
FaceGuard: A Self-Supervised Defense Against Adversarial Face Images

Debayan Deb, Xiaoming Liu, Anil K. Jain
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, 48824

{debdebay, liuxm, jain}@cse.msu.edu

Detect & Localize Purify

(a) Enrolled (b) Probe (c) AdvFaces (d) Proposed FaceGuard
0.85 0.29 0.78Blue: Real; Red: Adversarial

Figure 1: Leonardo DiCaprio’s real face photo (a) enrolled in the gallery and (b) his probe image1; (c) Adversarial probe synthesized by a state-of-the-art
(SOTA) adversarial face generator, AdvFaces [1]; (d) Proposed adversarial defense framework, namely FaceGuard takes (c) as input, detects adversarial
images, localizes perturbed regions, and outputs a “purified” face devoid of adversarial perturbations. A SOTA face recognition system, ArcFace, fails to
match Leonardo’s adversarial face (c) to (a), however, the purified face can successfully match to (a). Cosine similarity scores (∈ [−1, 1]) obtained via
ArcFace [2] are shown below the images. A score above 0.36 (threshold @ 0.1% False Accept Rate) indicates that two faces are of the same subject.

Abstract
Prevailing defense schemes against adversarial face im-

ages tend to overfit to the perturbations in the training set
and fail to generalize to unseen adversarial attacks. We pro-
pose a new self-supervised adversarial defense framework,
namely FaceGuard, that can automatically detect, localize,
and purify a wide variety of adversarial faces without uti-
lizing pre-computed adversarial training samples. During
training, FaceGuard automatically synthesizes challenging
and diverse adversarial attacks, enabling a classifier to
learn to distinguish them from real faces. Concurrently, a
purifier attempts to remove the adversarial perturbations
in the image space. Experimental results on LFW dataset
show that FaceGuard can achieve 99.81% detection accu-
racy on six unseen adversarial attack types. In addition,
the proposed method can enhance the face recognition per-
formance of ArcFace from 34.27% TAR @ 0.1% FAR under
no defense to 77.46% TAR @ 0.1% FAR. Code, pre-trained
models and dataset will be publicly available.

1. Introduction

With the advent of deep learning and availability of large
datasets, Automated Face Recognition (AFR) systems have

achieved impressive recognition rates [3]. The accuracy, us-
ability, and touchless acquisition of state-of-the-art (SOTA)
AFR systems have led to their ubiquitous adoption in a
plethora of domains. However, this has also inadvertently
sparked a community of attackers that dedicate their time
and effort to manipulate faces in order to evade AFR sys-
tems [4]. AFR systems have been shown to be vulnera-
ble to adversarial attacks resulting from perturbing an in-
put probe [1, 5–7]. Even when the amount of perturba-
tion is imperceptible to the human eye, such adversarial
attacks can degrade the face recognition performance of
SOTA AFR systems [1]. With the growing dissemination
of “fake news” and “deepfakes” [8], research groups and
social media platforms alike are pushing towards general-
izable defense against continuously evolving adversarial at-
tacks.

A considerable amount of research has focused on syn-
thesizing adversarial attacks [1, 6, 7, 9–11]. Obfuscation at-
tempts (faces are perturbed such that they cannot be identi-
fied as the attacker) are more effective [1], computationally
efficient to synthesize [9,10], and widely adopted [12] com-
pared to impersonation attacks (perturbed faces can auto-
matically match to a target subject). Similar to prior defense

1https://bit.ly/2IkfSxk

1

ar
X

iv
:2

01
1.

14
21

8v
1

 [
cs

.C
V

]
 2

8
N

ov
 2

02
0

0.27

(a) [9]

0.28

(b) [10]

0.35

(c) [11]

0.21

(d) [1]

0.34

(e) [6]

0.32

(f) [7]

Figure 2: (Top Row) Adversarial face images synthesized via six adver-
sarial attack generators used in our study. (Bottom Row) Corresponding
adversarial perturbations (gray indicates no change from the input). No-
tice the diversity in the perturbations. ArcFace scores between adversarial
image and the unaltered gallery image (not shown here) are given below
each image. A score above 0.36 indicates that two faces are of the same
subject. Zoom in for details.

efforts [13, 14], this paper focuses on defending against ob-
fuscation attacks. Given an input probe image, x, an ad-
versarial generator has two requirements under the obfus-
cation scenario: (1) synthesize an adversarial face image,
xadv = x + δ, such that SOTA AFR systems fail to match
xadv and x, and (2) limit the magnitude of perturbation
||δ||p such that xadv appears very similar to x to humans.

A number of approaches have been proposed to defend
against adversarial attacks. Their major shortcoming is gen-
eralizability to unseen adversarial attacks. Adversarial face
perturbations may vary significantly (see Fig. 2). For in-
stance, gradient-based attacks, such as FGSM [10] and
PGD [10], perturb every pixel in the face image, whereas,
AdvFaces [1] and SemanticAdv [7] perturb only the salient
facial regions, e.g., eyes, nose, and mouth. On the other
hand, GFLM [6] performs geometric warping to the face.
Since the exact type of adversarial perturbation may not be
known a priori, a defense system trained on a subset of ad-
versarial attack types may not perform well on other unseen
adversarial attacks.

To the best of our knowledge, we take the first step to-
wards a complete defense against adversarial faces by in-
tegrating an adversarial face generator, a detector, and a
purifier into a unified framework, namely FaceGuard (see
Fig. 3). Robustness to unseen adversarial attacks is im-
parted via a stochastic generator that outputs diverse per-
turbations evading an AFR system, while a detector contin-
uously learns to distinguish them from real faces. Concur-
rently, a purifier removes the adversarial perturbations from
the synthesized image.

This work makes the following contributions:
• A new self-supervised framework, namely FaceGuard,

for defending against adversarial face images. Face-
Guard combines benefits of adversarial training, detec-
tion, and purification into a unified defense mechanism
trained in an end-to-end manner.

• With the proposed diversity loss, a generator is reg-

Figure 3: FaceGuard employs a detector (D) to compute an adversarial
score. Scores below detection threshold (τ) passes the input to AFR, and
high value invokes a purifier and sends the purified face to the AFR system.

ularized to produce stochastic and challenging adver-
sarial faces. We show that the diversity in output per-
turbations is sufficient for improving FaceGuard’s ro-
bustness to unseen attacks compared to utilizing pre-
computed training samples from known attacks.

• Synthesized adversarial faces aid the detector to learn
a tight decision boundary around real faces. Face-
Guard’s detector achieves SOTA detection accuracy of
99.81% on 6 unseen adversarial attacks on LFW [15].

• As the generator trains, a purifier concurrently re-
moves perturbations from the synthesized adversarial
faces. With the proposed bonafide loss, the detector
also guides purifier’s training to ensure purified images
are devoid of adversarial perturbations. FaceGuard’s
purifier enhances the face recognition performance Ar-
cFace [2] from 34.27% TAR @ 0.1% FAR under no
defense to 77.46% TAR @ 0.1% FAR.

2. Related Work

Defense Strategies:. In literature, a commonly employed
defense strategy is to re-train the classifier we wish to de-
fend with adversarial examples [9,10,16,17]. However, ad-
versarial training has been shown to degrade classification
accuracy on real (non-adversarial) images [18, 19].

In order to prevent degradation in AFR performance, a
large number of adversarial defense mechanisms are de-
ployed as a pre-processing step, namely adversarial detec-
tion, which involves training a binary classifier to distin-
guish between real and adversarial examples [13,14,20–32].
The attacks considered in these studies [33–36] were ini-
tially proposed in the object recognition domain and they
often fail to detect the attacks in a feature-extraction net-
work setting, as in face recognition. Therefore, prevail-
ing detection-based defenses against adversarial faces are
demonstrated to be effective only in a highly constrained
setting where the number of subjects is limited and fixed
during training and testing [13, 14, 32].

Another pre-processing strategy, namely purification, in-
volves automatically removing adversarial perturbations in
the input image prior to passing them to a face matcher [37–

2

Real 𝑥

		𝒢(𝑥, 𝑧)

𝑧~𝒩(0, 𝑰)

Adversarial 𝑥!"#

𝒟(𝑥!"#)

	𝒫𝑢𝑟(𝑥!"#)

Purification Mask

0.98
(Adversarial)

Purified 𝑥$%&

+ -
Adversarial

Mask

Figure 4: Overview of training the proposed FaceGuard in a self-supervised manner. An adversarial generator, G, continuously learns to synthesize
challenging and diverse perturbations that evade a face matcher. At the same time, a detector, D, learns to distinguish between the synthesized adversarial
faces and real face images. Perturbations residing in the synthesized adversarial faces are removed via a purifier, Pur.

40]. However, without a dedicated adversarial detector,
these defenses may end up “purifying” a real face image,
resulting in high false reject rates.

Adversarial Attacks:. Numerous adversarial attack gen-
erators have been proposed in literature [9, 10, 41–43]. For
example, Fast Gradient Sign Method (FGSM) generates an
adversarial example by back-propagating through the target
model [9]. Other approaches optimize adversarial perturba-
tion by minimizing an objective function while satisfying
certain constraints [11, 43]. These approaches rely on soft-
max cross-entropy loss to find effective perturbations. We
modify the objective functions of these attacks in order to
synthesize adversarial faces that evade AFR systems. We
evaluate FaceGuard on six unseen adversarial attacks that
have high success rates in evading a SOTA AFR system,
ArcFace [2]: FGSM [9], PGD [10], DeepFool [11], Adv-
Faces [1], GFLM [6], and SemanticAdv [7] (see Tab. 1).

3. FaceGuard
3.1. Limitations of State-of-the-Art Defenses

Adversarial Training. Adversarial training is regarded as
one of the most effective defense method [9, 10, 44] on
small datasets including MNIST and CIFAR10. Whether
this technique can scale to large datasets and a variety of
different attack types (perturbation sets) has not yet been
shown. Adversarial training is formulated as [9, 10]:

min
θ

E
(x,y)∼Pdata

[
max
δ∈∆

` (fθ (x+ δ) , y)

]
, (1)

where (x, y) ∼ Pdata is the (image, label) joint distribu-
tion of data, fθ (x) is the network parameterized by θ, and
` (fθ (x) , y) is the loss function (usually cross-entropy).
Since the ground truth data distribution, Pdata, is not known
in practice, it is later replaced by the empirical distribution.
Here, the network, fθ is made robust by training with an
adversarial noise (δ) that maximally increases the classifi-
cation loss. In other words, adversarial training involves
training with the strongest adversarial attack.

The generalization of adversarial training has been in
question [17–19, 44, 45]. It was shown that adversarial

training can significantly reduce classification accuracy on
real examples [18, 19]. In the context of face recogni-
tion, we illustrate this by training two face matchers on
CASIA-WebFace: (i) FaceNet [46] trained via the stan-
dard training process, and (ii) FaceNet [46] by adversar-
ial training (FGSM2). We then compute face recognition
performance across training iterations on a separate testing
dataset, LFW [15]. Fig. 5a shows that adversarial training
drops the accuracy from 99.13% −→ 98.27%. We gain the
following insight: adversarial training may degrade AFR
performance on real faces.

Detectors. Detection-based approaches employ a pre-
processing step to “detect” whether an input face is real
or adversarial [13, 22, 23, 32]. A common approach is
to utilize a binary classifier, D, that maps a face image,
x ∈ RH×W×C to {0, 1}, where 0 indicates a real and 1
an adversarial face. We train a binary classifier to distin-
guish between real and FGSM attack samples in CASIA-
WebFace [47]. In Figure 5b, we evaluate its detection accu-
racy on FGSM and PGD samples in LFW [15]. We find that
prevailing detection-based defense schemes may overfit to
the specific adversarial attacks utilized for training.

3.2. Proposed Defense
Our defense aims to achieve robustness without sacrific-

ing AFR performance on real face images. We posit that
an adversarial defense trained alongside an adversarial gen-
erator in a self-supervised manner may improve robustness
to unseen attacks. The main intuitions behind our defense
mechanism are as follows:

• Since adversarial training may degrade AFR perfor-
mance, we aim to obtain a robust adversarial detector
and purifier to detect and purify unseen adversarial at-
tacks.

• Given that prevailing detection-based methods tend to
overfit to known adversarial perturbations (see Supple-
mentary), a detector and purifier trained on a wide va-
riety of synthesized adversarial perturbations may be
more robust to unseen attacks.

2With max perturbation hyperparameter as ε = 8/256.

3

0 20 40 60 80
Training Epochs

80

85

90

95

100

LF
W

 A
cc

ur
ac

y
(%

)

Std. Training
Adv. Training

(a) Adversarial Training [16]

0 1 2 3 4 5
Training Epochs

50

60

70

80

90

D
et

ec
tio

n
Ac

cu
ra

cy
 (%

) FGSM (Seen)
PGD (Unseen)

(b) Detection [22]

Figure 5: (a) Adversarial training degrades AFR performance of FaceNet
matcher [46] on real faces in LFW dataset compared to standard train-
ing. (b) A binary classifier trained to distinguish between real faces and
FGSM [9] attacks fails to detect another attack type, namely PGD [10].

• Sufficient diversity in synthesized perturbations can
guide the detector to learn a tighter boundary around
real faces. In this case, the detector itself can serve as
a powerful discriminator for the purifier.

• Lastly, we posit that the pixels involved in the purifica-
tion process may serve to indicate adversarial regions
in the input face.

3.3. Adversarial Generator
The generalizability of an adversarial detector and puri-

fier relies on the quality of the synthesized adversarial face
images output by FaceGuard’s adversarial generator. We
propose an adversarial generator that continuously learns to
synthesize challenging and diverse adversarial face images.

The generator, denoted as G, takes an input real face
image, x ∈ RH×W×C , and outputs an adversarial per-
turbation G(x, z), where z ∼ N (0, I) is a random latent
vector. Inspired by prevailing adversarial attack genera-
tors [1, 9–11, 43], we treat the output perturbation G(x, z)
as an additive perturbation mask. The final adversarial face
image, xadv , is given by xadv = x+ G(x, z).

In an effort to impart generalizability to the detector and
purifier, we emphasize the following requirements of G:

• Adversarial: Perturbatation, G(x, z), needs to be ad-
versarial such that an AFR system cannot identify the
adversarial face image xadv as the same person as the
input probe x.

• Visually Realistic: Perturbation G(x, z) should also
be minimal such that xadv appears as a legitimate face
image of the subject in the input probe x.

• Stochastic: For an input x, we require diverse adver-
sarial perturbations, G(x, z), for different latents z.

For satisfying all of the above requirements, we propose
multiple loss functions to train the generator.
Obfuscation Loss To ensure G(x, z) is indeed adversarial,
we incorporate a white-box AFR system, F , to supervise
the generator. Given an input face, x, the generator aims to
output an adversarial face, xadv = x + G(x, z) such that
the face representations, F(x) and F(xadv), do not match.
In other words, the goal is to minimize the cosine similarity

between the two face representations3:

Lobf = Ex

[
F(x) · F(xadv)
||F(x)|| ||F(xadv)||

]
. (2)

Perturbation Loss With the identity loss alone, the gener-
ator may output perturbations with large magnitudes which
will be (a) trivial for the detector to reject and (b) violate the
visual realism requirement of xadv . Therefore, we restrict
the perturbations to be within [−ε, ε] via a hinge loss:

Lpt = Ex [max (ε, ||G(x, z)||2)] . (3)

Diversity Loss The above two losses jointly ensure that at
each step, our generator learns to output challenging adver-
sarial attacks. However, these attacks are deterministic; for
an input image, we will obtain the same adversarial image.
This may again lead to an inferior detector that overfits to a
few deterministic perturbations seen during training. Moti-
vated by studies of preventing mode collapse in GANs [48],
we propose maximizing a diversity loss to promote stochas-
tic perturbations per training iteration, i:

Ldiv = −
1

Nite

Nite∑
i=1

∣∣∣∣G(x, z1)
(i) − G(x, z2)

(i)
∣∣∣∣

1

||z1 − z2||1
, (4)

where Nite is the number of training iterations, G(x, z)(i)
is the perturbation output at iteration i, and (z1, z2) are two
i.i.d. samples from z ∼ N (0, I). The diversity loss ensures
that for two random latent vectors, z1 and z2, we will obtain
two different perturbations G(x, z1)

(i) and G(x, z2)
(i).

GAN Loss Akin to prior work on GANs [49, 50], we intro-
duce a discriminator to encourage perceptual realism of the
adversarial images. The discriminator, Dsc, aims to distin-
guish between probes, x, and synthesized faces xadv via a
GAN loss:

LGAN = Ex [logDsc(x)] + Ex[log(1−Dsc(xadv))].
(5)

3.4. Adversarial Detector
Similar to prevailing adversarial detectors, the proposed

detector also learns a decision boundary between real and
adversarial images [13, 22, 23, 32]. A key difference, how-
ever, is that instead of utilizing pre-computed adversarial
images from known attacks (e.g. FGSM and PGD) for train-
ing, the proposed detector learns to distinguish between real
images and the synthesized set of diverse adversarial at-
tacks output by the proposed adversarial generator in a self-
supervised manner. This leads to the following advantage:
our proposed framework does not require a large collection
of pre-computed adversarial face images for training.

3For brevity, we denote Ex ≡ Ex∈Pdata
.

4

We utilize a binary CNN for distinguishing between real
input probes, x, and synthesized adversarial samples, xadv .
The detector is trained with the Binary Cross-Entropy loss:

LBCE = Ex [logD(x)] + Ex [log (1−D(xadv))] . (6)

3.5. Adversarial Purifier
The objective of the adversarial purifier is to recover the

real face image x given an adversarial face xadv . We aim to
automatically remove the adversarial perturbations by train-
ing a neural network Pur, referred as an adversarial puri-
fier.

The adversarial purification process can be viewed as an
inverted procedure of adversarial image synthesis. Contrary
to the obfuscation loss in the adversarial generator, we re-
quire that the purified image, xpur, successfully matches
to the subject in the input probe x. Note that this can be
achieved via a feature recovery loss, which is the opposite
to the obfuscation loss, i.e., Lfr = −Lobf .

Note that an adversarial face image, xadv = x + δ, is
metrically close to the real image, x, in the input space. If
we can estimate δ, then we can retrieve the real face im-
age. Here, the perturbations can be predicted by a neural
network, Pur. In other words, retrieving the purified im-
age, xpur involves: (1) subtracting the perturbations from
the adversarial image, xpur = xadv − Pur(xadv) and (2)
ensuring that the purification mask, Pur(xadv), is small so
that we do not alter the content of the face image by a large
magnitude. Therefore, we propose a hybrid perceptual loss
that (1) ensures xpur is as close as possible to the real im-
age, x via a `1 reconstruction loss and (2) a loss that mini-
mizes the amount of alteration, Pur(xadv):

Lperc = Ex ||xpur − x||1 + ||Pur(xadv)||2 . (7)

Finally, we also incorporate our detector to guide the
training of our purifier. Note that, due to the diversity in
synthesized adversarial faces, the proposed detector learns a
tight decision boundary around real faces. This can serve as
a strong self-supervisory signal to the purifier for ensuring
that the purified images belong to the real face distribution.
Therefore, we also incorporate the detector as a discrimina-
tor for the purifier via the proposed bonafide loss:

Lbf = Ex [logD(xpur)] . (8)

3.6. Training Framework
We train the entire FaceGuard framework in Fig. 4 in an

end-to-end manner with the following objectives:

min
G
LG = LGAN + λobf · Lobf + λpt · Lpt − λdiv · Ldiv,

min
D
LD = LBCE ,

min
Pur
LPur = λfr · Lfr + λperc · Lperc + λbf · Lbf .

ArcFace [2] TAR (%) @ 0.1% FAR(↓) Mean SSIM(↑)

FGSM [9] 26.23 0.83
PGD [10] 04.91 0.89
DeepFool [11] 36.18 0.91
AdvFaces [1] 00.17 0.89
GFLM [6] 68.03 0.55
SemanticAdv [7] 70.05 0.71

Table 1: Face recognition performance of ArcFace [2] under adversarial
attack and average structural similarities (SSIM) between probe and adver-
sarial images for obfuscation attacks on 485K genuine pairs in LFW [15].
ArcFace [2] achieves 99.82% TAR @ 0.1% FAR on real pairs.

At each training iteration, the generator attempts to fool the
discriminator by synthesizing visually realistic adversarial
faces while the discriminator learns to distinguish between
real and synthesized images. On the other hand, in the
same iteration, an external critic network, namely detector
D, learns a decision boundary between real and synthesized
adversarial samples. Concurrently, the purifier Pur learns
to invert the adversarial synthesis process. Note that there is
a key difference between the discriminator and the detector:
the generator is designed to specifically fool the discrimi-
nator but not necessarily the detector. We will show in our
experiments that this crucial step prevents the detector from
predicting D(x) = 0.5 for all x.

4. Experimental Results
4.1. Experimental Settings

Datasets. We train FaceGuard on real face images in
CASIA-WebFace [47] dataset and then evaluate on real
and adversarial faces synthesized for LFW [15] dataset.
CASIA-WebFace [47] comprises of 494, 414 face images
from 10, 5754 different subjects. LFW [15] contains 13, 233
face images of 5, 749 subjects. Since we evaluate defenses
under obfuscation attacks, we consider subjects with at least
two face images5. After this filtering, 9, 164 face images of
1, 680 subjects in LFW are available for evaluation.

Implementation. The adversarial generator and purifier
employ a convolutional encoder-decoder. The latent vari-
able z, a 128-dimensional feature vector, is fed as input
to the generator through spatial padding and concatenation.
The adversarial detector, a 4-layer binary CNN, is trained
jointly with the generator and purifier. Empirically, we set
λobf = λfr = 10.0, λpt = λperc = 1.0, λdiv = 1.0,
λbf = 1.0 and ε = 3.0. Training and network architecture
details are provided in the supplementary material.

Face Recognition Systems. In this study, we use two AFR
systems: FaceNet [46] and ArcFace [2]. Recall that the
proposed defense utilizes a face matcher, F , for guiding

4We removed 84 subjects in CASIA-WebFace that overlap with LFW.
5Obfuscation attempts only affect genuine pairs (two face images per-

taining to the same subject).

5

Detection Acc. (%) FGSM [9] PGD [10] DeepFool [11] AdvFaces [1] GFLM [6] SemanticAdv [7] Mean ± Std.

Gong et al. [22] 98.94 97.91 95.87 92.69 99.92 99.92 97.54± 02.82
UAP-D [32] 61.32 74.33 56.78 51.11 65.33 76.78 64.28± 09.97
SmartBox [14] 58.79 62.53 51.32 54.87 50.97 62.14 56.77± 05.16
Massoli et al. [13] (MLP) 63.58 76.28 81.78 88.38 51.97 52.98 69.16± 15.29
Massoli et al. [13] (LSTM) 71.53 76.43 88.32 75.43 53.76 55.22 70.11± 13.35
Proposed FaceGuard 99.85 99.85 99.85 99.84 99.61 99.85 99.81± 00.10

Table 2: Detection accuracy of SOTA adversarial face detectors in classifying six adversarial attacks synthesized for the LFW dataset [15]. Detection
threshold is set as 0.5 for all methods. All baseline methods require training on pre-computed adversarial attacks on CASIA-WebFace [47]. On the other
hand, the proposed FaceGuard is self-guided and generates adversarial attacks on the fly. Hence, it can be regarded as a black-box defense system.

the training process of the generator. However, the de-
ployed AFR system may not be known to the defense sys-
tem a priori. Therefore, unlike prevailing defense mecha-
nisms [13, 14, 32], we evaluate the effectiveness of the pro-
posed defense on an AFR system different from F . We
highlight the effectiveness of our proposed defense: Face-
Guard is trained on FaceNet, while the adversarial attack
test set is designed to evade ArcFace. Obfuscation attempts
perturb real probes into adversarial ones. Ideally, deployed
AFR systems (say, ArcFace), should be able to match a
genuine pair comprised of an adversarial probe and a real
enrolled face of the same subject. Therefore, regardless
of real or adversarial probe, we assume that genuine pairs
should always match as ground truth. Tab. 1 provides AFR
performance of ArcFace under six SOTA adversarial attacks
for 484, 514 genuine pairs in LFW.

4.2. Comparison with State-of-the-Art Defenses
In this section, we compare the proposed FaceGuard

to prevailing defenses (detectors, purifiers, and adversarial
training techniques). We evaluate all methods via publicly
available repositories provided by the authors (see Supple-
mentary for links). Only modification made is to replace
their training datasets with CASIA-WebFace [47].

SOTA Detectors. Our baselines include five SOTA
detectors proposed specifically for detecting adversarial
faces [13, 14, 32]. Detection performance with a binary
CNN [22] is also computed. The detectors are trained on
real and adversarial faces images synthesized via six adver-
sarial generators for CASIA-WebFace [47]. Unlike all the
baselines, FaceGuard’s detector does not utilize any pre-
computed adversarial attack for training. We compute the
classification accuracy for all methods on a dataset compris-
ing of 9, 164 real images and 9, 164 adversarial face images
per attack type in LFW.

In Tab. 2, we find that compared to the baselines, Face-
Guard achieves the highest detection accuracy. Even when
the six adversarial attack types are encountered in training,
a binary CNN [22], still falls short compared to FaceGuard.
This is likely because FaceGuard is trained on a challenging
and diverse set of adversarial faces from the proposed gen-
erator. Note that the performance of the binary CNN [22]

0.77 0.67 0.96 0.99

(a) Real faces falsely detected as adversarial

Real AdvFaces (0.42) Real AdvFaces (0.28)

(b) Adversarial faces falsely detected as real

Figure 6: Examples where the proposed FaceGuard fails to correctly detect
(a) real faces and (b) adversarial faces. Detection scores ∈ [0, 1] are given
below each image, where 0 indicates real and 1 indicates adversarial face.

significantly drops when unseen adversarial attack types are
encountered in testing (see Supplementary).

Compared to hand-crafted features, such as PCA+SVM
in UAP-D [32] and entropy detection in Smart-
Box [14], FaceGuard achieves superior detection results.
Massoli et al. [13] distinguish between real and adversarial
faces by utilizing intermediate face features of an AFR
system. However, we find that these intermediate features
primarily represent the identity of the input face and do
not appear to contain highly discriminative information for
detecting adversarial faces.

Despite the robustness, FaceGuard misclassifies 28 out
of 9, 164 real images in LFW [15] and falsely predicts 46
out of 9, 164 adversarial faces as real. Of these 46 misclassi-
fications, 44 are geometrically-warped faces via GFLM [6]
and the remaining two are synthesized via AdvFaces [1].
We find that FaceGuard tends to misclassify real faces un-
der extreme poses and adversarial faces that are occluded
(e.g., hats) (see Fig. 6).

Comparison with Adversarial Training & Purifiers. We
also compare with prevailing defenses designing robust face
matchers [16, 17, 44] and purifiers [37, 38, 40]. We con-
duct a verification experiment by considering all possible
genuine pairs (two faces belonging to the same subject) in

6

Defenses Approach Real Attacks
485K pairs 3M pairs

No-Defense - 99.82 34.27

Adv. Training [16] Robustness 96.42 11.23
Rob-GAN [44] Robustness 91.35 13.89
L2L [17] Robustness 96.89 16.76
MagNet [37] Purification 94.47 38.32
DefenseGAN [38] Purification 96.78 39.21
NRP [40] Purification 97.54 61.44
Proposed FaceGuard Purification 99.81 77.46

Table 3: AFR performance (TAR (%) @ 0.1% FAR) of ArcFace under no
defense and when ArcFace is trained via SOTA adversarial training tech-
niques [16,17,44] and SOTA purifiers [37,38]. FaceGuard correctly passes
majority of real faces to ArcFace and also purifies adversarial attacks.

LFW [15]. For one probe in a genuine pair, we craft six
different adversarial probes (one per attack type). In total,
there are 484, 514 real pairs and ∼ 3M adversarial pairs.
For a fixed match threshold6, we compute the True Accept
Rate (TAR) of successfully matching two images in a real
or adversarial pair in Tab. 3. In other words, TAR is defined
here as the ratio of genuine pairs above the match threshold.

ArcFace without any adversarial defense system
achieves 34.27% TAR at 0.1% FAR under attack. Adversar-
ial training [16,17,44] inhibits the feature space of ArcFace,
resulting in worse performance on both real and adversarial
pairs. On the other hand, purification methods [37, 38, 40]
can better retain face features in real pairs but their perfor-
mance under attack is still undesirable.

Instead, the proposed FaceGuard defense system first
detects whether an input face image is real or adversarial.
If input faces are adversarial, then they are further puri-
fied. From Tab. 3, we find that our defense system sig-
nificantly outperforms SOTA baselines in protecting Ar-
cFace [2] against adversarial attacks. Specifically, Face-
Guard’s purifier enhances ArcFace’s average TAR at 0.1%
FAR under all six attacks (see Tab. 1) from 34.27% −→
77.46%. In addition, FaceGuard also maintains similar face
recognition performance on real faces (TAR on real pairs
drop from 99.82% −→ 99.81%). Therefore, our proposed
defense system ensures that benign users will not be incor-
rectly rejected while malicious attempts to evade the AFR
system will be curbed.

4.3. Analysis of Our Approach

Quality of the Adversarial Generator. In Tab. 4, we see
that without the proposed adversarial generator (“Without
G”), i.e., a detector trained on the six known attack types,
suffers from high standard deviation. Instead, training a
detector with a deterministic G (“Without Ldiv”), leads to
better generalization across attack types, since the detector

6We compute the threshold at 0.1% FAR on all possible image pairs in
LFW, e.g., threshold @ 0.1% FAR for ArcFace is set at 0.36.

Model AdvFaces [1] Mean ± Std.

G
en

.G

Without G 91.72 97.12± 04.54
Without Ldiv 95.42 98.23± 01.33
With G and Ldiv 99.84 99.81± 00.10

D
et

.D

D as Discriminator 50.00 75.25± 21.19
D via Pre-Computed G 52.01 69.37± 19.91
D as Online Detector 99.84 99.81± 00.10

Table 4: Ablating training schemes of the generator G and detector D.
All models are trained on CASIA-WebFace [47]. (Col. 3) We compute
the detection accuracy in classifying real faces in LFW [15] and the most
challenging adversarial attack in Tab. 1, AdvFaces [1]. (Col. 4) The avg.
and std. dev. of detection accuracy across all 6 adversarial attacks.

still encounters variations in synthesized images as the gen-
erator learns to better generate adversarial faces. However,
such a detector is still prone to overfitting to a few determin-
istic perturbations output by G. Finally, FaceGuard with the
diversity loss introduces diverse perturbations within and
across training iterations (see Fig. 7). Fig. 7 also highlights
the superiority of the proposed generator: as G trains, syn-
thesized adversarial face images appear closer to the real
distribution while spanning the adversarial space across all
6 known attacks. This illustrates how the stochastic per-
turbations output by the proposed generator can (1) signif-
icantly improve the robustness of the detector to unseen
adversarial attacks (“With G and Ldiv”) and (2) eliminate
the need for utilizing pre-computed training samples from
known attacks.

Quality of the Adversarial Detector. The discriminator’s
task is similar to the detector; determine whether an input
image is real or fake/adversarial. The key difference is that
the generator is enforced to fool the discriminator, but not
the detector. If we replace the discriminator with an adver-
sarial detector, the generator continuously attempts to fool
the detector by synthesizing images that are as close as pos-
sible to the real image distribution. By design, such a de-
tector should converge to Disc(x) = 0.5 for all x (real
or adversarial). As we expect, in Tab. 4, we cannot rely
on predictions made by such a detector (“D as Discrimina-
tor”). We try another variant: we first train the generator G
and then train a detector to distinguish between real and pre-
computed attacks via G (“D via Pre-Computed G”). As we
expect, the proposed methodology of training the detector
in an online fashion by utilizing the synthesized adversarial
samples output by G at any given iteration leads to a signif-
icantly robust detector (“D as Online Detector”). This can
likely be attributed to the fact that a detector trained on-line
encounters a much larger variation as the generator trains
alongside. “D via Pre-Computed G” is exposed only to
within-iteration variations (from random latent sampling),
however, ‘D as Online Detector” encounters variations both
within and across training iterations (see Fig. 7).

Quality of the Adversarial Purifier. Recall that we en-

7

(a) Iteration: 5) (b) Iteration: 20) (c) Iteration: 60) (d) Iteration: 100)

Real FGSM PGD DeepFool AdvFaces GFLM SemanticAdv Synthesized "($, &)×Random latents within iteration

Figure 7: Adversarial faces synthesized by FaceGuard’s generator during training. Note the diversity in perturbations within and across iterations. 2D
t-SNE visualization of features for real images, six known adversarial attacks, and synthesized adversarial images extracted via the proposed detector.
As FaceGuard trains, synthesized adversarial faces appear closer to the real faces while also spanning the known adversarial space.

Probe Adversarial Localization Purified

PG
D

[1
0]

ArcFace/SSIM: −0.09/0.84 0.51/0.87

A
dv

Fa
ce

s[
1]

ArcFace/SSIM: −0.30/0.89 0.62/0.91

Figure 8: Example results where FaceGuard successfully purifies the ad-
versarial image (red regions indicate adversarial perturbations localized by
our purification mask). ArcFace [2] scores ∈ [−1, 1] and SSIM ∈ [0, 1]
between an adversarial/purified probe and input probe are given below
each image.

forced the purified image to be close to the real face via
a reconstruction loss, such that x ≈ xpur =⇒ x ≈
(x + G(x, z)) − Pur(xadv) =⇒ Pur(xadv) ≈ G(x, z).
Thus, the purification and perturbation masks should be
similar. In Fig. 9a, we shows that the two masks are in-
deed correlated by plotting the Cosine similarity distribu-
tion (∈ [−1, 1]) between G(x, z) and P(x+G(x, z)) for all
9, 164 images in LFW7. Therefore, pixels in xadv involved
in the purification process should correspond to those that
cause the image to be adversarial in the first place. Fig. 8,
highlights that perturbed regions can be automatically lo-
calized via constructing a heatmap out of Pur(xadv). In
Fig. 13, we investigate the change in AFR performance

7High similarity may indicate the purifier “memorizing” the purifica-
tion process for perturbations synthesized via G while failing to scale to
unknown test attacks.

0.2 0.0 0.2 0.4 0.6 0.8
Cosine Sim. b/w (x, z) & (x + (x, z))

0

200

400

600
Nu

m
be

r o
f I

m
ag

es
 x

(a)

0.2 0.4 0.6 0.8 1.0 1.2
Amount of Perturbation ()

40

60

80

100

Ac
cu

ra
cy

 (%
)

xadv = x + * (x, z)
xpur = xadv (xadv)
Detection Accuracy (x, xadv)
TAR under Attack (xadv)
TAR under Purification (xpur)

(b)
Figure 9: (a) FaceGuard’s purification is correlated with its adversarial
synthesis process. (b) Trade-off between detection and purification with
respect to perturbation magnitudes. With minimal perturbation, detection
is challenging while purifier maintains AFR performance. Excessive per-
turbations lead to easier detection with greater challenge in purification.

(TAR (%) @ 0.1% FAR) of ArcFace under attack (synthe-
sized adversarial faces via G(x, z)) when the amount of per-
turbation is varied. We find that (a) minimal perturbation is
harder to detect but the purifier incurs minimal damage to
the AFR, while, (b) excessive perturbations are easier to de-
tect but increases the challenge in purification.

5. Conclusions

With the introduction of sophisticated adversarial attacks
on AFR systems, such as geometric warping and GAN-
synthesized adversarial attacks, adversarial defense needs
to be robust and generalizable. Without utilizing any pre-
computed training samples from known adversarial attacks,
the proposed FaceGuard achieved state-of-the-art general-
ization performance against 6 different adversarial attacks.
FaceGuard’s purifier also enhanced ArcFace’s recognition
performance under adversarial attacks. We are exploring
whether an attention mask predicted by the detector can fur-
ther improve adversarial purification.

8

References
[1] Debayan Deb, Jianbang Zhang, and Anil K Jain. Ad-

vfaces: Adversarial face synthesis. arXiv preprint
arXiv:1908.05008, 2019. 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 18

[2] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In CVPR, pages 4690–4699, 2019. 1, 2, 3,
5, 7, 8, 13, 14, 15

[3] Patrick Grother, Mei Ngan, and Kayee Hanaoka. Ongoing
face recognition vendor test (frvt). NIST Interagency Report,
2018. 1

[4] Daily Mail. Police arrest passenger who boarded plane in
Hong Kong as an old man in flat cap and arrived in Canada a
young Asian refugee. http://dailym.ai/2UBEcxO,
2011. 1

[5] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu,
Tong Zhang, and Jun Zhu. Efficient decision-based black-
box adversarial attacks on face recognition. In CVPR, pages
7714–7722, 2019. 1

[6] Ali Dabouei, Sobhan Soleymani, Jeremy Dawson, and
Nasser Nasrabadi. Fast geometrically-perturbed adversarial
faces. In WACV, pages 1979–1988, 2019. 1, 2, 3, 5, 6, 12

[7] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan,
Honglak Lee, and Bo Li. Semanticadv: Generating adversar-
ial examples via attribute-conditional image editing. arXiv
preprint arXiv:1906.07927, 2019. 1, 2, 3, 5, 6, 12

[8] Shruti Agarwal, Hany Farid, Yuming Gu, Mingming He,
Koki Nagano, and Hao Li. Protecting world leaders against
deep fakes. In CVPR Workshops, pages 38–45, 2019. 1

[9] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 2, 3, 4, 5, 6, 12

[10] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 1, 2, 3, 4, 5, 6, 8, 12

[11] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method
to fool deep neural networks. In CVPR, pages 2574–2582,
2016. 1, 2, 3, 4, 5, 6, 12

[12] Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li,
Haitao Zheng, and Ben Y Zhao. Fawkes: protecting pri-
vacy against unauthorized deep learning models. In USENIX,
pages 1589–1604, 2020. 1

[13] Fabio Valerio Massoli, Fabio Carrara, Giuseppe Amato, and
Fabrizio Falchi. Detection of face recognition adversarial
attacks. CVIP, page 103103, 2020. 2, 3, 4, 6, 11, 12

[14] Anirudh Singh Akshay Agarwal Mayank Vatsa Goel, Akhil
and Richa Singh. Smartbox: Benchmarking adversarial de-
tection and mitigation algorithms for face recognition. In
BTAS, pages 1–7, 2018. 2, 6, 11, 12

[15] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database

for studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007. 2, 3, 5, 6, 7, 10, 12, 13, 18

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial machine learning at scale. ICLR, 2017. 2, 4, 6, 7, 12

[17] Yunseok Jang, Tianchen Zhao, Seunghoon Hong, and
Honglak Lee. Adversarial defense via learning to generate
diverse attacks. In CVPR, pages 2740–2749, 2019. 2, 3, 6,
7, 12

[18] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu
Chen, and Yupeng Gao. Is robustness the cost of accuracy?–
a comprehensive study on the robustness of 18 deep image
classification models. In ECCV, 2018. 2, 3

[19] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. ICLR, 20178. 2, 3

[20] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lip-
ton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, and An-
ima Anandkumar. Stochastic activation pruning for robust
adversarial defense. In ICLR, 2018. 2

[21] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and An-
drew B Gardner. Detecting adversarial samples from arti-
facts. arXiv preprint arXiv:1703.00410, 2017. 2

[22] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Ad-
versarial and clean data are not twins. arXiv preprint
arXiv:1704.04960, 2017. 2, 3, 4, 6, 11, 12

[23] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot,
Michael Backes, and Patrick McDaniel. On the (statis-
tical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280, 2017. 2, 3, 4

[24] Xin Li and Fuxin Li. Adversarial examples detection in deep
networks with convolutional filter statistics. In ICCV, pages
5764–5772, 2017. 2

[25] Dan Hendrycks and Kevin Gimpel. Early methods for detect-
ing adversarial images. arXiv preprint arXiv:1608.00530,
2016. 2

[26] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
Van Der Maaten. Countering adversarial images using input
transformations. arXiv preprint arXiv:1711.00117, 2017. 2

[27] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adver-
sarial logit pairing. arXiv preprint arXiv:1803.06373, 2018.
2

[28] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and
Bastian Bischoff. On detecting adversarial perturbations.
ICLR, 2017. 2

[29] Taesik Na, Jong Hwan Ko, and Saibal Mukhopadhyay. Cas-
cade adversarial machine learning regularized with a unified
embedding. ICLR, 2017. 2

[30] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and
Alan Yuille. Mitigating adversarial effects through random-
ization. ICLR, 2017. 2

9

[31] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish
Rawat. Efficient defenses against adversarial attacks. In
ACM Workshop on Artificial Intelligence and Security, pages
39–49, 2017. 2

[32] Akshay Agarwal, Richa Singh, Mayank Vatsa, and Nalini
Ratha. Are image-agnostic universal adversarial perturba-
tions for face recognition difficult to detect? In BTAS, pages
1–7, 2018. 2, 3, 4, 6, 11, 12

[33] Nicholas Carlini and David Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
ACM Workshop on Artificial Intelligence and Security, pages
3–14, 2017. 2

[34] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. ICML, 2018. 2

[35] Nicholas Carlini and David Wagner. Magnet and “efficient
defenses against adversarial attacks” are not robust to adver-
sarial examples. arXiv preprint arXiv:1711.08478, 2017. 2

[36] Marius Mosbach, Maksym Andriushchenko, Thomas Trost,
Matthias Hein, and Dietrich Klakow. Logit pairing
methods can fool gradient-based attacks. arXiv preprint
arXiv:1810.12042, 2018. 2

[37] Dongyu Meng and Hao Chen. Magnet: a two-pronged de-
fense against adversarial examples. In ACM Conference on
Computer and Communications Security, pages 135–147,
2017. 2, 6, 7, 12, 13, 15

[38] Pouya Samangouei, Maya Kabkab, and Rama Chellappa.
Defense-gan: Protecting classifiers against adversarial at-
tacks using generative models. ICLR, 2018. 2, 6, 7, 12,
13, 15

[39] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Er-
mon, and Nate Kushman. Pixeldefend: Leveraging genera-
tive models to understand and defend against adversarial ex-
amples. ICLR, 2017. 2

[40] Muzammal Naseer, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Fatih Porikli. A self-supervised
approach for adversarial robustness. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 262–271, 2020. 2, 6, 7, 12

[41] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan
Liu, and Dawn Song. Generating adversarial examples with
adversarial networks. IJCAI, 2018. 3

[42] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In IEEE
Symposium on Security & Privacy, pages 372–387, 2016. 3

[43] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In IEEE Symposium on Secu-
rity & Privacy, pages 39–57, 2017. 3, 4

[44] Xuanqing Liu and Cho-Jui Hsieh. Rob-gan: Generator, dis-
criminator, and adversarial attacker. In CVPR, pages 11234–
11243, 2019. 3, 6, 7, 12

[45] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C
Duchi, and Percy Liang. Adversarial training can hurt gen-
eralization. arXiv preprint arXiv:1906.06032, 2019. 3

[46] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, pages 815–823, 2015. 3, 4, 5

[47] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning
face representation from scratch. arXiv:1411.7923, 2014. 3,
5, 6, 7, 10, 11

[48] Dingdong Yang, Seunghoon Hong, Yunseok Jang, Tianchen
Zhao, and Honglak Lee. Diversity-sensitive conditional gen-
erative adversarial networks. ICLR, 2019. 4

[49] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, pages
2672–2680, 2014. 4

[50] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, pages 1125–1134, 2017. 4

[51] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.
Joint face detection and alignment using multitask cascaded
convolutional networks. In IEEE SPL, pages 1499–1503,
2016. 10

In this appendix, we conduct thorough experiments to
show the benefits of the proposed adversarial generator, de-
tector, and purifier. We include more implementation de-
tails on FaceGuard and baselines. We also show additional
qualitative examples of purified faces and synthesized ad-
versarial faces via our generator.

A. Implementation Details
All the models in the paper are implemented us-

ing Tensorflow r1.12. A single NVIDIA GeForce GTX
2080Ti GPU is used for training FaceGuard on CASIA-
Webface [47] and evaluating on LFW [15]. Code, pre-
trained models and dataset will be publicly available.

A.1. Preprocessing

All face images are first passed through MTCNN face
detector [51] to detect 5 facial landmarks (two eyes, nose
and two mouth corners). Then, similarity transformation is
used to normalize the face images based on the five land-
marks. After transformation, the images are resized to
160×160. Before passing into FaceGuard, each pixel in the
RGB image is normalized ∈ [−1, 1] by subtracting 128 and
dividing by 128. All the testing images in the main paper
and this supplementary material are from the identities
in the test dataset.

A.2. Network Architectures

The generator, G takes as input an real RGB face im-
age, x ∈ R160×160×3 and a 128-dimensional random latent
vector, z ∼ N (0, I) and outputs a synthesized adversarial
face xadv ∈ R160×160×3. Let c7s1-k be a 7 × 7 con-
volutional layer with k filters and stride 1. dk denotes a

10

4× 4 convolutional layer with k filters and stride 2. Rk de-
notes a residual block that contains two 3× 3 convolutional
layers. uk denotes a 2× upsampling layer followed by a
5 × 5 convolutional layer with k filters and stride 1. We
apply Instance Normalization and Batch Normalization to
the generator and discriminator, respectively. We use Leaky
ReLU with slope 0.2 in the discriminator and ReLU activa-
tion in the generator. The architectures of the two modules
are as follows:

• Generator:
c7s1-64,d128,d256,R256,R256,R256,
u128, u64, c7s1-3,

• Discriminator:
d32,d64,d128,d256,d512.

A 1 × 1 convolutional layer with 3 filters and stride 1 is
attached to the last convolutional layer of the discriminator
for the patch-based GAN loss LGAN .

The purifier, Pur, consists of the same network archi-
tecture as the generator:

• Purifier:
c7s1-64,d128,d256,R256,R256,R256,
u128, u64, c7s1-3.

We apply the tanh activation function on the last convo-
lution layer of the generator and the purifier to ensure that
the generated images are ∈ [−1, 1]. In the paper, we de-
noted the output of the tanh layer of the generator as an
“perturbation mask”, G(x, z) ∈ [−1, 1] and x ∈ [−1, 1].
Similarly, the output of the tanh layer of the purifier is
referred to an “purification mask”, Pur(xadv) ∈ [−1, 1]
and xadv ∈ [−1, 1]. The final adversarial image is com-
puted as xadv = 2×clamp

[
G(x, z) +

(
x+1

2

)]1
0
− 1. This

ensures G(x, z) can either add or subtract pixels from x
when G(x, z) 6= 0. When G(x, z) → 0, then xadv → x.
Similarly, the final purified image is computed as xpur =

2× clamp
[(

xadv+1
2

)
− Pur(xadv)

]1
0
− 1.

The external critic network, detector D, comprises of a
4-layer binary CNN:

• Detector:
d32,d64,d128,d256,fc64,fc1,

where fcN refers to a fully-connected layer with N neuron
outputs.

A.3. Training Details

The generator, detector, and purifier are trained in an
end-to-end manner via ADAM optimizer with hyperparam-
eters β1 = 0.5, β2 = 0.9, learning rate of 1e− 4, and batch
size 16. Algorithm 1 outlines the training algorithm.

A.4. Baselines
We evaluate all defense methods via publicly available

repositories provided by the authors. Only modification
made is to replace their training datasets with CASIA-

Algorithm 1 Training FaceGuard. All experiments in this
work use α = 0.0001, β1 = 0.5, β2 = 0.9, λobf = λfr =
10.0, λpt = λperc = λdiv = 1.0, ε = 3.0, m = 16. For
brevity, lg refers to log operation.

1: Input
2: X Training Dataset
3: F Cosine similarity by AFR
4: G Generator with weights Gθ
5: Dc Discriminator with weights Dcθ
6: D Detector with weights Dθ
7: Pur Purifier with weights Purθ
8: m Batch size
9: α Learning rate

10: for number of training iterations do
11: Sample a batch of probes {x(i)}mi=1 ∼ X
12: Sample a batch of random latents {z(i)}mi=1 ∼
N (0, I)

13: δ
(i)
G = G((x(i), z(i))

14: x
(i)
adv = x(i) + δ

(i)
G

15: δ
(i)
Pur = G((x(i), z(i))

16: x
(i)
pur = x

(i)
adv − δ

(i)
Pur

17:
18: LGpt = 1

m

[∑m
i=1 max

(
ε, ||δ(i)||2

)]
19: LGobf = 1

m

[∑m
i=1 F

(
x(i), x

(i)
adv

)]
20: LGdiv = −

1
m

[∑m
i=1

[
||G(x,z1)(i)−G(x,z2)(i)||

1

||z1−z2||1

]]
21: LGGAN = 1

m

[∑m
i=1 lg

(
1−Dc(x(i)

adv)
)]

22: LD = 1
m

∑m
i=1

[
lgD(x(i)) + lg

(
1−D(x(i)

adv)
)]

23: LDc = 1
m

∑m
i=1

[
lg
(
Dc(x(i))

)
+ lg

(
1−Dc(x(i)

adv)
)]

24: LPurperc =
1
m

∑m
i=1

[
||xpur − x||1 + ||Pur(x(i)

adv)||1
]

25: LPurfr = − 1
m

[∑m
i=1 F

(
x(i), xpur

)]
26: LPurbf = 1

m [
∑m
i=1 lg (1−D(xpur))]

27: LG = LGGAN + λobfLobf + λptLpt + λdivLdiv
28: LPur = λfrLfr + λpercLperc + λbfLbf
29: Gθ = Adam(OGLG ,Gθ, α, β1, β2)
30: Dcθ = Adam(ODcLDc, Dcθ, α, β1, β2)
31: Dθ = Adam(ODLD,Dθ, α, β1, β2)
32: Purθ = Adam(OPurLPur,Purθ, α, β1, β2)
33: end for

WebFace [47]. We provide the public links to the author
codes below:

• Gong et al. [22]: https://github.com/
gongzhitaao/adversarial-classifier

• UAP-D [32]/SmartBox et al. [14]: https://
github.com/akhil15126/SmartBox

• Massoli et al. [13]: https://github.com/

11

Known Unseen
FGSM [9] PGD [10] DeepFool [11] AdvFaces [1] GFLM [6] SemanticAdv [7]

Gong et al. [22] 94.51 92.21 94.12 68.63 50.00 50.21
UAP-D [32] 63.65 69.33 56.38 60.81 50.12 50.28
SmartBox [14] 58.79 62.53 51.32 54.87 50.97 62.14
Massoli et al. [13] (MLP) 78.35 82.52 91.21 55.57 50.00 50.00
Massoli et al. [13] (LSTM) 74.61 86.43 94.73 62.43 50.00 50.00

(a)

Known Unseen
AdvFaces [1] GFLM [6] SemanticAdv [7] FGSM [9] PGD [10] DeepFool [11]

Gong et al. [22] 81.39 96.72 98.97 84.46 57.00 72.32
UAP-D [32] 68.78 54.31 77.46 51.64 50.32 52.01
SmartBox [14] 54.87 50.97 62.14 58.79 62.53 51.32
Massoli et al. [13] (MLP) 77.64 86.54 94.78 55.20 51.32 52.90
Massoli et al. [13] (LSTM) 81.42 92.62 96.76 52.74 65.43 54.84

(b)

Known
FGSM [9] PGD [10] DeepFool [11] AdvFaces [1] GFLM [6] SemanticAdv [7]

Gong et al. [22] 98.94 97.91 95.87 92.69 99.92 99.92
UAP-D [32] 61.32 74.33 56.78 51.11 65.33 76.78
SmartBox [14] 58.79 62.53 51.32 54.87 50.97 62.14
Massoli et al. [13] (MLP) 63.58 76.28 81.78 88.38 51.97 52.98
Massoli et al. [13] (LSTM) 71.53 76.43 88.32 75.43 53.76 55.22

Unseen
Proposed FaceGuard 99.85 99.85 99.85 99.84 99.61 99.85

(c)

Table 5: Detection accuracy of SOTA adversarial face detectors in classifying six adversarial attacks synthesized for the LFW dataset [15] under various
known and unseen attack scenarios. Detection threshold is set as 0.5 for all methods.

fvmassoli / trj - based - adversarials -
detection

• Adversarial Training [16]: https://github.
com/locuslab/fast_adversarial

• Rob-GAN [44]: https : / / github . com /
xuanqing94/RobGAN

• L2L [17]: https : / / github . com /
YunseokJANG/l2l-da

• MagNet [37]: https : / / github . com /
Trevillie/MagNet

• DefenseGAN [38]: https://github.com/
kabkabm/defensegan

• NRP [40]: https://github.com/Muzammal-
Naseer/NRP

Attacks are also synthesized via publicly available author
codes:

• FGSM/PGD/DeepFool: https://github.com/
tensorflow/cleverhans

• AdvFaces: https : / / github . com /
ronny3050/AdvFaces

• GFLM: https://github.com/alldbi/FLM
• SemanticAdv: https://github.com/AI-
secure/SemanticAdv

B. Overfitting in Prevailing Detectors
In Tab. 5, we provide the detection rates of prevail-

ing SOTA detectors in detecting six adversarial attacks in
LFW [15] when they are trained on different attack sub-
sets. We highglight the overfitting issue when (a) SOTA
detectors are trained on gradient-based adversarial attacks
(FGSM [9], PGD [10], and DeepFool [11]) and tested on
gradient-based and learning-based attacks (AdvFaces [1],
GFLM [6], and SemanticAdv [7]), and (b) vice-versa.
Tab. 5(c) reports the detection performance of SOTA de-
tectors when all six attacks are available for training.

We find that detection accuracy of SOTA detectors sig-
nificantly drops when tested on a subset of attacks not en-
countered during their training. Instead, the proposed Face-
Guard maintains robust detection accuracy without even
training on the pre-computed samples from any known at-
tacks.

C. Qualitative Results
C.1. Generator Results

Fig. 10 shows examples of synthesized adversarial faces
via the proposed adversarial generator G. Note that the
generator takes the input prob x and a random latent z.
We show synthesized perturbation masks and correspond-
ing adversarial faces for three randomly sampled latents.

12

We observe that the synthesized adversarial images evades
ArcFace [2] while maintaining high structural similarity be-
tween adversarial and input probe.

C.2. Purifier Results
We show examples of purified images via FaceGuard

and baselines including MagNet [37] and DefenseGAN [38]
in Fig. 11. We observe that, compared to baselines, puri-
fied images synthesized via FaceGuard are visually realis-
tic with minimal changes compared to the ground truth real
probe. In addition, compared to the two baselines, Face-
Guard’s purifier protects ArcFace [2] matcher from being
evaded by the six adversarial attacks.

D. Additional Results on Purifier
D.1. Perturbation and Purification Masks

In the main text, we found that the perturbation and pu-
rification masks are correlated with an average Cosine sim-
ilarity of 0.52. We show five pairs of perturbation and pu-
rification masks ranked by the Cosine similarity between
them (highest to lowest). We observe that purification
mask is better correlated when perturbations are more lo-
cal. Slightly perturbing entire faces poses to be challenging
for the proposed purifier.

D.2. Effect of Perturbation Amount
We also studied the effect of perturbation amount on de-

tection and purification results in the main text. We ob-
served a trade-off between detection and purification with
respect to perturbation magnitudes. With minimal perturba-
tion, detection is challenging while purifier maintains AFR
performance. Excessive perturbations lead to easier detec-
tion with greater challenge in purification. In Fig. 13, show
examples of synthesized adversarial faces for different per-
turbation amounts and their corresponding purified images.
We find that detection scores improve with larger pertur-
bation. Aligned with our earlier findings, due to the pro-
posed bonafide loss, Lbf , purified faces are continuously
detected as real by the detector which explains why the pu-
rifier maintains AFR performance with increasing perturba-
tion amount.

D.3. Effect of Purification on ArcFace Embeddings
In order to investigate the effect of purification on a

matcher’s feature space, we extract face embeddings of real
images, their corresponding adversarial images via the chal-
lenging AdvFaces [1] attack, and purified images, via the
SOTA ArcFace matcher. In total, we extract feature vec-
tors from 1, 456 face images of 10 subjects in the LFW
dataset [15]. In Fig. 14, we plot the 2D t-SNE visualization
of the face embeddings for the 10 subjects. The identity
clusterings can be clearly observed from real, adversarial,
and purified images. In particular, we observe that some
adversarial faces pertaining to a subject moves farther from

its identity cluster while the proposed purifier draws them
back. Fig. 14 illustrates that the proposed purifier indeed
enhances face recognition performance of ArcFace under
attack from 34.27% TAR @ 0.1% FAR under no defense to
77.46% TAR @ 0.1% FAR.

13

Figure 10: Examples of generated adversarial images along with corresponding perturbation masks obtained via FaceGuard’s
generator G for three randomly sampled z. Cosine similarity scores via ArcFace [2] ∈ [−1, 1] and SSIM ∈ [0, 1] between
synthesized adversarial and input probe are given below each image. A score above 0.36 (threshold @ 0.1% False Accept
Rate) indicates that two faces are of the same subject.

14

Figure 11: Examples of purified images via MagNet [37], DefenseGan [38], and proposed FaceGuard purifiers for six
adversarial attacks. Cosine similarity scores via ArcFace [2] ∈ [−1, 1] are given below each image. A score above 0.36
(threshold @ 0.1% False Accept Rate) indicates that two faces are of the same subject.

15

Figure 12: Examples of synthesized adversarial images via the proposed adversarial generator and corresponding purified images. Cosine similarity between
perturbation and purification masks given below each row along with ArcFace scores between synthesized adversarial/purified image and real probe. A score
above 0.36 (threshold @ 0.1% False Accept Rate) indicates that two faces are of the same subject. Even with lower correlation between perturbation and
purification masks (rows 3-5), the purified images can still be identified as the correct identity. Notice that the purifier primarily alters the eye color, nose,
and subdues adversarial perturbations in foreheads. Zoom in for details.

16

Figure 13: ArcFace ∈ [−1, 1] / Detection scores ∈ [0, 1] when perturbation amount is varied (ε = {0.25, 0.50, 0.75, 1.00, 1.25}). Detection scores
above 0.5 are predicted as adversarial images while ArcFace scores above 0.36 (threshold @ 0.1% False Accept Rate) indicate that two faces are of the
same subject. FaceGuard is trained on ε = 1.00. The detection scores improve as perturbation amount increases, whereas, majority of purified images are
detected as real. Even when purified images fail to be classified as real by the detector, purification maintain high AFR performance.

17

Real
AdvFaces
Purified

Figure 14: 2D t-SNE visualization of face representations extracted via ArcFace from 1, 456 (a) real, (b) AdvFaces [1], and (c) purified images belonging
to 10 subjects in LFW [15]. Example AdvFaces [1] pertaining to a subject moves farther from its identity cluster while the proposed purifier draws them
back.

18

