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Abstract—Standard calibration targets are typically used for calibrating the imaging pathway of fingerprint readers. However, there is

no standard method for evaluating fingerprint readers in the operational setting where variations in finger placement by the user are

encountered. The goal of this research is to design 3D targets for repeatable operational evaluation of fingerprint readers. 2D calibration

patterns with known characteristics (e.g. sinusoidal gratings of pre-specified orientation and frequency, synthetic fingerprints with known

singular points and minutiae) are projected onto a generic 3D finger surface to create electronic 3D targets. A state-of-the-art 3D printer

(Stratasys Objet350 Connex) is used to fabricate the 3D targets with material similar in hardness and elasticity to the human finger

skin. Our experimental results show that the (i) fabricated 3D targets can be imaged using three different (500/1000 ppi) commercial

optical fingerprint readers, (ii) salient features in the 2D calibration patterns are preserved during the synthesis and fabrication of 3D

targets, and (iii) intra-class variability between multiple impressions of the 3D targets captured using the optical fingerprint readers does

not degrade the recognition accuracy. We also conduct experiments to demonstrate that the fabricated 3D targets can be used for

operational evaluation of fingerprint readers.
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1 INTRODUCTION

CALIBRATION of imaging systems typically involves
the use of specially designed objects with known

properties, called calibration targets. In the biomedical
domain, for instance, such objects (called phantoms) are
used for calibrating and testing optical measurement
profiles of sensing instrumentation [2], [3]. Similarly,
calibration targets (Fig. 1) are also used for calibrating
fingerprint readers.

There are two separate standards currently in use by
the Federal Bureau of Investigation (FBI) for the certifi-
cation of fingerprint readers, (i) the PIV-071006, which
caters to single finger readers designed for applications
involving person verification (one-to-one comparison),
and (ii) the Appendix F, which applies to fingerprint read-
ers designed for use in large scale applications involving
person identification (one-to-many comparisons). The
Appendix F standard has more stringent image quality
requirements compared to the PIV-071006 standard [5].
To get their readers certified, fingerprint vendors need to
demonstrate that the images captured using their readers
meet the image quality specifications laid out in the
relevant standard [4] [6]. A typical procedure is (i) to use
2D/3D calibration targets to ascertain if the images of
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(a) (b) (c)

Fig. 1. 2D images of targets used for calibrating fin-
gerprint readers, (a) ronchi (vertical bar) target for cali-
brating the geometric accuracy, (b) sine wave target for
measuring the resolution, and (c) multiple bar target for
estimating the spatial frequency response of a fingerprint
reader (images taken from [4]).

the targets captured using the reader meet the standard
specifications, (ii) modify the reader configuration, if
needed, to ensure it captures images of sufficient quality
to meet the specifications, and (iii) when satisfied with
the reader configuration, submit test images to the testing
agency for review1 [5]. Furthermore, the testing agency
reviews the test data to verify that the submitted images
meet the image quality specifications. If the test data
is found to meet the desired specifications, the testing
agency certifies the fingerprint reader as being compliant
with the specific standard.

The testing and certification of biometric devices for
use by Unique Identification Authority of India (UIDAI)
in the Aadhaar project in India is performed by the
Standardization Testing and Quality Certification (STQC)

1. Review of the submitted test data is conducted by the Technology
Evaluation Standards Test Unit, Biometric Center of Excellence (BCOE)
led by the Criminal Justice Information (CJI) Services Division [7].
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Fig. 2. Evaluating an optical fingerprint reader using the 3D targets designed and fabricated by the authors. (a) The
3D target is worn on a finger, (b) the finger is repeatedly placed on the fingerprint reader platen, and (c)-(f) multiple 2D
impressions (four shown here) of the 3D target are captured which are utilized for evaluation of the reader.

Directorate, Government of India [8]. UIDAI is one of
the largest consumers of biometric readers in the world,
with currently, there being 36,000 enrolment stations
deploying 11 different certified biometric readers in Aad-
haar [9]. Image acquisition requirements equivalent to
Appendix F are mandated for fingerprint readers used
for enrolment in Aadhaar [10]. For getting their readers
certified, fingerprint vendors submit a certification agree-
ment to the certification agency, the STQC Directorate.
The certification agency evaluates the evidence of con-
formity of the submitted agreement to the certification
procedure guidelines. Thereafter, the STQC directorate
tests the fingerprint reader in the lab to determine if
it meets the standard specifications. Provided that the
testing procedure results are satisfactory, the fingerprint
reader is certified by the agency for use in Aadhaar [11].

Standard calibration targets can be used for calibrat-
ing the imaging pathway of a fingerprint reader. For
example, the targets in [15] can be utilized for testing
the frustrated total internal reflection (FTIR) pathway
of an optical fingerprint reader. However, they cannot
be used to evaluate a fingerprint reader for variations
encountered operationally during the fingerprint capture
process, e.g., application of different finger pressure on
the reader platen, and placement of the finger in different
ways by the user. This is because these targets are not

specifically fabricated using materials similar in proper-
ties to the human finger skin. Hence, it is not possible to
mimic the typical fingerprint acquisition scenario using
these targets, which involves the placement of finger
with certain pressure on the fingerprint reader.

For operational evaluation of a fingerprint reader, one
possibility, therefore, is to conduct pilot studies in the
field using the fingerprint reader. This, however, is a
tedious process both in terms of time and resource
commitment, and is limited by the amount and nature of
data collected. Besides, such a procedure cannot be used
for repeatable operational evaluation of the fingerprint
reader because, in practice, the same set of subjects is
typically not available for repeated testing. The goal
of this research, therefore, is to fabricate standard 3D
targets which can be used for repeatable operational
evaluation of fingerprint readers. We fabricate 3D targets
with material similar in hardness and elasticity to the
human finger skin specifically such that they can be worn
on a finger and placed on the fingerprint reader platen
in a natural manner (see Fig. 2).

The utility of the fabricated 3D targets extends beyond
evaluation of fingerprint readers. 3D targets created by
projecting 2D synthetic fingerprint images with known
fingerprint features (e.g. type, minutiae and singular
point locations) onto the 3D finger surface can be used
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TABLE 1
Comparison of existing fingerprint system evaluation methods with the proposed 3D target creation method

Method Artifacts Fingerprint Features Evaluation Use Cases

SFinGe [12]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow and ridge density

features; uncontrolled minutiae placement
Fingerprint feature extractors and matchers

IBG DHS SBIR [13]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow, ridge density

features; partially controlled minutiae features
Fingerprint feature extractors and matchers

Zhao et al. [14]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow, ridge density

and minutiae features
Fingerprint feature extractors and matchers

Proposed
3D targets

(electronic and physical)

Known fingerprint ridge flow, ridge density

and minutiae features

End-to-end fingerprint systems, including

fingerprint readers, feature extractors and matchers

to evaluate fingerprint feature extraction and matching
algorithms. Such targets can, therefore, be used for end-
to-end evaluation of a fingerprint recognition system
from placing the finger on the reader and capturing the
2D impression to extracting features and matching the
captured image to the gallery templates. This is better
than the existing methods which only use 2D synthetic
fingerprint images for evaluation purposes (see Table 1).

A physical 3D target is created by projecting an elec-
tronic 2D calibration pattern onto a generic electronic 3D
model of the finger surface2. The electronic 3D finger sur-
face is first aligned such that the finger length is along the
y-axis, width along the x-axis and depth along the z-axis.
The electronic 3D finger surface is then preprocessed to
ensure sufficient fidelity for approximately determining
the correspondences between the electronic 2D calibra-
tion pattern and the electronic 3D finger surface. The
electronic 2D calibration pattern is then mapped onto
the front portion of the electronic 3D finger surface and
correspondences between each vertex on the frontal elec-
tronic 3D surface and the pixel locations in the electronic
2D calibration pattern are established. The electronic 2D
calibration pattern is engraved onto the frontal electronic
3D finger surface by displacing each vertex along the
surface normal according to the texture values at the
mapped pixel locations. Finally, the electronic 3D finger
surface is post-processed to create an electronic model of
a wearable 3D target ready for 3D printing.

The physical 3D targets are fabricated using a state-
of-the-art 3D printer (Stratasys Objet350 Connex3) with
material similar in hardness and elasticity to the human
finger skin. The targets are imaged using three different
(500/1000 ppi) commercial optical fingerprint readers.
Our experimental results show that the captured images
of the physical 3D targets can be successfully matched to
the electronic 2D synthetic fingerprint patterns used to
generate the 3D targets using a commercial fingerprint

2. The 3D finger surface could either be the shape of the finger sensed
using a 3D fingerprint scanner or a synthetically generated surface
describing the shape of the finger. In our case, the finger surface was
scanned using the Artec Eva 3D scanner [16].

3. The naming of companies and products does not imply endorse-
ment or recommendation of those companies or products by the
authors or the organizations they represent.

SDK [17]. This demonstrates that the salient features
present in the electronic 2D calibration pattern are es-
sentially preserved when mapping it to the physical 3D
surface of the fingerprint target. Experiments are also
conducted to demonstrate that the intra-class variability
between the different images of the 3D targets captured
using the three optical readers is minimal. We also
conduct experiments for operational evaluation of the
three aforementioned optical fingerprint readers using
the fabricated 3D targets.

2 SYNTHESIZING 3D TARGETS

A 3D target A is synthesized from a 2D calibration
pattern I with pre-specified features, and a generic 3D
finger surface S. Let the texture feature value in the
2D calibration pattern I at spatial coordinates (u, v) be
denoted by I(u, v). Also, assume that the 3D finger
surface S is a triangular mesh having a set of vertices
V and triangles T . Each vertex, v, in V has (x, y, z)
coordinates corresponding to its spatial location in S,
and a triangle in T connects a unique set of three vertices.
Synthesizing the 3D target A using I and S then consists
of the following steps (Fig. 3) (details of the processes
summarized below are given in Sections 2.1-2.6):

1) Preprocessing 3D finger surface: Align S such
that the finger length is along the y-axis in S.
Sample vertices from the set V based on the
curvature of S. This sampling process reduces the
density of S, therefore, subdivide S (as explained
in Section 2.1) to ensure sufficient fidelity during
projection of the 2D calibration pattern I . Displace
S outwards along the direction of the surface
normals computed at each vertex to create an outer
finger surface SO. Separate the front SOF and rear
portion SOR of SO (see Fig. 4). The front portion
SOF of SO will be used for projection. Retain the
original surface S.

2) Preprocessing 2D calibration pattern: If the pat-
tern I being projected is a 2D fingerprint image,
extract the skeleton IS of the image I . Increase
the ridge width of the skeleton IS using mor-
phological operations, and smooth the image us-
ing a Gaussian filter before projecting it onto the
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Fig. 3. Synthesizing a 3D target from a 2D calibration pattern and a 3D finger surface.

electronic frontal surface SOF . This preprocessing
step is necessary to ensure that ridges and valleys
present in I are engraved smoothly onto SOF .
Note that this preprocessing step is not needed if
any other 2D calibration pattern (e.g. sine grating)
is being projected.

3) Mapping 2D fingerprint to 3D surface: Project
the front portion SOF of 3D finger surface SO to
2D and correct for rotation and flip using corre-
sponding control points between 3D surface SOF

and the 2D projection of SOF , and translation with
respect to reference coordinates computed from I .
Make the front portion of the outer finger surface
SO dense depending on the resolution of I to
ensure sufficient fidelity of mapping I . Determine
the mapping between the (x, y, z) spatial locations
of the vertices on the front portion of the outer 3D
surface SO and the (u, v) image domain of I .

4) Engraving 2D calibration pattern on 3D surface:
To create ridges and valleys, displace the vertices
on the front portion of SO along the surface nor-
mals according to the texture values in I at the
mapped (u, v) locations.

5) Postprocessing 3D finger surface: Combine the
front and rear portions of the outer finger surface
SO . Make the original finger surface S as dense
as the outer finger surface SO and then stitch the
two surfaces together to obtain a watertight solid
target. This finishes the creation of the 3D target
A as an electronic (virtual) target.

6) 3D Printing: Specify the physical dimensions as
well as the printing material according to the
hardness and elasticity of the human finger skin
before printing the 3D target A using a 3D printer
(Stratasys Objet350 Connex).

A detailed description of each of these steps used in
the 3D target creation process for a given 2D calibration
pattern I and a 3D finger surface S is given below.

2.1 Preprocessing 3D finger surface

A sequence of preprocessing steps are executed on the
3D finger surface S before projecting the 2D calibration
pattern I (see Fig. 4).

Alignment

The 3D finger surface S, arbitrarily oriented in the
(x, y, z) coordinate frame, is first aligned such that the
finger length is along the y-axis, width along the x-axis
and height on the z-axis. For doing this, each vertex in
the set V is translated such that the center of the surface
S coincides with the origin of the (x, y, z) coordinate
axes. Principal component analysis (PCA) [18] is used to
determine the principle directions of the surface spread.
The computed principal components are then used to
align the surface S. Note that this step only alters the
absolute (x, y, z) coordinate values of the vertices in V
and retains the geometry of the surface S.

Remeshing

The 3D finger surface S is remeshed by sampling vertices
from V using the method described in [19]. The first
vertex v1 is sampled randomly from V , and the geodesic
distance map U(v1) from v1 to every other vertex in V is
computed by solving the eikonal equation using the fast
marching method [20]:

||∆U(v1)|| = P (v1). (1)

Here, ∆ is the gradient operator, and P = 1/F , where
F is the speed of front propagation used in the fast
marching method.

Vertices are then sampled iteratively by adding the
farthest vertex among the remaining vertices in iteration
i from the vertices in the sampled vertex set Vi−1 at
iteration i − 1. Note that the geodesic distance map Ui,
at iteration i, is updated using the following equation:

Ui = min(Ui−1, U(vi)), (2)
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Fig. 4. Preprocessing 3D finger surface. (a) Original finger surface, (b) aligning the finger surface such that the finger
length is along the y axis, (c) aligned finger surface (triangular mesh), (d) remeshing the finger surface (triangular mesh),
(e) subdividing the surface (triangular mesh), (f) subdivided finger surface (profile view), (g) creating outer finger surface
from (f), and (h) separating front and back portions of the outer finger surface.

where U(vi) is the geodesic distance map of the vertex
sampled at iteration i, and Ui−1 is the geodesic distance
map computed at iteration i− 1.

During this iterative procedure of sampling vertices,
the speed of front propagation F is set to 1/(1 + C),
where C is the aggregate curvature at each vertex in
V . This results in more vertices being sampled in the
higher curvature regions of the 3D surface and vice versa.
The aggregate curvature C is calculated using the two
principal curvatures Cmin and Cmax as follows,

C = |Cmin|+ |Cmax|. (3)

Here, | .| is the absolute value operator, Cmin and Cmax

are computed from the 3D curvature tensor T calculated
using the method in [21]. In particular, Cmin and Cmax

correspond to the two highest eigenvalues of the curva-
ture tensor T .

Finally, Delaunay triangulation is used for reconstruct-

ing the remeshed surface from the set of sampled vertices
[22].

Subdivision

Although remeshing makes the surface S uniformly
dense depending on its curvature, it reduces the surface
density. To ensure sufficiently fidelity for projecting the
2D calibration pattern I onto the surface S, Loop’s
surface sub-division method [23] is used. Let the set
of vertices and triangles obtained after remeshing be
denoted by VR and TR, respectively. This method creates
new vertices at each edge of every triangle in TR using
a weighted combination of neighborhood vertices, and
creates new triangles by connecting the sampled vertices
at edges adjacent to each other. The original vertices
are then translated to maintain surface smoothness and
continuity.
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(a) (b) (c) (d)

Fig. 5. Preprocessing a 2D fingerprint pattern before projection onto 3D finger surface. (a) Original fingerprint image,
(b) extracted skeleton of the fingerprint in (a), (c) skeleton in (b) after applying the morphological operation of dilation,
and (d) dilated skeleton in (c) smoothed using a gaussian filter.

Creating outer surface

Let VS and TS be the set of vertices and triangles
obtained after surface subdivision. Each vertex v in the
set VS is then displaced by a fixed factor d along the
normal n computed at the vertex v:





v′x
v′y
v′z



 =





vx
vy
vz



+





nx

ny

nz



× d (4)

This is done to create an outer finger surface SO where
the 2D calibration pattern will be projected. The param-
eter d determines the thickness of the 3D target. Ideally,
it is desirable to set d to be as small as possible. How-
ever, due to the limitation of the 3D printer resolution
used for fabricating the targets, choosing a very small d
results in the printed model being fragile. Therefore, d is
empirically set to 1.5 mm in our experiments.

Separating front and rear portions

Front and rear portions of the outer finger surface SO

are then separated by computing the surface normals at
each triangle in TS , and then retaining the triangles and
corresponding vertices where surface normals have the
z-component greater than 0 in the front surface, and the
rest in the rear surface. Note that the alignment of the
finger surface done in step 1) facilitates this separation
process. Let us denote the front portion of the outer
surface SO as SOF having the set of vertices VOF and
triangles TOF . Similarly, let the rear portion be denoted
as SOR with the set of vertices VOR and triangles TOR.
Also, note that we retain the original finger surface S
having the set of vertices VS and triangles TS .

2.2 Preprocessing 2D calibration pattern

If the pattern I being projected is a fingerprint image,
the following preprocessing steps are executed on I :

1) The skeleton of I is extracted using a commercial
fingerprint SDK [17]. The skeleton is a 1-pixel wide
ridge pattern. Let the skeleton be denoted by IS .

2) The ridge width on the skeleton IS is increased to 3
pixels by performing the morphological operation
of dilation using a 2 pixel radius disk structured
element.

3) IS is filtered using a 4 × 4 Gaussian filter with
σ = 2.5. This is necessary to ensure that ridges
and valleys present in the 2D fingerprint pattern I
are engraved smoothly onto the 3D finger surface.

This preprocessing is not needed if any other calibra-
tion pattern (e.g. sine grating of certain orientation and
frequency) is being projected.

2.3 Mapping 2D calibration pattern to 3D surface

The front portion SOF of the outer finger surface SO is
projected from 3D ((x, y, z) coordinate space) to 2D ((u, v)
coordinate space) by computing the ISOMAP embedding
described in [24] (see Fig. 6). Recall that the vertices
and triangles in SOF are VOF and TOF , respectively. The
ISOMAP embedding is computed by:

1) Constructing adjacency graph: An adjacency
graph G is created, by connecting all vertex pairs
{vi, vj} in VOF that share an edge of any triangle
in TOF . The edge weights in G are set to the
euclidean distance D(vi, vj) between the vertex
locations. Note that for non-adjacent vertex pairs
that do not share any edge, D is set to ∞.

2) Computing shortest paths: Dijkstra’s shortest path
algorithm [25] is used to compute the shortest path
between all pairs of nodes in G. Geodesic distances
between all pairs of vertices in VOF are estimated
by the shortest path distances of the nodes in G.

3) Constructing 2D embedding: Let the matrix DG

contain the shortest path distances computed in
the previous step. Given DG, classical multidi-
mensional scaling (MDS) [26] is used to create
the 2D embedding of vertices. MDS maintains the
intrinsic geometry of the surface SOF during the
3D to 2D projection.

ISOMAP embedding is used because it minimizes the
distortion induced when projecting the front portion SOF
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Fig. 6. Mapping and engraving a 2D calibration pattern onto the front portion of the outer 3D finger surface. (a) 3D frontal
outer finger surface, (b) frontal surface in (a) is projected into 2D, (c) the 2D projected frontal surface is subdivided, (d)
correspondences are determined between the 2D projected frontal finger surface and 2D calibration pattern, (e) 3D
frontal outer finger surface in (a) is displaced along the surface normals to engrave the pattern.

of the 3D surface to 2D by preserving the geodesic dis-
tances between neighborhoood vertices on SOF during
the 3D to 2D projection4.

Let the 2D projected frontal surface in the (u, v) coordi-
nate space be denoted by SOFP with the set of vertices
VOFP and the set of triangles TOFP . Rotation and flip
during the 3D to 2D projection of SOF are corrected using
corresponding control points between SOF and SOFP .
Reference coordinates [ru, rv] are extracted from the 2D
calibration pattern I for translation correction during the
3D to 2D projection of SOF :
• If the pattern I being projected is a synthetic fin-

gerprint image, then reference coordinates [ru, rv]
are extracted from the fingerprint image using the
method described in [27].

• If any other calibration pattern is being projected
(e.g. sine gratings, horizontal/vertical bar patterns
etc.) , then the location of the center pixel in the
2D calibration pattern I is used as the reference
point i.e. [ru, rv] = [w/2, h/2], where w and h are
the width and height of the 2D pattern I .

The next step is to determine the one-to-one mapping
between the pixel locations (u, v) on I and the vertices
VOF on SOFP . For accurately determining the one-to-one
correspondence, the density of SOF as well as its 2D pro-
jection SOFP is further increased using midpoint surface
subdivision. Vertices are sampled on the midpoints of the
edges in TOF , and the sampled vertices on the adjacent
edges are joined to create new triangles. The resolution of
I being projected is factored into the computations while
determining the correspondence between pixel locations
on I and vertices VOF on SOFP . For example, if the

4. Discrete conformal mapping was used for projecting a 2D image
to 3D finger surface in the earlier version of this paper [1]. It was,
however, observed that discrete conformal mapping did not preserve
the distances on the calibration pattern near the periphery of the 3D
surface since it is an angle preserving mapping.

calibration pattern being projected has a resolution of
500 ppi, the scale of projection is 19.685 pixels/mm.
Therefore, the coordinates of I are scaled by this factor
before determining the correspondence.

Ideally, the density of SOF needs to be increased
according to the dimensions of the I being projected. For
example, if a calibration pattern of width w and height h
is being projected, then exactly w×h vertices are required
in the projection region for building the exact correspon-
dence between the pixel locations on I and the vertices
on SOF . However, this is not recommended because it
would result in a very large number of vertices and
triangles on the surface and considerably increase the
computational complexity of further processing on the
surface. Therefore, the density of SOF is only increased
to a certain degree to retain the essential topology of
the pattern being projected5. Let the set of vertices and
triangles on the 2D projected frontal surface obtained
after this step be denoted by VOFPS and TOFPS . The
corresponding vertices and triangles on the outer 3D
frontal surface be VOFS and TOFS , respectively. The one-
to-one correspondence between the pixel locations on the
calibration pattern I and the set of vertices VOFP is then
established.

2.4 Engraving 2D calibration pattern on 3D surface

In the penultimate step, surface normals are computed
at each vertex in the set VOFPS . The vertices are then
displaced along their surface normals to engrave the
fingerprint ridges and valleys on SOF (see Fig. 6 (e)).
Let the normal at a vertex v in the set VOFPS be denoted
by (nx, ny, nz), where nx, ny and nz represent the normal
components along the x, y and z directions, respectively.

5. For the finger surface used in our experiments, the density is
increased so that there are approximately 250,000 vertices and 500,000
triangles on the front portion of the 3D surface.
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Fig. 7. Postprocessing 3D finger surface. (a) Separated front and rear portions of outer 3D surface, (b) front and rear
portions shown in (a) are combined to create the outer 3D finger surface, (c) outer 3D finger surface (bottom view), (d)
the retained original 3D finger surface (bottom view), (e) 3D electronic target created by stitching the outer and original
surface in (c) and (d).

TABLE 2
Comparison of mechanical properties of the two different

printing materials with the human finger skin.

Property
Human Skin

[29] [30]

TangoBlackPlus

FLX980 [31]

FLX 9840

-DM [32]

Shore A hardness 20-41 26-28 35-40

Tensile Strength (MPa) 5-30 0.8-1.5 1.3-1.8

Elongation at Break (%) 35-115 170-220 110-130

The displaced coordinates of the vertex (v′x, v
′

y, v
′

z) along
the normal are then computed using the principle of
vertex displacement mapping [28] as follows:





v′x
v′y
v′z



 =





vx
vy
vz



+





nx

ny

nz



× (1− I ′(u, v))×Rd (5)

Here, I ′(u, v) is the scale normalized texture value in
the range [0, 1] of the mapped (u, v) texture from the
2D calibration pattern on the vertex v, and Rd is the
maximum vertical ridge displacement which is set to 0.22
mm in our experiments6.

2.5 Postprocessing 3D finger surface

The engraved SOF and SOR are then combined together
to recreate the outer finger surface S′

O . The outer finger
surface S′

O is then stitched together with the retained
original finger surface SO to create a continuous water-
tight 3D shell SW ready for 3D printing. For doing this,
the boundary of the two meshes S′

O and the SO is first
computed. Triangles are then synthetically generated to
connect the two boundaries to create a continuous shell

6. The average ridge height on an adult human fingerprint is about
0.06 mm; however we set Rd to 0.22 mm empirically due to limitation
of the 3D printer resolution used for fabricating the targets.

(see Fig. 7). This continuous watertight shell is basically
the 3D target A in electronic form.

2.6 3D printing

We use a state-of-the-art 3D printer (Stratasys Objet350
Connex) that has X and Y resolution of 600 dpi and
Z resolution of 1600 dpi for fabricating the 3D targets
with rubber-like materials. This printer is based on Poly-
Jet printing technology which slices a 3D model into
horizontal layers, and then prints the model layer by
layer. The 3D targets are printed in high speed mode
wherein they are sliced into 30 micrometer layers during
the printing process. Note that the printer does not
support printing the target with rubber-like materials in
the high resolution mode which allows for even finer
16 micrometer layer slicing. However, we found that
30 micrometer slicing suffices with ridge displacement
Rd of 0.22 mm. Note that in the high speed mode, the
time taken to fabricate one 3D target using the printer is
around 1.5 hrs.

Two different rubber-like materials, TangoBlackPlus
FLX980 [31], and FLX 9840-DM [32] (a digital material
synthesized in the printer using a rubber-like material
and a rigid material) are used for printing the 3D targets.
These materials are specifically selected because they are
similar in hardness and elasticity to the human finger
skin (see Table 2).

While printing the 3D targets, the printer uses a sup-
port material to prevent the models being fabricated
from breaking. As a result, once the targets are printed
they need to be cleaned to remove the support mate-
rial. Although manual cleaning can remove most of the
support material, often residue of the support material
is left even after careful manual cleaning. Therefore, a
high pressure water jet is used to clean the 3D printed
models.
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TABLE 3
Similarity scores between the captured snapshots of the

3D electronic targets in Meshlab and the fingerprint
images used in their synthesis. Five fingerprints from the
NIST SD4 were used. Verifinger 6.3 SDK was used for

comparing fingerprints. The similarity threshold @FAR =
0.01% is 33.

Fingerprint S0005 S0010 S0017 S0083 S0096

scores 171 378 212 116 106

(a) (b)

Fig. 8. Feature comparison (minutiae, core and delta
shown here) between (a) rolled fingerprint image (S0083)
from the NIST SD4, and (b) snapshot of the electronic
3D target synthesized using the fingerprint in (a) using
Verifinger 6.3 SDK. Similarity score of 116 is obtained
between (a) and (b).

3 FIDELITY OF 3D TARGET SYNTHESIS

Given that we synthesize 3D targets for evaluating fin-
gerprint readers, it is important to assess if the synthe-
sized targets are adequate in terms of their utility for this
purpose. To determine the fidelity of 3D target synthesis,
we evaluate the targets to determine if the

• features present in the 2D pattern, I , are preserved
during projection to 3D to create the electronic
(virtual) 3D target,

• features engraved on the electronic 3D finger sur-
face are preserved after fabrication of the physical
3D target,

• features present in the 2D pattern, I , are preserved
on the physical 3D target, and

• intra-class variability between the captured impres-
sions of the 3D target using fingerprint readers is
minimal.

Five different rolled fingerprint impressions from the
NIST Special Database 4 (NIST SD4) [33] are projected
onto a 3D finger surface to synthesize 3D targets. The
targets are fabricated with each of the two fabrication
materials using a state-of-the-art 3D printer (see Section
2.6). Three optical fingerprint readers (500/1000 ppi)

TABLE 4
Similarity scores between the captured snapshots of the
3D electronic targets and the captured impressions of the

physical 3D targets fabricated with TangoBlackPlus
FLX980 and FLX 9840-DM using the three optical

readers. Five fingerprints from the NIST SD4 were used.
Verifinger 6.3 SDK was used for comparing fingerprints.

The similarity threshold @FAR = 0.01% is 33.

TangoBlackPlus FLX980

Fingerprint OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

S0005 191 215 203

S0010 153 173 140

S0017 114 164 155

S0083 315 497 498

S0096 110 162 183

FLX 9840-DM
Fingerprint OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

S0005 194 164 192

S0010 158 159 168

S0017 129 165 162

S0083 353 431 554

S0096 107 152 164

(a) (b)

Fig. 9. Feature comparison (minutiae, core and delta
shown here) between (a) snapshot of the electronic 3D
target synthesized using the fingerprint S0083 in NIST
SD4, and (b) the captured impression by optical reader
2 (1000 ppi) of the physical 3D target fabricated with Tan-
goBlackPlus FLX-980 using Verifinger 6.3 SDK. Similarity
score of 497 is obtained between (a) and (b).

are used for imaging the 3D targets7. A commercial
fingerprint SDK [17] is used for conducting all matching
experiments.

7. Capacitive fingerprint readers could not be used because state-
of-the-art 3D printers currently do not allow printing objects using
conductive materials. However, capacitive readers could be used pro-
vided that the targets are fabricated using conductive materials. We
are currently exploring the possibility of using alternative fabrication
methods.
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TABLE 5
Similarity scores between the captured impressions of
the 3D targets fabricated with TangoBlackPlus FLX980
and FLX 9840-DM using the three optical readers and
the fingerprint impressions used in their synthesis. Five
fingerprints from NIST SD4 were used. Verifinger 6.3
SDK was used for comparing the impressions. The

similarity threshold @FAR = 0.01% is 33.

TangoBlackPlus FLX980

Fingerprint OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

S0005 105 68 71

S0010 90 77 78

S0017 89 83 74

S0083 96 128 123

S0096 101 98 74

FLX 9840-DM
Fingerprint OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

S0005 80 66 65

S0010 80 104 80

S0017 108 96 89

S0083 110 120 120

S0096 75 81 71

(a) (b)

Fig. 10. Feature comparison (minutiae, core and delta
shown here) between (a) rolled fingerprint image (S0083)
from the NIST SD4, and (b) the captured image using
optical reader 2 (1000 ppi) of the 3D target synthesized
using the fingerprint in (a) and fabricated with TangoBlack-
Plus FLX980 using Verifinger 6.3 SDK. Similarity score of
128 is obtained between (a) and (b).

3.1 Fidelity of 2D pattern features during projection
to 3D surface

Each electronic 3D target is previewed in the 3D mesh
processing software Meshlab [34], and its frontal snap-
shot is taken. The captured snapshot of the electronic 3D
target is rescaled manually to the same scale as the orig-
inal 2D fingerprint images used during the synthesis of
the target. The rescaled snapshot images of the electronic
3D target is matched to the original 2D fingerprint image
using the commercial fingerprint SDK.

Fig. 8 shows a sample fingerprint image from the NIST
SD4 and the snapshot of an electronic 3D target. The

TABLE 6
Range of similarity scores for pairwise comparisons

between five impressions of the 3D targets fabricated
with TangoBlackPlus FLX980 and FLX 9840-DM

captured by the three optical readers. Five fingerprints
from NIST SD4 were used in their synthesis. Verifinger
6.3 SDK was used for comparing the impressions. The

similarity threshold @FAR = 0.01% is 33.

TangoBlackPlus FLX980

Fingerprint OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

S0005 581-1370 902-1643 846-1394

S0010 696-1656 534-1463 819-1194

S0017 900-1171 945-1478 515-1284

S0083 831-1935 1466-1836 1364-1746

S0096 707-1170 812-1392 984-1287

FLX 9840-DM
Fingerprint OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

S0005 417-1514 990-1439 890-1494

S0010 659-1196 906-1292 1043-1355

S0017 1016-1937 1088-1482 1326-1571

S0083 810-1520 1193-1547 1356-1757

S0096 459-1062 1352-1496 1127-1511

features extracted and matched using the commercial
fingerprint SDK are marked on the two images. Table 3
shows the obtained similarity scores for the experiment.
All similarity scores are significantly above the verifica-
tion score threshold of 33 (@FAR = 0.01%)for NIST SD4.
It can, thus, be inferred that the features present in the
2D fingerprint image are preserved during the synthesis
of the electronic 3D target.

3.2 Fidelity of the engraved features on the 3D sur-
face after 3D printing

The snapshot of an electronic 3D target is matched to
captured impression of the physical 3D target using the
three optical readers for each of the ten 3D targets.
Fig. 9 shows feature comparison obtained using the
commercial fingerprint SDK between the snapshot of
one electronic target and its captured impression using
one optical reader. Table 4 shows the obtained scores
for this experiment. Notice that the similarity scores are
significantly above the verification threshold score of 33
(@FAR = 0.01%) for all targets. This demonstrates the
fidelity of features engraved on the 3D surface after 3D
printing.

3.3 End-to-end fidelity of 2D pattern features after
3D printing

Table 5 shows the similarity scores obtained on matching
the captured impressions of the 3D target to the original
fingerprint for each of the five 3D targets printed with the
two materials and imaged using the three readers. Fig.
10 shows feature comparison between the fingerprint
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(a) (b)

Fig. 11. Feature comparison (minutiae, core and delta
shown here) between two captured impressions (a) and
(b) using optical reader 2 (1000 ppi) of a 3D target
fabricated with TangoBlackPlus FLX980 using Verifinger
6.3 SDK. The 3D target was synthesized using a rolled
fingerprint image (S0083) in NIST SD4. Similarity score
of 1592 is obtained between (a) and (b).

image and captured impressions of the synthesized 3D
target using the commercial fingerprint SDK. The key
observations and inferences based on this experiment
are:

• The captured images of the 3D targets using the
three optical readers can be successfully matched
to the original fingerprint images used for syn-
thesizing the targets with high confidence. This
is because all similarity scores (see Table 5) are
significantly above the verification threshold score
of 33 (@FAR = 0.01%) computed for the NIST SD4.

• Because the captured images of the 3D targets can
be successfully matched to the original fingerprint
images (@FAR = 0.01%), it can be inferred that
the salient features present in the 2D pattern are
preserved during the fabrication of the physical 3D
target.

3.4 Intra-class variability between 3D target impres-
sions

Five different impressions of each of the ten 3D targets
are captured using each of the three optical readers. Pair-
wise comparisons between the five impressions obtained
from a reader are performed using the commercial fin-
gerprint SDK. Fig. 11 shows the extracted and matched
features by the fingerprint SDK between two impressions
of a 3D target captured using the three readers. Table
6 shows the range of similarity scores obtained for
this experiment. It is observed that the similarity scores
obtained are significantly higher than the verification
threshold, thereby, indicating that the intra-class vari-
ability between multiple different captured impressions
of the 3D target is minimal. In other words, different
impressions of the 3D target are fairly consistent.

TABLE 7
Mean (µ) and std. deviation (σ) of computed

center-to-center spacing in the acquired images of the
three test targets using the three optical readers. (original

grating spacing = 10 pixels)

Test pattern OR 1 (500 ppi) OR 2 (1000 ppi) OR 3 (1000 ppi)

Horizontal µ = 9.04, σ = 0.06 µ = 9.18, σ = 0.07 µ = 9.05, σ = 0.05

Vertical µ = 9.51, σ = 0.23 µ = 9.57, σ = 0.07 µ = 9.46, σ = 0.09

Circular µ = 9.80, σ = 0.31 µ = 9.62, σ = 0.07 µ = 9.59, σ = 0.08

4 EVALUATING FINGERPRINT READERS USING

3D TARGETS

For evaluating the fingerprint readers, three different 3D
targets are created by projecting synthetically generated
2D test patterns: (i) horizontal, (ii) vertical, and (iii)
circular gratings with a fixed center-to-center spacing
of 10 pixels. Ten different impressions of each of the
three targets are captured using the three optical readers.
Center-to-center spacing is then measured in each of the
captured impressions using the method in [35]. Finger-
print readers are subsequently evaluated based on how
well the grating spacings on the three targets is recovered
by the readers. Figs. 12, 13 and 14 show the three test
patterns, the electronic targets generated using the three
patterns, and some sample images of the three targets
captured using the three optical fingerprint readers.

The average and standard deviation of the observed
center-to-center spacings in the captured impressions of
the three targets is reported in Table 7. Note that to
compensate for the distortion induced during 2D to 3D
projection of the 2D pattern, the ratio of the Euclidean
distance on the pattern to Geodesic distance (0.94) on the
3D finger surface is factored into spacing computations.
Following are some observations based on this experi-
ment:

• The observed spacing, on average, is greater than 9
pixels in the captured images of all three targets us-
ing the three readers. The three readers, therefore,
image the three targets with accuracies greater than
90%.

• The spacing in images of the horizontal target is,
on average, less than those of the vertical target for
all three optical readers. In other words, the read-
ers better capture vertical spacings than horizontal
spacings.

• The 500 ppi optical reader (OR 1) has a greater
variation in the observed spacings in the captured
images compared to the 1000 ppi readers (OR 2 and
OR 3). This is because OR 1 images a smaller por-
tion of the targets, and depending on how the user
places the finger on the platen, the captured portion
of the target differs between different impressions.
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(a) (b) (c) (d) (e)

Fig. 12. Evaluating fingerprint readers using a 3D target synthesized from a horizontal sine grating. (a) Horizontal sine
grating (10 pixels); (b) electronic 3D target synthesized using (a); (c),(d) and (e) are sample impressions of the fabricated
target captured using optical readers 1, 2 and 3, respectively.

(a) (b) (c) (d) (e)

Fig. 13. Evaluating fingerprint readers using a 3D target synthesized from a vertical sine grating. (a) Vertical sine grating
(10 pixels); (b) electronic 3D target synthesized using (a); (c),(d) and (e) are sample impressions of the fabricated target
captured using optical readers 1, 2 and 3, respectively.

5 CONCLUSIONS AND ONGOING WORK

Calibration of fingerprint readers is typically done using
2D/3D targets designed for calibrating imaging devices.
These targets are suitable for calibrating the imaging
pathway of fingerprint readers. However, they cannot be
used for repeatable operational evaluation of fingerprint
readers. In this research, we have designed and fabri-
cated wearable 3D targets which can be worn on a finger,
placed on the reader platen, and imaged analogous to
operational setting for evaluating fingerprint readers.
The 3D targets are created by projecting 2D calibration
patterns of known characteristics (e.g. sine gratings of
known spacings) onto a generic 3D finger surface, and
are fabricated using a state-of-the-art 3D printer with

materials similar in hardness and elasticity to the human
finger skin. Our experimental results show that (i) our
3D targets can be imaged by three different commercial
optical fingerprint readers, (ii) features present in the
2D calibration patterns are generally preserved during
the projection of the 2D pattern to synthesize electronic
3D targets, (iii) features engraved on the electronic 3D
targets are generally preserved after fabricating physical
3D targets, and (iv) the intra-class variability between
multiple images of the same 3D target captured using
three different optical fingerprint readers is small. Exper-
iments are also conducted to evaluate the three optical
readers using the fabricated 3D targets.

We are currently investigating alternative methods to
fabricate the 3D targets with higher precision. We are
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(a) (b) (c) (d) (e)

Fig. 14. Evaluating fingerprint readers using a 3D target synthesized from a circular sine grating. (a) Circular sine grating
(10 pixels); (b) electronic 3D target synthesized using (a); (c),(d) and (e) are sample impressions of the fabricated target
captured using optical readers 1, 2 and 3, respectively.

also investigating the possibility of using materials with
similar optical properties and conductivity to the human
finger skin to fabricate 3D targets for evaluating both
optical and capacitive fingerprint readers. In future, we
plan to simulate the effects of dry and worn fingers using
3D targets with different depths of engravings to further
study the imaging capabilities of different readers.
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