pixels; concatenating the conditional
age, they form a tensor representation of 224×224× (3+k)
as the generator input, where k denotes the number of target
age clusters and it is set to 3 in our experiments.

The architectures of the networks G and Di (i = 1, 2, 3)
are shown in Tables 3 and 4. For both training datasets, the
trade-off parameters λp, λa, λi, and λt are empirically set to
0.10, 1000.00, 0.005, and 1e−6, respectively. At the training
stage, we use Adam with the learning rate of 1 × 10−4 and
the weight decay factor of 0.5 for every 2, 000 iterations.
We (i) update the three discriminators alternatively at every
iteration, (ii) use the age-related and identity-related critics
at every generator iteration, and (iii) employ the pixel-level
critic for every 15 generator iterations. The networks are
trained with a batch size of 4 for 150, 000 iterations in total,
which takes around 25 hours on a GTX 1080Ti GPU.

We comprehensively evaluate the proposed age progres-
sion method in the following layers: (I) face aging simula-
tion; (II-A) visual fidelity analysis; objective evaluations on
(II-B) accuracy of aging and (II-C) preservation of identity;
(II-D) ablation study; and (II-E) comparison with state-of-
the-art.

4.3 Results

4.3.1 Experiment I: Aging Effect Simulation

Experiment I-A: Discrete Age Progression. Five-fold cross
validation is conducted to simulate aged faces. On CACD,
each fold contains 400 individuals with nearly 10,079, 8,635,
7,964, and 6,011 face images from the four age clusters
of [14-30], [31-40], [41-50], and [51-60] years, respectively;

TABLE 3: Generator architecture

Layer Kernel Stride Padding Activation Size

Conv. 9 × 9 1 4 32 × w × h
Conv.↓ 3 × 3 2 1 64 × w/2 × h/2
Conv.↓ 3 × 3 2 1 128 × w/4 × h/4

Res. 3 × 3 1 2 128 × w/4 × h/4
Res. 3 × 3 1 2 128 × w/4 × h/4
Res. 3 × 3 1 2 128 × w/4 × h/4
Res. 3 × 3 1 2 128 × w/4 × h/4

De-conv.↑ 3 × 3 2 1 64 × w/2 × w/2
De-conv.↑ 3 × 3 2 1 32 × w × h
De-conv. 9 × 9 1 4 3 × w × h

TABLE 4: Discriminator architecture

Pathway 1 2 3 4

Input 512 256 128 64

Layers*

conv-128
conv-256 conv-256

conv-512 conv-512 conv-512
conv-512 conv-512 conv-512 conv-512
conv-512 conv-512 conv-512 conv-512
conv - 1 conv - 1 conv - 1 conv - 1

* Layers are denoted as: conv - <output>;
kernel = 4, stride = 2, padding = 1

while on MORPH, each fold consists of around 2,586 sub-
jects with 4,467, 3,030, 2,205, and 639 faces from the four age
groups. For each run, four folds are utilized for training, and
the remainder for evaluation. Examples of age progression
results achieved on the two databases are depicted in Figs. 7
and 8. Additionally, cross-dataset validation is conducted on
the faces older than 14 years old on FG-NET, with CACD as
the training set, and the simulation results are shown in Fig.
9. As we can see, although the examples cover a wide range
of population in terms of race, gender, pose, makeup and
expression, visually plausible and convincing aging effects
are achieved.

Apart from face age progression, the proposed method
can be applied for age regression as well. All the test faces
in this experiment come from the people older than 30 years
old, and they are transformed to the age bracket of below
30 years old. Under such settings, only one discriminator
is exploited at the training stage. Example rejuvenating



9Aging Simulation Results on CACD 201806: 

30 years old 27 years old 30 years old

29 years old 25 years old 30 years old

24 years old 25 years old 28 years old

29 years old 28 years old 27 years old

27 years old 19 years old 23 years old

30 years old 27 years old 22 years old

30 years old 27 years old 25 years old

27 years old 28 years old 30 years old

Test face 31 - 40 41 - 50 50+ Test face 31 - 40 41 - 50 50+Test face 31 - 40 41 - 50 50+

Fig. 7: Aging effects obtained on the CACD databases for 24 different subjects. The first image in each panel is the original
face image and the subsequent 3 images are the age progressed visualizations for that subject in the [31- 40], [41-50] and
50+ age clusters.

visualizations are shown in Fig. 10. As expected, this op-
eration tightens the face skin, and the hair becomes thick
and luxuriant.

Experiment I-B: Continuous Age Progression. Recall
that the proposed aging method can not only generate
faces at specific age range presented to the network during
training, but also fill up the intermediate transitional states,
producing very smooth aging sequences. It indicates that
the generator does not simply remember the aging tem-
plates, but internally learns meaningful face representation
in a latent space, thus able to understand the connections
between age clusters.

To be specific, the well-trained aging models in Exper-
iment I-A are directly used for testing in this experiment.
The conditional age is first denoted as a tensor of size
224 × 224 × k, and the ith channel is set to ones while

the others are zeros when the target is the ith age cluster.
To bridge the gap between discrete age clusters and obtain
continuous aged renderings, the item values in the tensor
gradually fall and rise within the interval [0,1] at the testing
phase, ensuring that the conditional age label smoothly
shifts from an existing one to another.

Some representative examples of continuous aging se-
quences are shown in Figure 11. The images in each panel
are sorted by the increasing conditional age. The leftmost
image is the input; and the second, the fifth, and the right-
most images are the results conditioned on the existent age
labels, while others are interpolated results. As shown in
the figure, all the generated images are natural and with
high quality, clearly highlighting the ability of knowledge
transfer. The aging changes between neighboring images are
inconspicuous, while they are convincing throughout the
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Aging Simulation Results on MORPH 201806: 

Test face 31 - 40 41 - 50 50+ Test face 31 - 40 41 - 50 50+Test face 31 - 40 41 - 50 50+

25 years old 24 years old 19 years old

24 years old 28 years old 18 years old

26 years old 27 years old 23 years old

26 years old 21 years old 23 years old

23 years old 30 years old 26 years old

27 years old 23 years old 26 years old

25 years old 30 years old 20 years old

27 years old 27 years old 28 years old

Fig. 8: Aging effects obtained on the MORPH databases for 24 different subjects.

complete aging sequence. Even if only a specific number of
discriminators are used and the given age distributions are
independently presented to the network during training, the
method still successfully and flexibly steers age transforma-
tion to any arbitrary age label, making it more useful in the
real world.

4.3.2 Experiment II: Aging Model Evaluation
We acknowledge that face age progression is supposed to
aesthetically predict the future appearance of the individual,
beyond aging accuracy and identity preservation, therefore
in this experiment a more comprehensive evaluation of the
age progression results is provided with both the visual and
quantitative analysis.

Experiment II-A: Visual Fidelity. Fig. 12 (a) displays
example face images with glasses, occlusions, and pose vari-
ations. The age-progressed faces are still photorealistic and
true to the original inputs; whereas the previous prototyping

based methods [6] [12] are inherently inadequate for such
circumstances, and the parametric aging models [13] [17]
may lead to ghosting artifacts. In Fig. 12 (b), some examples
of hair aging are demonstrated. As far as we know, almost
all aging approaches proposed in the literature [15] [17] [16]
[20] [21] [23] focus on cropped faces without considering
hair aging, mainly because hair is not as structured as the
face area. Further, hair is diverse in texture, shape, and
color, thus difficult to model. Nevertheless, the proposed
method takes the whole face as input, and the hair grows
wispy and thin in aging simulation. Fig. 12 (c) confirms the
capability of preserving the necessary facial details during
aging, e.g., the skin pigmentation, and Fig. 12 (d) shows the
smoothness and consistency of the aging changes, where
the lips become thinner, the under-eye bags become more
obvious, and wrinkles are deeper.

Experiment II-B: Aging Accuracy. Along with face ag-
ing, the estimated age is supposed to increase. Correspond-
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fgnet
24 years old 25 years old 37 years old 30 years old 28 years old 26 years old

36 years old 40 years old 20 years old 42 years old 44 years old 39 years old

22 years old 23 years old 17 years old25 years old 21 years old 42 years old

35 years old 41 years old 26 years old 40 years old 26 years old 35 years old

Fig. 9: Cross-dataset aging results achieved on the FG-NET dataset for 24 different faces. The first image in each panel is
the input face image and the second is the corresponding aging result in the 50+ age cluster.

201806

55 years old 42 years old 57 years old 47 years old 56 years old 48 years old

47 years old 55 years old 57 years old 52 years old 55 years old 57 years old

44 years old 48 years old 45 years old56 years old 42 years old 44 years old

43 years old 50 years old 49 years old 43 years old 46 years old 54 years old

Fig. 10: Rejuvenating results achieved on CACD (the top two rows) and MORPH (the bottom two rows) for 24 different
subjects. The first image in each panel is the original face image and the second is the corresponding rejuvenating result.

ingly, objective age estimation is conducted to measure
the aging accuracy. We apply the online face analysis tool
of Face++4 [47] to every synthesized face on CACD and
MORPH. Excluding those undetected, the age-progressed
faces of 50, 148 test samples in the CACD dataset are in-
vestigated (average of 10,030 test faces in each run under
5-fold cross validation). Table 5 shows the results, where the
mean values are 40.52, 48.03, and 54.05 years old for the
3 designated age clusters, respectively. Ideally, they would
be observed in the age range of [31-40], [41-50], and [51-
60]. Admittedly, the lifestyle factors may accelerate or slow

4. All the evaluation results from Face++ were obtained on Nov. 2018.
The system is updated at irregular intervals.

down the aging rates for the individuals and makeups
would also influence the appearances, leading to deviations
of the estimated age from the actual age, but the overall
trend is relatively robust. Due to such intrinsic ambiguities,
objective age estimation is further conducted on all the true
face images in the dataset as benchmark. In Table 5 and Figs.
13 (a) and 13 (c), it can be seen that the estimated ages of the
synthesized faces are well matched with those of the real
images, and the estimated ages increase steadily with the
elapsed time, clearly validating our method.

On MORPH, the aging synthesis results of 22, 319 faces
below 30 years old are used in this evaluation (average of
4,464 test faces in each run), and it shows similar results,
which confirms that the proposed method has indeed cap-
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Fig. 11: Examples of continuous face aging sequences. In each row the leftmost image is the input; and the second, the fifth,
and the rightmost images are the results conditioned on the discrete age labels presented to the network during training,
while others are interpolated results.

(a) Robustness to glasses, occlusion and pose variations.

(d) Aging consistency.

(b) Hair aging.
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(c) Facial detail preservation.
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Fig. 12: Illustration of visual fidelity (zoom in for a better
view).

tured the data density of the given subset of faces in terms
of age. See Table 5 and Figs. 13 (b) and 13 (d) for detailed
results.

Experiment II-C: Identity Preservation. Objective face
verification with Face++ is carried out to quantitatively
determine if the original identity property is well preserved
during age progression. For each test face, we perform com-
parisons between the input image and the corresponding
aging simulation results: [test face, aged face 1], [test face,
aged face 2], and [test face, aged face 3]; and statistical
analyses among the synthesized faces are conducted, i.e.
[aged face 1, aged face 2], [aged face 1, aged face 3], and
[aged face 2, aged face 3]. Similar to experiment II-B, 50,148
young faces in CACD and their age-progressed renderings
are used in this evaluation, leading to a total of 50, 148 × 6
verifications. As shown in Table 6, the obtained verification
rates for the three age-progressed clusters are 100 ± 0 %,
100 ± 0 %, and 99.98 ± 0.02 %, respectively. For MORPH,
there are 22, 319×6 verifications in total, and the verification
rates under the five-fold cross validation scheme are 100 ±

0 %, 100 ± 0 %, and 99.88 ± 0.07 %, respectively. Compared
to our previous work on face age progression where the
aging models are independently trained for each target
age cluster5 [18], our work makes remarkable progress
for preserving the identity information. It highlights the
reliability of the proposed method and validates the ne-
cessity of smoothing the transitional states. Additionally, in
Table 6 and Fig. 14, face verification confidence decreases
as the time elapsed between two images increases, which
conforms to the physical effect of face aging [27] [28]. It may
also explain the better performance achieved on CACD in
this evaluation, where the maximum mean age gap between
the input and synthesized age cluster is 23.09 years, far less
than that of 28.61 years achieved on MORPH.

Experiment II-D: Contribution of Pyramid Architec-
ture. One model assumption is that the pyramid structure
of the discriminator D advances the generation of the ag-
ing effects, making the age-progressed faces more natural.
Accordingly, we conduct ablation study and carry out com-
parison to the one-pathway discriminator, under which the
generated faces are directly fed into the estimator rather
than represented as feature pyramid first. The discriminator
architecture in the contrast experiment is equivalent to a
chaining of the network φage and the first pathway in the
proposed pyramid D.

Fig. 15 provides a demonstration. Visually, the synthe-
sized aging details of the counterpart are not so evident,
and the proposed method behaves better in the relatively
complex situation, e.g. rejuvenating the white beard. To
make the comparison more specific and reliable, quanti-
tative evaluations are further conducted with the same
settings as in experiments II-B and II-C, and the statistical
results are shown in Table 7. In the table, the estimated ages
achieved on CACD and MORPH are generally higher than
the benchmark (except for the 1st age cluster for CACD),

5. We re-evaluate the aging results with the latest version of Face++.
On CACD, the mean verification rates for the three age clusters are
99.99%, 99.95%, and 99.11%, respectively; and for MORPH, they are
100%, 99.44%, and 95.94%, respectively.
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TABLE 5: Objective age estimation results (in years) on CACD and MORPH

CACD MORPH
Age Cluster 0 Age Cluster 1 Age Cluster 2 Age Cluster 3 Age Cluster 0 Age Cluster 1 Age Cluster 2 Age Cluster 3

Synthesized faces* Synthesized faces*

– 40.52 ± 9.08 48.03 ± 9.32 54.05 ± 9.94 – 39.62 ± 7.29 48.09 ± 7.01 56.54 ± 6.74
– 40.52 ± 0.16 48.03 ± 0.32 54.05 ± 0.23 – 39.62 ± 0.84 48.09 ± 1.07 56.54 ± 1.19

Natural faces Natural faces
30.96 ± 8.50 38.92 ± 9.73 46.95 ± 10.70 53.75 ± 12.45 27.93 ± 6.16 38.87 ± 7.52 48.03 ± 8.32 58.29 ± 8.76

* The standard deviation in the first row is calculated on all the synthesized faces; the standard deviation in the second row is calculated on
the mean values of the 5 folds.

TABLE 6: Objective face verification results on (a) CACD and (b) MORPH

Aged face 1 Aged face 2 Aged face 3 Aged face 1 Aged face 2 Aged face 3

verification confidencea verification confidencea

Test face

(a)

94.61 ± 0.07 93.13 ± 0.24 91.22 ± 0.25

(b)

94.65 ± 0.11 92.46 ± 0.23 88.12 ± 0.46
Aged face 1 – 96.71 ± 0.02 95.45 ± 0.06 – 96.59 ± 0.04 94.18 ± 0.11
Aged face 2 – – 96.71 ± 0.03 – – 96.20 ± 0.06

verification confidence b verification confidenceb

Test face 94.61 ± 1.00 93.13 ± 1.68 91.22 ± 2.55 94.65 ± 0.95 92.46 ± 1.87 88.12 ± 3.30
Aged face 1 – 96.71 ± 0.29 95.45 ± 0.79 – 96.59 ± 0.27 94.18 ± 1.14
Aged face 2 – – 96.71 ± 0.26 – – 96.20 ± 0.40

verification rate (threshold = 73.98, FAR = 1e - 5) verification rate (threshold = 73.98, FAR = 1e - 5)
Test face 100 ± 0 % 100 ± 0 % 99.98 ± 0.02 % 100 ± 0 % 100 ± 0 % 99.88 ± 0.07 %

a The standard deviation is calculated on the mean values of the 5 folds.
b The standard deviation is calculated on all the synthesized faces.
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Fig. 13: Distributions of the estimated ages obtained by
Face++. (a) CACD, synthesized faces; (b) MORPH, synthe-
sized faces; (c) CACD, actual faces; and (d) MORPH, actual
faces.

and the mean absolute errors over the three age clusters
are 2.48 and 2.67 years for the two databases, respectively,
exhibiting larger deviations than 0.99 and 0.85 years ob-
tained by using the pyramid architecture. The reason lies
in that the synthesized wrinkles in this contrast experiment
are not so clear and the faces look relatively messy. It also
explains the decreased face verification confidence observed
in Table 7 in the identity preservation evaluation. Based on
both the visual and quantitative analysis, we can draw an
inference that compared with the pyramid architecture, the
one-pathway discriminator, as widely utilized in previous
GAN-based frameworks, is lagging behind in regard to
modeling the sophisticated aging changes.
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Fig. 14: Distributions of the face verification confidence on
(a) CACD and (b) MORPH.

Experiment II-E: Comparison to Prior Work. To com-
pare with prior work, we conduct testing on the FG-NET
and MORPH databases. These prior studies are [11] [13]
[16] [17] [19] [20] [21] [22] [23], which signify the state-of-
the-art. In addition, one of the most popular mobile aging
applications, i.e. Agingbooth [48], and the online aging tool
Face of the future [49] are also compared. Fig. 16 displays
some example faces. As it can be seen, Face of the future and
Agingbooth follow the prototyping-based method, where the
identical aging mask is indiscriminately applied to all the
given faces as most of the aging Apps do. While the concept
of such methods is straightforward, the age-progressed faces
are not photorealistic. Regarding the published works in
the literature, ghosting artifacts are unavoidable for the
parametric method [13] and the dictionary reconstruction
based solutions [16] [17]. Technological advancements can
be observed in the deep generative models [20] [21] [23],
whereas they only focus on the cropped facial area, and
the age-progressed faces lack necessary aging details. In
a further experiment, we collect 138 paired images of 54
individuals from the published papers, and invite 10 human
observers to evaluate which age-progressed face is better in
the pairwise comparison. Among the 1,380 votes, 71.74%
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TABLE 7: Quantitative evaluation results using one-pathway discriminator on (a) CACD and (b) MORPH.

Aged face 1 Aged face 2 Aged face 3 Aged face 1 Aged face 2 Aged face 3
Estimated age (yrs old) (a) 36.74 ± 9.49 48.95 ± 8.71 57.01 ± 10.11 (b) 42.32 ± 8.21 51.45 ± 8.02 59.43 ± 7.75
Verification confidence 95.51 ± 0.70 91.52 ± 2.47 87.43 ± 4.27 94.00 ± 1.10 91.13 ± 2.05 86.94 ± 3.43201810

Test face

One-Pathway 
Discriminator

Proposed

(a) CACD (b) MORPH

30 28 25 54 55 54 20 26 24 51 62 48

Fig. 15: Visual comparison to the one-pathway discriminator on (a) CACD and (b) MORPH. For both datasets, the left three
columns show the aging results, while the right three show the rejuvenating results.

Test face

Our results

Face of Future [49]  
& 

AgingBooth App [48]

(50 years old +)

Prior work

61-70  [16]52 [13]48  [13] 51-60 [16] 51-60  [20]41-50  [20] 51-60  [21] 51-60  [21]

MORPH FGNET

41-50  [17]

21 2618 22 42 35 45 3530 29 25

41-50  [23] 60+ [23]

Fig. 16: Performance comparison with prior work (zoom in for a better view of the aging details).

prefer the proposed method, 19.28% favor the prior work,
and 8.98% indicate that they are about the same. Besides, the
proposed method does not require burdensome preprocess-
ing as previous works do, and it only needs 2 landmarks for
pupil alignment. To sum up, we can say that the proposed
method outperforms the counterparts.

5 CONCLUSION

This study presents an effective solution to aging accu-
racy and identity preservation, and proposes a novel GAN
based method. It exploits a compound training critic that
integrates the simple pixel-level penalty, the age-related
GAN loss achieving age transformation, and the individual-
dependent critic keeping the identity information stable.
For generating detailed signs of aging, a pyramidal archi-
tecture of discriminator is designed to estimate high-level
face representations in a finer way. An adversarial learning
scheme is further presented, to simultaneously train a single
generator and multiple parallel discriminators, enabling the
model to generate smooth continuous face aging sequences.

Extensive experiments are conducted on three datasets, and
the proposed method is shown to be effective in generating
diverse face samples. Quantitative evaluations from a COTS
face recognition system show that the target age distri-
butions are accurately recovered; and 99.88% and 99.98%
age progressed faces can be correctly verified at 0.001%
FAR after age transformations of approximately 28.61 years
elapsed time on MORPH and 23.09 years on CACD.

The proposed approach achieves more accurate, more
reliable, and more photorealistic aging effects than the state
of the art. But, it indeed has some limitations. On the one
hand, we primarily consider the general aging procedure
and the facial properties that are inextricably bound to
identity. There are actually additional covariates of interest
that could largely influence face aging while cannot be taken
into account, e.g. health condition, living style, and working
environment, mainly due to the inaccessibility of such infor-
mation. On the other hand, a solution to adult aging is pro-
vided, and child growth is given less attention. A shortage of
publicly available longitudinal face dataset of children [50]
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is partly responsible for this, while another reason lies in
that the identity feature of the younger individuals are less
stable. As remarked by the recent findings on human face
recognition conducted by NIST [51], children are not easy to
recognize, which might make aged renderings questionable.
Both the above-mentioned unsolved issues could be the
major directions in the future work.
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science from the École centrale de Lyon, Lyon,
France, in 2005, 2008, and 2011, respectively.
He joined the Laboratory of Intelligent Recogni-
tion and Image Processing, School of Computer
Science and Engineering, Beihang University, as
a Faculty Member. His current research interests
include biometrics, in particular, on 2D/3D face
analysis, image/video processing, and pattern

recognition.

Yunhong Wang received the B.S. degree in
electronic engineering from Northwestern Poly-
technical University, Xi’an, China, in 1989, and
the M.S. and Ph.D. degrees in electronic engi-
neering from Nanjing University of Science and
Technology, Nanjing, China, in 1995 and 1998,
respectively. She was with the National Labora-
tory of Pattern Recognition, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing,
China, from 1998 to 2004. Since 2004, she has
been a Professor with the School of Computer

Science and Engineering, Beihang University, Beijing, where she is also
the Director of Laboratory of Intelligent Recognition and Image Pro-
cessing, Beijing Key Laboratory of Digital Media. Her current research
interests include biometrics, pattern recognition, computer vision, data
fusion, and image processing.

Anil K. Jain is a University distinguished pro-
fessor in the Department of Computer Science
and Engineering at Michigan State University.
His research interests include pattern recogni-
tion and biometric authentication. He served as
the editor-in-chief of the IEEE Transactions on
Pattern Analysis and Machine Intelligence and
was a member of the United States Defense Sci-
ence Board. He has received Fulbright, Guggen-
heim, Alexander von Humboldt, and IAPR King
Sun Fu awards. He is a member of the Na-

tional Academy of Engineering and foreign fellow of the Indian National
Academy of Engineering.

www.faceplusplus.com
https://itunes.apple.com/us/app/agingbooth/id357467791?mt=8
https://itunes.apple.com/us/app/agingbooth/id357467791?mt=8
http://cherry.dcs.aber.ac.uk/Transformer/index.html

	1 Introduction
	2 Related Work
	2.1 On Algorithm
	2.2 On Data
	2.3 On Evaluation Metrics

	3 Method
	3.1 Overview
	3.2 Generator
	3.3 Adversarial Learning
	3.3.1 Aging Modeling
	3.3.2 Progressive Aging Modeling

	3.4 Identity Preservation
	3.5 Objective

	4 Experimental Results
	4.1 Databases
	4.2 Implementation Details
	4.3 Results
	4.3.1 Experiment I: Aging Effect Simulation
	4.3.2 Experiment II: Aging Model Evaluation


	5 Conclusion
	References
	Biographies
	Hongyu Yang
	Di Huang
	Yunhong Wang
	Anil K. Jain


