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Abstract

The two underlying requirements of face age progres-
sion, i.e. aging accuracy and identity permanence, are not
well handled in the literature. In this paper, we present a
novel generative adversarial network based approach. It
separately models the constraints for the intrinsic subject-
specific characteristics and the age-specific facial changes
with respect to the elapsed time, ensuring that the gener-
ated faces present desired aging effects while simultane-
ously keeping personalized properties stable. Further, to
generate more lifelike facial details, high-level age-specific
features conveyed by the synthesized face are estimated by
a pyramidal adversarial discriminator at multiple scales,
which simulates the aging effects in a finer manner. The
proposed method is applicable for diverse face samples in
the presence of variations in pose, expression, makeup, etc.,
and remarkably vivid aging effects are achieved. Both vi-
sual fidelity and quantitative evaluations show that the ap-
proach advances the state-of-the-art.

1. Introduction
Age progression is the process of aesthetically rendering

a given face image to present the effects of aging. It is of-
ten used for entertainment and forensics, e.g., forecasting
facial appearances of young children when they grow up or
generating contemporary photos for missing individuals.

The intrinsic complexity of physical aging, the interfer-
ences caused by other factors (e.g., PIE variations), and
shortage of labeled aging data collectively make face age
progression a rather difficult problem. The last few years
have witnessed significant efforts tackling this issue, where
aging accuracy and identity permanence are commonly
regarded as the two underlying premises of its success
[28][35][25][13]. The early attempts were mainly based on
the skin’s anatomical structure and they mechanically sim-
ulated the profile growth and facial muscle changes w.r.t.
the elapsed time [30][34][22]. These methods provided the
first insight into face aging synthesis. However, they gen-
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Figure 1. Demonstration of our aging simulation results (images
in the first column are input faces of two subjects).

erally worked in a complex manner, making it difficult to
generalize. Data-driven approaches followed, where face
age progression was primarily carried out by applying the
prototype of aging details to test faces [12][28], or by mod-
eling the dependency between longitudinal facial changes
and corresponding ages [27][33][19]. Although obvious
signs of aging are synthesized, their aging functions usually
cannot formulate the complex aging mechanism accurately
enough, limiting the diversity of aging patterns.

The deep generative networks have exhibited a remark-
able capability in image generation [7][8][10][29] and have
also been investigated for age progression [32][36][17][18].
These approaches render faces with more appealing aging
effects and less ghosting artifacts compared to the previ-
ous conventional solutions. However, the problem has not
been essentially solved. Specifically, these approaches fo-
cus more on modeling face transformation between two age
groups, where the age factor plays a dominant role while the
identity information plays a subordinate role, with the re-
sult that aging accuracy and identity permanence can hardly
be simultaneously achieved, in particular for long-term age
progression [17][18]. Furthermore, they mostly require
multiple face images of different ages of the same individ-
ual at the training stage, involving another intractable issue,
i.e. intra-individual aging face sequence collection [32][14].
Both the aforementioned facts indicate that current deep
generative aging methods leave space for improvement.

In this study, we propose a novel approach to face age
progression, which integrates the advantage of Generative
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Adversarial Networks (GAN) in synthesizing visually plau-
sible images with prior domain knowledge in human ag-
ing. Compared with existing methods in literature, it is
more capable at handling the two critical requirements in
age progression, i.e. identity permanence and aging accu-
racy. To be specific, the proposed approach uses a Convo-
lutional Neural Networks (CNN) based generator to learn
age transformation, and it separately models different face
attributes depending upon their change over time. The train-
ing critic thus incorporates the squared Euclidean loss in the
image space, the GAN loss that encourages generated faces
to be indistinguishable from the elderly faces in the training
set in terms of age, and the identity loss which minimizes
the input-output distance by a high-level feature representa-
tion embedding personalized characteristics. It ensures that
the resulting faces present desired effects of aging while the
identity properties remain stable. By estimating the data
density of each individual target age cluster, our method
does not demand matching face pairs of the same person
across two age domains as the majority of the counterpart
methods do. Additionally, in contrast to the previous tech-
niques that primarily operate on cropped facial areas (usu-
ally excluding foreheads), we emphasize that synthesis on
entire faces is important since the parts of forehead and hair
also significantly impact the perceived age. To achieve this
and further enhance the aging details, our method leverages
the intrinsic hierarchy of deep networks, and a discrimina-
tor of the pyramid architecture is designed to estimate high-
level age-related clues in a fine-grained way. Our approach
overcomes the limitations of single age-specific representa-
tion and handles age transformation both locally and glob-
ally. As a result, more photorealistic imageries are gener-
ated (see Fig. 1 for an illustration of aging results).

The main contributions of this study include:
1 We propose a novel GAN based method for age pro-

gression, which incorporates face verification and age
estimation techniques, thereby addressing the issues of
aging effect generation and identity cue preservation in
a coupled manner.

2 We highlight the importance of the forehead and hair
components of a face that are closely related to the
perceived age but ignored in other studies; it indeed
enhances the synthesized age accuracy.

3 We set up new validating experiments in addition to
existent ones, including commercial face analysis tool
based evaluation and insensitivity assessment to the
changes in expression, pose, and makeup. Our method
is not only shown to be effective but also robust in age
progression.

2. Related Work
In the initial explorations of face age progression, phys-

ical models were exploited to simulate the aging mecha-

nisms of cranium and facial muscles. In [30], Todd et al.
introduced a revised cardioidal-strain transformation where
head growth was modeled in a computable geometric pro-
cedure. Based on skin’s anatomical structure, Wu et al. [34]
proposed a 3-layered dynamic skin model to simulate wrin-
kles. Mechanical aging methods were also incorporated by
Ramanathan and Chellappa [22] and Suo et al. [27].

The majority of the subsequent approaches were data-
driven, which did not rely much on the biological prior
knowledge, and the aging patterns were learned from the
training faces. Wang et al. [33] built the mapping between
corresponding down-sampled and high-resolution faces in
a tensor space, and aging details were added on the later.
Kemelmacher-Shlizerman et al. [12] presented a prototype
based method, and further took the illumination factor into
account. Yang et al. [35] first settled the multi-attribute
decomposition problem, and progression was achieved by
transforming only the age component to a target age group.
These methods did improve the results, however ghosting
artifacts frequently appeared on the synthesized faces.

More recently, the deep generative networks have been
attempted. In [32], Wang et al. transformed faces across
different ages smoothly by modeling the intermediate tran-
sition states in an RNN model. But multiple face images
of various ages of each subject were required at the train-
ing stage, and the exact age label of the probe face was
needed during test, thus greatly limiting its flexibility. Un-
der the framework of conditional adversarial autoencoder
[36], facial muscle sagging caused by aging was simu-
lated, whereas only rough wrinkles were rendered mainly
due to the insufficient representation ability of the training
discriminator. With the Temporal Non-Volume Preserving
(TNVP) aging approach [17], the short-term age progres-
sion was accomplished by mapping the data densities of
two consecutive age groups with ResNet blocks [9], and the
long-term aging synthesis was finally reached by a chaining
of short-term stages. Its major weakness, however, was that
it merely considered the probability distribution of a set of
faces without any individuality information. As a result, the
synthesized faces in a complete aging sequence varied a lot
in color, expression, and even identity.

Our study also makes use of the image generation abil-
ity of GAN, and presents a different but effective method,
where the age-related GAN loss is adopted for age transfor-
mation, the individual-dependent critic is used to keep the
identity cue stable, and a multi-pathway discriminator is ap-
plied to refine aging detail generation. This solution is more
powerful in dealing with the core issues of age progression,
i.e. age accuracy and identity preservation.
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Figure 2. Framework of the proposed age progression method. A CNN based generator G learns the age transformation. The training critic
incorporates the squared Euclidean loss in the image space, the GAN loss that encourages generated faces to be indistinguishable from
the training elderly faces in terms of age, and the identity preservation loss minimizing the input-output distance in a high-level feature
representation which embeds the personalized characteristics.

3. Method
3.1. Overview

A classic GAN contains a generator G and a discrimina-
tor D, which are iteratively trained via an adversarial pro-
cess. The generative function G tries to capture the under-
lying data density and confuse the discriminative function
D, while the optimization procedure of D aims to achieve
the distinguishability and distinguish the natural face im-
ages from the fake ones generated by G. Both G and D can
be approximated by neural networks, e.g., Multi-Layer Per-
ceptron (MLP). The risk function of optimizing this mini-
max two-player game can be written as:

V(D,G) = min
G

max
D

Ex∼Pdata(x)log[D(x)]+Ez∼Pz(z)log[1−D(G(z))]

(1)

where z is a noise sample from a prior probability distribu-
tion Pz , and x denotes a real face image following a certain
distribution Pdata. On convergence, the distribution of the
synthesized images Pg is equivalent to Pdata.

Recently, more emphasis has been given to the condi-
tional GANs (cGANs) where the generative model G ap-
proximates the dependency of the pre-images (or controlled
attributes) and their corresponding targets. cGANs have
shown promising results in video prediction [16], text to
image synthesis [23], image-to-image translation [10][37],
etc. In our case, the CNN based generator takes young
faces as inputs, and learns a mapping to a domain corre-
sponding to elderly faces. To achieve aging effects while
simultaneously keeping person-specific information stable,
a compound critic is exploited, which incorporates the tradi-
tional squared Euclidean loss in the image space, the GAN
loss that encourages generated faces to be indistinguishable
from the training elderly faces in terms of age, and the iden-

tity loss minimizing the input-output distance in a high-level
feature representation which embeds the personalized char-
acteristics. See Fig. 2 for an overview.

3.2. Generator

Synthesizing age progressed faces only requires a for-
ward pass through G. The generative network is a combi-
nation of encoder and decoder. With the input young face,
it first exploits three strided convolutional layers to encode
it to a latent space, capturing the facial properties that tend
to be stable w.r.t. the elapsed time, followed by four resid-
ual blocks [9] modeling the common structure shared by the
input and output faces, similar to the settings in [11]. Age
transformation to a target image space is finally achieved by
three fractionally-strided convolutional layers, yielding the
age progression result conditioned on the given young face.
Rather than using the max-pooling and upsampling layers
to calculate the feature maps, we employ the 3 × 3 con-
volution kernels with stride of 2, ensuring that every pixel
contributes and the adjacent pixels transform in a synergis-
tic manner. All the convolutional layers are followed by
batch normalization (BN) and ReLU non-linearity activa-
tion. Paddings are added to the layers to make the input and
output have exactly the same size. The architecture of G is
shown in the supplementary material.

3.3. Discriminator

The system critic incorporates the prior knowledge of the
data density of the faces from the target age cluster, and
a discriminative network D is thus introduced, which out-
puts a scalarD(x) representing the probability that x comes
from the data. The distribution of the generated faces Pg
(we denote the distribution of young faces as x ∼ Pyoung ,
then G(x) ∼ Pg) is supposed to be equivalent to the distri-



bution Pold when optimality is reached. Supposing that we
follow the classic GAN [8], which uses a binary cross en-
tropy classification, and the process of training D amounts
to minimizing the loss:

LGAN D = −Ex∈Pyoung(x)log[1−D(G(x))]− Ex∈Pold(x)log[D(x)]

(2)

It is always desirable that G and D converge coherently;
however, D frequently achieves the distinguishability faster
in practice, and feeds back vanishing gradients for G to
learn, since the JS divergence is locally saturated. Recent
studies, i.e. the Wasserstein GAN [5], the Least Squares
GAN [15], and the Loss-Sensitive GAN [21], reveal that
the most fundamental issue lies in how exactly the distance
between sequences of probability distributions is defined.
Here, we use the least squares loss substituting for the neg-
ative log likelihood objective, which penalizes the samples
depending on how close they are to the decision boundary
in a metric space, minimizing the Pearson X 2 divergence.
Further, to achieve more convincing and vivid age-specific
facial details, both the actual young faces and the generated
age-progressed faces are fed into D as negative samples
while the true elderly images as positive ones. Accordingly,
the training process alternately minimizes the following:

LGAN D =
1

2
Ex∼Pold(x)[(Dω(φage(x))− 1)

2
]

+
1

2
Ex∼Pyoung(x)[Dω(φage(G(x)))

2
+Dω(φage(x))

2
]

(3)

LGAN G = Ex∼Pyoung(x)[(Dω(φage(G(x)))− 1)
2
] (4)

Note, in (3) and (4), a function φage bridges G and D,
which is specially introduced to extract age-related features
conveyed by faces, as Fig. 2 shows. Considering that hu-
man faces at diverse age groups share a common configura-
tion and similar texture properties, a feature extractor φage
is thus exploited independently ofD, and outputs high-level
feature representations to make the generated faces more
distinguishable from the true elderly faces in terms of age.
In particular, φage is pre-trained for a multi-label classifica-
tion task of age estimation with the VGG-16 structure [26],
and after convergence, we remove the fully connected lay-
ers and integrate it into the framework. Since natural im-
ages exhibit multi-scale characteristics, and along the hier-
archical architecture, φage captures the properties gradually
from exact pixel values to high-level age-specific semantic
information, hence this study leverages the intrinsic pyra-
mid hierarchy. The pyramid facial feature representations
are jointly estimated by D at multiple scales, handling ag-
ing effect generation in a fine-grained way.

The outputs of the 2nd, 4th, 7th and 10th convolutional
layers of φage are used. They pass through the pathways of
D and are finally concatenated. In D, all convolutional lay-
ers are followed by BN and LeakyReLU activation except
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1/0
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3 × 3
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Figure 3. The scores of 4 pathways are finally concatenated and
jointly estimated by the discriminator D (D is an estimator rather
than a classifier; the Label does not need to be a single scalar).

the last one in each pathway. The detailed architecture of D
can be found in the supplementary material, and the joint
estimation on the high-level features is illustrated in Fig. 3.

3.4. Identity Preservation

One core issue of face age progression is keeping the
person-dependent properties stable. Therefore, we incorpo-
rate the associated constraint by measuring the input-output
distance in a proper feature space, which is sensitive to the
identity change while relatively robust to other variations.
Specifically, the network of deep face descriptor [20] is
utilized, denoted as φid, to encode the personalized infor-
mation and further define the identity loss function. φid is
trained with a large face dataset containing millions of face
images from thousands of individuals1. It is originally boot-
strapped by considering recognizing N = 2, 622 unique in-
dividuals; and then the last classification layer is removed
and φid(x) is tuned to improve the capability of verification
in the Euclidean space using a triplet-loss training scheme.
In our case, φid is clipped to have 10 convolutional layers,
and the identity loss is then formulated as:

Lidentity = Ex∈Pyoung(x)d(φid(x), φid(G(x))) (5)

where d is the squared Euclidean distance between feature
representations. For more implementation details of deep
face descriptor, please refer to [20].

3.5. Objective

Besides the specially designed age-related GAN critic
and the identity permanence penalty, a pixel-wise L2 loss
in the image space is also adopted for further bridging the
input-output gap, e.g., the color aberration, which is formu-
lated as:

Lpixel =
1

W ×H × C
‖G(x)− x‖22 (6)

1The face images are collected via the Google Image Search on the
names of 5K celebrities, purified by automatic and manual filterings.



where x denotes the input face and W , H , and C corre-
spond to the image shape.

Finally, the system training loss can be written as:

LG = λaLGAN G + λpLpixel + λiLidentity (7)

LD = LGAN D (8)

We trainG andD alternately until optimality, and finally
G learns the desired age transformation and D becomes a
reliable estimator.

4. Experimental Results
4.1. Data Collection

The sources of face images for training GANs are the
MORPH mugshot dataset [24] with standardized imaging
and the Cross-Age Celebrity Dataset (CACD) [6] involving
PIE variations.

MORPH is a large publicly available aging database
[24], containing subject’s ethnicity, height, weight and gen-
der. An extension of MORPH contains 52,099 color images
with near-frontal pose, neutral expression, and uniform il-
lumination (some minor pose and expression variations are
indeed present). The subject age ranges from 16 to 77 years
old, with the average age being approximately 33 years.
The longitudinal age span of one subject varies from 46
days to 33 years. CACD is a public dataset [6] collected
via the Google Image Search, containing 163,446 face im-
ages of 2,000 celebrities across 10 years, with age ranging
from 14 to 62. The dataset has the largest amount of im-
ages with age changes, showing variations in pose, illumi-
nation, expression, etc. being less controlled than MORPH.
We mainly use MORPH and CACD for training and valida-
tion. FG-NET [4] is also adopted for testing to make a fair
comparison with prior work, which is popular in face aging
analysis but only contains 1,002 images from 82 individu-
als. More properties of these databases can be found in the
supplementary material.

4.2. Implementation Details

Prior to feeding the images into the networks, the faces
are aligned using the eye locations provided by the dataset
itself (CACD) or detected by the online face recognition
API of Face++ [3] (MORPH). Excluding those images un-
detected in MORPH, 163,446 and 51,699 face images from
the two datasets are finally adopted, respectively, and they
are cropped to 224 × 224 pixels. Due to the fact that
the number of faces older than 60 years old is quite lim-
ited in both databases and neither contains images of chil-
dren, we only consider adult aging. We apply age progres-
sion on the faces below 30 years old, synthesizing a se-
quence of age-progressed renderings when they are in their
30s, 40s, and 50s. We follow the time span of 10 years

for each age cluster as reported in many previous studies
[35][28][36][32][17].

The architectures of the networks G and D are shown
in the supplementary material. For MORPH, the spring
constant λp, λa, and λi are set to 0.10, 300.00 and 0.005,
respectively; and they are set to 0.20, 750.00 and 0.005 for
CACD. At the training stage, we use Adam with the learn-
ing rate of 1 × 10−4 and the weight decay factor of 0.5 for
every 2, 000 iterations. We (i) update the discriminator at
every iteration, (ii) use the age-related and identity-related
critics at every generator iteration, and the (iii) pixel-level
critic for every 5 generator iterations. The networks are
trained with a batch size of 8 for 50, 000 iterations in to-
tal, which takes around 8 hours on a GTX 1080Ti GPU.

4.3. Performance Comparison

4.3.1 Experiment I: Age Progression

Five-fold cross validation is conducted. On CACD, each
fold contains 400 individuals with nearly 10,079, 8,635,
7,964, and 6,011 face images from the four age clusters of
[14-30], [31-40], [41-50], and [51-60], respectively; while
on MORPH, each fold consists of nearly 2,586 subjects
with 4,467, 3,030, 2,205, and 639 faces from the four age
groups. For each run, four folds are utilized for training,
and the remainder for evaluation. Examples of age progres-
sion results are depicted in Fig. 4. As we can see, although
the examples cover a wide range of population in terms of
race, gender, pose, makeup and expression, visually plausi-
ble and convincing aging effects are achieved.

4.3.2 Experiment II: Aging Model Evaluation

We acknowledge that face age progression is supposed to
aesthetically predict the future appearance of the individ-
ual, beyond the emerging wrinkles and identity preserva-
tion, therefore in this experiment a more comprehensive
evaluation of the age progression results are provided with
both the visual analysis and the quantitative evaluations.

Experiment II-A: Visual Fidelity: Fig. 5 (a) displays
example face images with glasses, occlusions, and pose
variations. The age-progressed faces are still photorealistic
and true to the original inputs; whereas the previous pro-
totyping based methods [28][31] are inherently inadequate
for such circumstances, and the parametric aging models
[25][27] may also lead to ghosting artifacts. In Fig. 5 (b),
some examples of hair aging are demonstrated. As far as we
know, almost all aging approaches proposed in the litera-
ture [35][25][12][32][36][14] focus on cropped faces with-
out considering hair aging, mainly because hair is not as
structured as the face area. Further, hair is diverse in tex-
ture, shape, and color, thus difficult to model. Nevertheless,
the proposed method takes the whole face as input, and, as
expected, the hair grows wispy and thin in aging simulation.



Aging Simulation Results on CACD:
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Figure 4. Aging effects obtained on the CACD (the first two rows) and MORPH (the last two rows) databases for 12 different subjects. The
first image in each panel is the original face image and the subsequent 3 images are the age progressed visualizations for that subject in the
[31- 40], [41-50] and 50+ age clusters.
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Figure 5. Illustration of visual fidelity (zoom in for a better view).

Fig. 5 (c) confirms the capability of preserving the neces-
sary facial details during aging, and Fig. 5 (d) shows the
smoothness and consistency of the aging changes, where
the lips become thiner, the under-eye bags become more
and more obvious, and wrinkles are deeper.

Experiment II-B: Aging Accuracy: Along with face
aging, the estimated age is supposed to increase. Corre-
spondingly, objective age estimation is conducted to mea-
sure the aging accuracy. We apply the online face analysis
tool of Face++ [3] to every synthesized face. Excluding
those undetected, the age-progressed faces of 22,318 test
samples in the MORPH dataset are investigated (average
of 4,464 test faces in each run under 5-fold cross valida-
tion). Table 1 shows the results. The mean values are 42.84,
50.78, and 59.91 years old for the 3 age clusters, respec-
tively. Ideally, they would be observed in the age range of

[31-40],[41-50], and [51-60]. Admittedly, the lifestyle fac-
tors may accelerate or slow down the aging rates for the
individuals, leading to deviations in the estimated age from
the actual age, but the overall trends should be relatively ro-
bust. Due to such intrinsic ambiguities, objective age esti-
mations are further conducted on all the faces in the dataset
as benchmark. In Table 1 and Fig. 6(a), 6(c), it can be seen
that the estimated ages of the synthesized faces are well
matched with those of the real images, and increase steadily
with the elapsed time, clearly validating the method.

On CACD, the aging synthesis results of 50, 222 young
faces are used in this evaluation (average of 10,044 test
faces in each run). Even though the age distributions of dif-
ferent clusters do not have a good separation as in MORPH,
it still suggests that the proposed age progression method
has indeed captured the data density of the given subset of
faces in terms of age. See Table 1 and Figs. 6(b) and 6(d)
for detailed results.

Experiment II-C: Identity Preservation: Objective
face verification with Face++ is carried out to check if the
original identity property is well preserved during age pro-
gression. For each test face, we perform comparisons be-
tween the input image and the corresponding aging simu-
lation results: [test face, aged 1], [test face, aged 2], and
[test face, aged 3]; and statistical analyses among the syn-
thesized faces are conducted, i.e. [aged 1, aged 2], [aged
1, aged 3], and [aged 2, aged 3]. Similar to Experiment II-
B, 22,318 young faces in MORPH and their age-progressed
renderings are used in this evaluation, leading to a total of
22, 318× 6 verifications. As shown in Table 2, the obtained
mean verification rates for the 3 age-progressed clusters



Table 1. Objective age estimation results (in years) on MORPH and CACD

MORPH CACD
Age Cluster 0 Age Cluster 1 Age Cluster 2 Age Cluster 3 Age Cluster 0 Age Cluster 1 Age Cluster 2 Age Cluster 3

Synthesized faces* Synthesized faces*

– 42.84± 8.03 50.78± 9.01 59.91± 8.95 – 44.29± 8.51 48.34± 8.32 52.02± 9.21
– 42.84± 0.40 50.78± 0.36 59.91± 0.47 – 44.29± 0.53 48.34± 0.35 52.02± 0.19

Natural faces Natural faces
32.57± 7.95 42.46± 8.23 51.30± 9.01 61.39± 8.56 38.68± 9.50 43.59± 9.41 48.12± 9.52 52.59± 10.48

* The standard deviation in the first row is calculated on all the synthesized faces; the standard deviation in the second row is calculated
on the mean values of the 5 folds.

Table 2. Objective face verification results on (a) MORPH and (b) CACD

Aged 1 Aged 2 Aged 3 Aged 1 Aged 2 Aged 3

verification confidencea verification confidencea

(a)

Test face 94.64± 0.03 91.46± 0.08 85.87± 0.25

(b)

94.13±0.04 91.96±0.12 88.60±0.15
Aged 1 – 94.34± 0.06 89.92± 0.30 – 94.88±0.16 92.63±0.09
Aged 2 – – 92.23± 0.24 – – 94.21±0.24

verification confidence b verification confidenceb

Test face 94.64± 1.06 91.46± 3.65 85.87± 5.53 94.13±1.19 91.96±2.26 88.60±4.19
Aged 1 – 94.34± 1.64 89.92± 3.49 – 94.88±0.87 92.63±2.10
Aged 2 – – 92.23± 2.09 – – 94.21±1.25

verification rate (threshold = 76.5, FAR = 1e - 5) verification rate (threshold = 76.5, FAR = 1e - 5)
Test face 100± 0 % 98.91± 0.40 % 93.09± 1.31 % 99.99± 0.01 % 99.91± 0.05 % 98.28± 0.33 %

a The standard deviation is calculated on the mean values of the 5 folds.
b The standard deviation is calculated on all the synthesized faces.
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Figure 6. Distributions of the estimated ages obtained by Face++.
(a) MORPH, synthesized faces; (b) CACD, synthesized faces; (c)
MORPH, actual faces; and (d) CACD, actual faces.
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Figure 7. Distributions of the face verification confidence on (a)
MORPH and (b) CACD.

are 100%, 98.91%, and 93.09%, respectively. For CACD,
there are 50, 222×6 verifications, and the mean verification
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Figure 8. Visual comparison to the one-pathway discriminator.

rates are 99.99%, 99.91%, and 98.28%, respectively, which
clearly confirms the ability of identity preservation of the
proposed method. Additionally, in Table 2 and Fig. 7, face
verification performance decreases as the time elapsed be-
tween two images increases, which conforms to the physical
truth of face aging, and it may also explain the better per-
formance achieved on CACD compared to MORPH in this
evaluation.

Experiment II-D: Contribution of Pyramid Architec-
ture: One model assumption is that the pyramid structure
of the discriminator D advances the generation of the ag-
ing effects, making the age-progressed faces more natural.
Accordingly, we carry out comparison to the one-pathway
discriminator, under which scheme the generated faces are
directly fed into the estimator rather than represented as fea-
ture pyramid first. The discriminator architecture in the con-
trast experiment is equivalent to a chaining of the network
φage and the first pathway in the proposed pyramid D.



Table 3. Quantitative evaluation results using one-pathway discriminator on (a) MORPH and (b) CACD

Aged 1 Aged 2 Aged 3 Aged 1 Aged 2 Aged 3

(a) Estimated age (yrs old) 46.14± 7.79 54.99± 7.08 62.10± 6.74 (b) 45.89± 9.85 51.44± 9.78 54.52± 10.22
Verification confidence 93.66± 1.15 89.94± 2.59 84.51± 4.36 92.98± 1.76 87.55± 4.62 84.61± 5.83

Test face

Our results
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Figure 9. Performance comparison with prior work (zoom in for a better view of the aging details).

Fig. 8 provides a demonstration. Visually, the synthe-
sized aging details of the counterpart are not so decent.
To make the comparison more specific and reliable, quan-
titative evaluations are further conducted with the similar
settings in Experiment II-B and II-C, and the statistical re-
sults are shown in Table 3. In the table, the estimated ages
achieved on MORPH and CACD are generally older than
the benchmark (shown in Table 1), and the mean absolute
errors over the three age clusters are 2.69 and 2.52 years
for the two databases, respectively, exhibiting larger devia-
tion than 0.79 and 0.50 years obtained by using the pyra-
mid architecture. It is probably because the synthesized
wrinkles in this contrast experiment are less neat and the
faces look relatively messy. It may also explain the de-
creased face verification confidence observed in Table 3 in
the identity preservation evaluation. Based on both the vi-
sual fidelity and the quantitative estimations, we can draw
an inference that compared with the pyramid architecture,
the one-pathway discriminator, as widely utilized in previ-
ous GAN-based frameworks, is lagging behind in regard of
modeling the sophisticated aging changes.

Experiment II-E: Comparison to Prior Work: To
compare with prior work, we conduct testing on the FG-
NET and MORPH databases with CACD as the training set.
These studies are [25][27][32][35][18][36][17][19], which
signify the state-of-the-art; and moreover, one of the most
popular mobile aging applications, i.e. Agingbooth [1], and
the online aging tool Face of the future [2] are also com-
pared. Fig. 9 displays some example faces. As can be seen,
Face of the future and Agingbooth follow the prototyping-
based method, where the identical aging mask is directly

applied to all the given faces as most of the aging Apps do.
The concept of such methods is straightforward, whereas
the age-progressed faces are not photorealistic. Regarding
the published works in the literature, ghosting artifacts are
ineluctable for the parametric method [27] and the dictio-
nary reconstruction based solution [35][25]. Technological
advancements can be observed in the deep generative mod-
els [32][36][14], whereas they only focus on the cropped
facial area, and the age-progressed faces are short of nec-
essary aging details. In a further statistical survey, we col-
lect 138 paired images of 54 individuals from the published
papers, and invite 10 human observers to evaluate which
age-progressed face is better in the pairwise comparison.
Among the 1380 votes, 69.78% are for ours, 20.80% are for
prior work, and 9.42% indicate that they are even. Besides,
this proposed method does not require burdensome prepro-
cessing as previous works do, and it only needs 2 landmarks
for pupils alignment. To sum up, we can say that the pro-
posed method outperforms the counterparts.

5. Conclusions

Compared with the previous approaches to face age pro-
gression, this study shows a different but more effective so-
lution to its key issues, i.e. age transformation accuracy
and identity preservation, and proposes a novel GAN based
method. This method involves the techniques on face veri-
fication and age estimation, and exploits a compound train-
ing critic that integrates the simple pixel-level penalty, the
age-related GAN loss achieving age transformation, and the
individual-dependent critic keeping the identity information
stable. For generating detailed signs of aging, a pyramidal



discriminator is designed to estimate high-level face rep-
resentations in a finer way. Extensive experiments are con-
ducted, and both the achieved aging imageries and the quan-
titative evaluations clearly confirm the effectiveness and ro-
bustness of the proposed method.
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Abstract

Supplementary materials to the main paper.

1. Detailed Network Architecture

The architectures of the networks G and D are shown in
Table 1 and Table 2.

2. Database Properties

We mainly use MORPH [3] and CACD [2] for training
and validation. FG-NET [1] is also adopted for testing to
make a fair comparison with prior work. The databases used
in this paper are with different properties (see Table 3 and
Fig. 1).

3. Additional Experimental Results

3.1. Additional Age Progression Results

Additional synthesized faces achieved on CACD and
MORPH are provided in Figs. 2 and 3. The first image
in each panel is the original face image and the subsequent
3 images are the age progressed visualizations for that sub-
ject in the [31- 40], [41-50] and 50+ age clusters. Although
the examples cover a wide range of population in terms of
race, gender, pose, makeup and expression, visually plausi-
ble and convincing aging effects are achieved. Our method
is not only shown to be effective but also robust to the other
variations.

3.2. Rejuvenating Simulation Results

The proposed method can also be applied for face reju-
venating simulation. In this experiment, all the test faces
come from the people older than 30 years old, and they are
transformed to the age bracket of below 30 years old. Ex-
ample rejuvenating visualizations are shown in Figs. 4 and
5. As can be seen, this operation tightens the face skin, and
the hair becomes thick and luxuriant as expected.

3.3. Additional comparison to the one-pathway dis-
criminator

Figs. 6 and 7 provide more example faces compared
with the one-pathway discriminator. Rejuvenating results
are considered.
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Table 1. Generator architecture

Layer conv. conv.↓ conv.↓ res. res. res. res. deconv.↑ deconv.↑ deconv.

Kernel 9 3 3 3 3 3 3 3 3 9
Stride 1 2 2 1 1 1 1 2 2 1

Padding 4 1 1 2 2 2 2 1 1 4
Outputs 32 64 128 128 128 128 128 64 32 3

Table 2. Discriminator architecture

Pathway Input Layers (denote as: conv - <ouput>; kernel = 4, stride = 2, padding = 1 )

1 512 conv-512 conv-512 conv-1
2 256 conv-512 conv-512 conv-512 conv-1
3 128 conv-256 conv-512 conv-512 conv-512 conv-1
4 64 conv-128 conv-256 conv-512 conv-512 conv-512 conv-1

Table 3. Statistics of face aging databases used for evaluation

Database Number of
images

Number of
subjects

Number of
images per subject

Time lapse
per subject (years)

Age span
(years old)

Average age
(years old)

MORPH [3] 52,099 12,938 1 - 53 (avg. 4.03) 0 - 33 (avg. 1.62) 16 - 77 33.07
CACD [2] 163,446 2,000 22 - 139 (avg. 81.72) 7 - 9 (avg. 8.99) 14 - 62 38.03

FG-NET [1] 1,002 82 6 - 18 (avg. 12.22) 11 - 54 (avg. 27.80) 0 - 69 15.84
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Figure 1. Age distributions of (a) MORPH, (b) CACD, and (c) FGNET.
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Figure 2. Additional aging effects obtained on the CACD databases for 24 different subjects. The first image in each panel is the original
face image and the subsequent 3 images are the age progressed visualizations for that subject in the [31- 40], [41-50] and 50+ age clusters.



Test face 31 - 40 41 - 50 50+ Test face 31 - 40 41 - 50 50+Test face 31 - 40 41 - 50 50+

25 years old 26 years old 28 years old

26 years old 23 years old 27 years old

29 years old 29 years old 27 years old

28 years old 30 years old 29 years old

17 years old 25 years old 28 years old

30 years old 30 years old 20 years old

28 years old 26 years old 28 years old

26 years old 28 years old 29 years old

Figure 3. Additional aging effects obtained on the MORPH databases for 24 different subjects.
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Figure 4. Rejuvenating results achieved on the CACD database for 24 different subjects. The first image in each panel is the original face
image and the second is the corresponding rejuvenating result.
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Figure 5. Rejuvenating results achieved on the MORPH database for 24 different subjects.
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Figure 6. Additional visual comparison to the one-pathway discriminator on the MORPH database.
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Figure 7. Additional visual comparison to the one-pathway discriminator on the CACD database.


