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Abstract—One of the critical factors prior to deployment of
any large scale biometric system is to have a realistic estimate of
its matching performance. In practice, evaluations are conducted
on the operational data to set an appropriate threshold on
match scores before the actual deployment. These performance
estimates, though, are restricted by the amount of available test
data. To overcome this limitation, use of a large number of 2D
synthetic fingerprints for evaluating fingerprint systems had been
proposed. However, the utility of 2D synthetic fingerprints is
limited in the context of testing end-to-end fingerprint systems
which involve the entire matching process, from image acquisi-
tion to feature extraction and matching. For a comprehensive
evaluation of fingerprint systems, we propose creating 3D fin-
gerprint phantoms (phantoms or imaging phantoms are specially
designed objects with known properties scanned or imaged to
evaluate, analyze, and tune the performance of various imaging
devices) with known characteristics (e.g., type, singularpoints
and minutiae) by (i) projecting 2D synthetic fingerprints with
known characteristics onto a generic 3D finger surface and (ii)
printing the 3D fingerprint phantoms using a commodity 3D
printer. Preliminary experimental results show that the captured
images of the 3D fingerprint phantom can be successfully matched
to the 2D synthetic fingerprint images (from which the phantom
was generated) using a commercial fingerprint matcher. This
demonstrates that our method preserves the ridges and valleys
during the 3D fingerprint phantom creation process ensuringthat
the synthesized 3D phantoms can be utilized for comprehensive
evaluations of fingerprint systems.

I. I NTRODUCTION

Faulds, Galton and Henry were the pioneers in formalizing
the scientific basis of using fingerprints for person identifica-
tion in the late 19th century [1]. Until about 20 years ago,
fingerprints were primarily used by law enforcement agencies
to identify criminals. However, of late, fingerprints are be-
ing extensively used in civilian and commercial applications.
Examples of some of the large scale operational fingerprint
recognition systems include (i) “Aadhar” to assign a unique
identification number to each resident of India [2], (ii) the
system to prevent criminals and immigration violators from
crossing the United States border by the Office of Biometric
Identity Management Identification Services (formerly theUS-
VISIT program) [3], (iii) the finger scan system deployed at
Walt Disney World Theme Parks to help prevent the use of
stolen or fraudulent tickets for entering their premises [4],
and (iv) the TouchID system in the Apple iPhone 5s for
authenticating mobile phone users [5].

Before the deployment of any large scale biometric system,
one of the critical factors is to have a reasonable estimate of
the matching performance of the system in the operational set-
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Fig. 1. Examples of imaging phantoms used in medical imaging: (a) Phannie,
a phantom to calibrate MRI machines developed at NIST [7], and (b) a
phantom hand used for evaluating X-ray machines [8].

tings. For this purpose, typically, several pilot studies are first
conducted in the field to ascertain the operational thresholds to
achieve the desired False Accept Rate (FAR). This is a tedious
process both in terms of time and resources. Besides, the
resulting performance estimate is limited by the amount and
nature of data which is available. One of the possible solutions
to alleviate this shortcoming is to synthetically generatevery
large amounts of realistic biometric data which can then be
used for system performance evaluation. In case of fingerprint
systems, this would entail generating, say millions of synthetic
fingerprints for evaluating fingerprint recognition systems [6].

State of the art 2D synthetic fingerprint generators [9],
[10] output 2D synthetic fingerprints using mathematical or
statistical models of fingerprint features (e.g. fingerprint type,
orientation field and minutiae). The 2D synthetic fingerprint
generator proposed in [9] generates ridge flow map using a
mathematical model and ridge density map based on heuristics
learned from several fingerprint images. Directional filters
tuned to local ridge orientation and frequency values are then
iteratively applied starting from a few seed locations to gen-
erate fingerprint ridge patterns. Note, however, that minutiae
placement cannot be controlled during the 2D synthetic finger-
print generation process. On the other hand, the 2D synthetic
fingerprint generation method in [10] outputs 2D synthetic
fingerprints using statistical models of fingerprint features
(fingerprint type, orientation field and minutiae). The features
are first sampled from their respective statistical distributions,
followed by a fingerprint reconstruction method (describedin
[11]) to generate visually realistic synthetic fingerprints.

While these methods can be used to generate synthetic
fingerprints to evaluate fingerprint feature extraction and
matching algorithms, their usage is limited in the context of
evaluating an end-to-end fingerprint biometric system, from
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TABLE I. COMPARISON OF STATE OF THE ART2D SYNTHETIC FINGERPRINT GENERATORS WITH THE PROPOSED3D
FINGERPRINT PHANTOM CREATION METHOD

Method Artifacts Fingerprint Features Evaluation Use Cases

SFinGe [9]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow and ridge density

features; uncontrolled minutiae placement
Fingerprint feature extractors and matchers

Zhao et al. [10]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow, ridge density

and minutiae features
Fingerprint feature extractors and matchers

Proposed
3D fingerprint phantoms

(electronic and physical)

Known fingerprint ridge flow, ridge density

and minutiae features

End-to-end fingerprint systems, including

fingerprint sensors, feature extractors and matchers

sensing a finger and acquiring its impression to extracting the
template and establishing or verifying an identity (Table I). For
example, the 2D synthetic fingerprint generators are inadequate
for testing touchless fingerprint sensing technologies [12], [13]
which have been gaining prominence as alternatives to the
traditional touch based fingerprint capture systems. This is
primarily because these approaches, e.g., [9] and [10], only
generate synthetic fingerprints as 2D electronic artifactsor
images.

In this research, we propose to generate synthetic finger-
prints as 3D artifacts (both as 3D electronic artifacts and 3D
physical artifacts) which could be used for an exhaustive eval-
uation of fingerprint systems. These 3D artifacts can be made
to have prespecified physical dimensions of the human fingers
and properties of the finger material (e.g. hardness, electrical
conductivity) as well as fingerprint type (e.g., arch, loop and
whorl), singular points and minutiae positions. In this way, the
3D fingerprint phantoms differ from “silicone” and “gummy”
fingers [14] [15] aimed specifically at vulnerability analysis of
fingerprint recognition systems where fingerprint featuresare
not known apriori. Our objective in generating 3D fingerprint
artifacts is quite similar, in essence, toimaging phantoms
(see Fig. 1) which are specially designed objects with known
properties used for calibrating and testing optical measurement
profiles of sensing instrumentation in the biomedical domain
[16], [17]. We coin the term3D fingerprint phantomsfor the
3D synthetic artifacts created for the purpose of evaluating
end-to-end fingerprint recognition systems.

The 3D fingerprint phantoms are created using a state of
the art 2D synthetic fingerprint generation method [10] and
a generic 3D model of the finger surface1. The 3D finger
surface is first aligned such that the finger length is along
the y-axis, width along the x-axis and depth along the z-axis.
This is followed by mapping the 2D fingerprint image onto
the 3D finger surface for establishing correspondences between
each vertex on the 3D surface and the 2D fingerprint image
texture. Finally, the fingerprint ridges and valleys are engraved
onto the 3D finger surface by displacing each vertex along the
surface normal according to the mapped texture values. The
3D fingerprint phantoms are printed using a commodity 3D
printer and then imaged using two different state of the art
smartphone cameras. Preliminary experimental results show
that the captured images of the 3D fingerprint phantoms can
be successfully matched to the 2D synthetic fingerprint images
used to generate the fingerprint phantoms using a state of the
art commercial fingerprint matcher. This demonstrates thatthe

1The 3D finger surface could be either the shape of the finger sensed using
a 3D fingerprint scanner or a synthetically generated surface describing the
shape of the finger. In our case, the finger surface was obtained using a 3D
fingerprint scanner.

ridges and valleys in the 2D synthetic fingerprint image are
preserved when mapping it to the 3D surface of the fingerprint
phantom. Thus, the 3D fingerprint phantoms created in this
way can be utilized for comprehensive evaluation of fingerprint
systems.

II. SYNTHESIZING 3D FINGERPRINT PHANTOM

A 3D fingerprint phantomP is synthesized from a 2D
synthetic fingerprint imageI with known fingerprint features
generated using a state of the art 2D synthetic fingerprint
generator, and a generic 3D finger surfaceS. Let the texture
values in the 2D fingerprint imageI at spatial coordinates
(u, v) be denoted byI(u, v). Also, assume that the 3D finger
surfaceS is a triangular mesh having a set of verticesV
and trianglesT . Each vertex inV has (x, y, z) coordinates
corresponding to its spatial location; a triangle inT connects
a unique set of three vertices. Synthesizing a 3D fingerprint
phantomP usingI andS then consists of the following steps:

1) Surface Preprocessing: Preprocess the 3D finger sur-
face S to remove outlier vertices and triangles and
make the surface sufficiently dense for engraving
ridges and valleys.

2) Surface Alignment: Align the 3D finger surfaceS
such that the finger length is along the y-axis.

3) Surface Parametrization: Determine the mapping be-
tween the(x, y, z) spatial locations of the vertices
on the 3D surfaceS and the(u, v) image domain
of the 2D synthetic fingerprint imageI to obtain the
parameterized 3D finger surfaceSP .

4) Vertex Displacement: Displace the vertices inS along
the surface normals according to the texture values
in the 2D synthetic fingerprintI at the mapped
(u, v) locations to engrave ridges and valleys on the
parameterized finger surfaceSP .

5) Surface Postprocessing and 3D Phantom Printing:
Synthetically create a cuboidal support beneath the
3D surfaceSP and prespecify the physical dimen-
sions as well as the printing material according to
the physical properties of the finger such as hardness
and electrical conductivity before printing the 3D
fingerprint phantomP using a commodity 3D printer.

A detailed description of each of these steps used in the 3D
fingerprint phantom creation process for a given 2D synthetic
fingerprint imageI and a 3D finger surfaceS is given below.

A. Surface Preprocessing

The generic finger surfaceS is first preprocessed to remove
the vertices and triangles which lie far away from the main part
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Fig. 2. Illustrating the two major steps of (a) surface parameterization, and (b) vertex displacement in synthesizing a3D fingerprint phantom from a 2D
synthetic fingerprint image and a generic 3D finger surface.

of the finger surface. This is done by clustering the verticesin
V according to a distance thresholdd on the length of edges
in each triangle inT . In other words, if the length of the
edge connecting two vertices in a triangle is smaller thand,
they belong to the same cluster; otherwise they are grouped
in a different cluster. The largest cluster of verticesVR and
trianglesTR obtained as a result of this clustering process is
then retained in the finger surfaceS, whereas the vertices and
triangles pertaining to other smaller clusters are discarded.

The finger surfaceS also needs to be made sufficiently
dense for engraving ridges and valleys. This is done by
sampling points at the centroid of each retained triangle in
TR and connecting each of the three vertices to the centroid
of the triangle. Let the set of vertices and triangles obtained
after this process be denoted byVD andTD, respectively2.

B. Surface Alignment

Each vertex inVD is translated such that the center of the
surfaceS coincides with the origin of the(x, y, z) coordinate
axes. Principal component analysis (PCA) [18] is used to
determine the principle directions of the surface spread. The
computed principal components are used to align the surface
S such that the finger length is along the y-axis, width along
the x-axis and height on the z-axis. Note that this method only
affects the(x, y, z) coordinate values of the vertices inVD.

2The generic 3D finger surface used in our experiments has 58,494 vertices
and 115,975 triangles and is already sufficiently dense;VD = VR andTD =

TR in our case.

C. Surface Parameterization

This step involves projecting the 2D synthetic fingerprint
image I onto the 3D finger surfaceS. For this mapping,
the one-to-one correspondence between the image coordinates
(u, v) in I and the spatial locations(x, y, z) in S needs to be
established. This process, in general, is termedsurface param-
eterizationand is used extensively for geometric modelling of
3D objects [19]. We adopt the surface parameterization method
proposed in [20] for determining the injective mapping from
the (u, v) image domain to the finger surfaceS.

Recall that the aligned finger surfaceS is in the form of
a triangular mesh i.e. the union of a set of trianglesTD =
{T 1

D, ..., T
N
D }, whereN is the number of triangles. The goal of

discrete harmonic mapping is to find the planar(u, v) domain
representationS∗ ⊂ R2 of S using a piecewise linear map
f : S → S∗ which minimizes the Dirichlet energyED, where

ED =
1

2

∫

S

||∇Sf ||
2 =

1

2

N
∑

i=1

∫

T i
D

||∇T i
D
f ||2. (1)

Here∇S denotes the gradient over the finger surfaceS, and
∇T i

D
is the gradient over the surface formed by each triangle

T i
D in S. Note that the minimization procedure is subject to

natural boundary condition [20].

Let pj denote thejth vertex of the triangleT i
D such that
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Fig. 3. 2D synthetic image to 3D fingerprint phantom. (a) A sample 2D synthetic fingerprint image generated using the method in [10]; (b) generic 3D finger
surface; (c) the frontal view, (d) the left profile view and (e) the right profile view of the electronic 3D fingerprint phantom created by mapping (a) onto (b); (f)
and (h) the 2D images of the printed 3D fingerprint phantom captured using the 8MP and 16 MP smartphone cameras, respectively; (g) and (i) the enhanced
2D images of (f) and (h).

1 ≤ j ≤ 3. Also let θj be the angle opposite to vertexpj in
T i
D. Then, it can be shown that

2

∫

T i
D

||∇T i
D
f ||2 = cot θ3||f(p1)− f(p2)||

2

+ cot θ2||f(p3)− f(p1)||
2 + cot θ1||f(p3)− f(p2)||

2 (2)

Under the piecewise linear assumption in Eq. (1), the
minimization problem for thekth vertex pk in the setVD

reduces to solving a system of linear equations pertaining to
the set of trianglesτ which share the common vertexpk

∑

△pk,pl,pm
∈τ

cotα(f(pk)− f(pl)) + cotβ(f(pk)− f(pm))

=
∑

△pk,pl,pm
∈τ

R90(f(pm)− f(pl)). (3)

Hereα andβ are the angles at the other two verticespl and
pm in a triangle with verticespk, pl and pm in τ , andR90

denotes a90◦ rotation.

The mapping between the 3D finger surface in(x, y, z)
and the(u, v) image domain obtained by solving the system
of linear equations in Eq. (3) may be globally inconsistent
with respect to translation, rotation and scale. To ensure
global consistency of correspondences, we enforce translation,
rotation and scale constraints:

• The translation constraint ensures the origin inS∗ is at
a fixed distanced′ below the reference point detected

on the fingerprint imageI using the method described
in [21]. This distanced′ is set to 50 pixels in our
experiments.

• The rotation constraint ensures that the y-axis inS∗

coincides with thev-axis of the(u, v) domain.

• The scale constraint ensures that the mapped(u, v)
texture from the 2D synthetic fingerprint imageI
occupies the maximum surface area on the 3D surface
S.

In summary, the 3D finger surfaceS is parameterized using
the piecewise linear mappingf : S → S∗, whereS∗ ⊂ R2

such that each vertexp of the parameterized surfaceSP is
denoted as a 5-tuple(x, y, z, u, v) pertaining to its spatial
location (x, y, z) on the surface and the(u, v) locations of
the texture values from the 2D synthetic fingerprint imageI
(Fig. 2 (a)).

D. Vertex Displacement

In the penultimate step, vertices are displaced along their
surface normals to engrave the fingerprint ridges and valleys
on SP (Fig. 2 (b)). Let the normal at a vertexp(x, y, z, u, v)
be denoted by(nx, ny, nz), wherenx, ny and nz represent
the normal components along thex, y and z directions, re-
spectively. The displaced coordinates of the vertex(x′, y′, z′)
along the normal are then computed using the principle of
vertex displacement mapping [22] as follows:

[

x′

y′

z′

]

=

[

x
y
z

]

−

[

nx

ny

nz

]

× I ′(u, v)× Spf (4)



Here, I ′(u, v) is the scale normalized texture value in
the range[−1, 1] of the mapped(u, v) texture from the 2D
synthetic fingerprint image on the vertex(x, y, z), and Spf

the surface perturbation factor which depends on the scale of
the generic 3D finger surface. It is set to2.5 × 10−6 for the
finger surface used in our experiments.

E. Surface Postprocessing and 3D Phantom printing

The vertex displaced 3D finger surfaceSP is printed using
a commodity 3D printer to create the 3D fingerprint phantom
P . To ensure stability of the finger surfaceSP , a cuboidal
support is synthetically created beneath the surface before
printing. The physical dimensions of the fingerprint phantom
P and the printing material are explicitly specified according to
the desired finger characteristics such as hardness and electrical
conductivity.

III. E VALUATION

For our preliminary experimental evaluation, four 3D fin-
gerprint phantoms were printed at the preset highest resolution
setting using a commodity 3D printer with hard plastic ABS
1.8 mm filament as the printing material3. The physical length
of the phantoms was fixed to be 6 cm (including the cuboidal
support of around 1 cm) with the aspect ratio of the other
two dimensions maintained during scaling. Frontal images of
these phantoms were then captured using two state of the art
smartphone cameras4, an 8 MP camera and a 16 MP camera.
Images were acquired with a standoff of 10 cm with the
cameras in their default settings.

A. Matching Performance

To gauge the effectiveness of the 3D fingerprint phan-
tom, two different matching experiments were performed.
3D fingerprint phantoms created using (i) original 2D finger
impressions, and (ii) 2D synthetic fingerprint images.

1) Experiment I:In Experiment I, 3D fingerprint phantoms
were created using two search impressions, S0005 and S0010,
from the NIST Special Database 4 [23]. Region of Interest
(ROI) and ridge orientation field of the fingerprint images were
estimated using the NIST Biometric Image Software [24] and
ridge frequency was computed using the method described in
[25]. The impressions were enhanced using the estimated ridge
orientation and ridge frequency field and demodulated using
the method in [26] to ensure sufficient contrast between ridges
and valleys before projecting them onto the 3D finger surface.
The 2D images of 3D fingerprint phantoms captured using
the two smartphone cameras were enhanced using manually
marked ridge orientation and ridge frequency field. They were
then scaled down based on the ridge frequency difference
between the images and their original impressions and matched
to their original impressions S0005 and S0010 as well as their
respective file impressions F0005 and F0010 in NIST SD4
using a commercial fingerprint matcher (see Fig. 4).

3While we would have liked to use soft materials for printing 3D fingerprint
phantoms, the best available 3D printer we had access to onlysupported
printing using hard filaments.

4Traditional contact based fingerprint capture systems could not be used
for evaluation because the 3D fingerprint phantoms were printed using hard
plastic.

TABLE II. E XPERIMENT I M ATCH SCORES
(MATCH SCORE THRESHOLD IS33 FOR VERIFICATION @ 0.01 % FAR)

S0005 F0005

S0005 img1 134 77

S0005 img2 101 77

S0010 F0010

S0010 img1 59 53

S0010 img2 57 29

TABLE III. E XPERIMENT II M ATCH SCORES
(MATCH SCORE THRESHOLD IS33 FOR VERIFICATION @ 0.01 % FAR)

Syn1

Syn1 img1 101

Syn1 img2 107

Syn2

Syn2 img1 90

Syn2 img2 92

Table II shows the match scores between the enhanced 2D
images of 3D fingerprint phantoms captured using the 8 MP
smartphone camera (S0005img1 and S0010img1) and the
16 MP smartphone camera (S0005img2 and S0010img2)
to their original impressions (S0005 and S0010) and file
impressions (F0005 and F0010), respectively. All, except one,
match scores are higher than the computed threshold of 33
at 0.01% FAR for verification experiments on NIST SD4.
In the identification experiments conducted using 2,000 file
impressions in NIST SD4 as the gallery, both file impressions
F0005 and F0010 are retrieved at rank-1. Thus, based on these
preliminary experiments, we can conclude that features are
preserved while mapping the 2D fingerprint image to the 3D
finger surface.

2) Experiment II: In Experiment II, two 2D synthetic
fingerprints Syn1 and Syn2, generated by a state of the art
synthetic fingerprint generator [10], were used to create 3D
fingerprint phantoms (see Figs. 3 (a)-(d)). Analogous to Ex-
periment I, the 2D images of the 3D fingerprint phantoms were
enhanced using manually marked ridge orientation and ridge
frequency, and rescaled (see Figs. 3 (f)-(i)). These 2D images
were then matched to the synthetic fingerprints from which
they were created using a commercial fingerprint matcher.

Table III shows the match scores between the enhanced 2D
images of 3D fingerprint phantoms captured using the 8 MP
smartphone camera (Syn1img1 and Syn2img1) and the 16
MP smartphone camera (Syn1img2 and Syn2img2) to their
original impressions Syn1 and Syn2, respectively. All match
scores are above the threshold match score of 33 at a FAR
of 0.01% computed for the verification experiments on NIST
SD4. The original 2D synthetic fingerprints were matched at
rank-1 in the identification experiments conducted using the
2,000 file fingerprints in NIST SD4 as the gallery. This shows
that ridges and valleys are preserved during the 3D fingerprint
phantom creation process.

IV. CONCLUSIONS ANDFUTURE WORK

Evaluation of a biometric system is typically done by
conducting several pilot studies in the field before its real
world deployment. However, the performance estimate of the
system is limited by the amount and nature of the available
data. One possible solution is to synthetically generate data
with known characteristics for evaluation purposes. In thecon-
text of evaluating end-to-end fingerprint recognition systems
involving fingerprint image acquisition, feature extraction and
matching, we present a procedure for creating 3D fingerprint
phantoms by projecting 2D synthetic fingerprint images with
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Fig. 4. Matching experiments. (a) 2D search impression S0005 in NIST SD4; (b) enhanced 2D image of (a) used for projectiononto the 3D finger surface; (c)
2D image of the printed 3D fingerprint phantom captured usingthe 8 MP smartphone camera; (d) minutiae correspondences output by the commercial fingerprint
matcher between the enhanced 2D image of the 3D fingerprint phantom shown in (c) to image in (a).

known fingerprint features onto a generic 3D finger surface.
Preliminary experimental results demonstrate that fingerprint
features of the 2D synthetic fingerprint images are preserved
during this process. The fabricated 3D fingerprint phantoms
can be used for comprehensive evaluation of fingerprint recog-
nition systems.

The current surface parameterization method preserves the
projection angles while mapping the 2D synthetic fingerprint
image onto the 3D finger surface. This results in significant
variations in ridge frequencies from the central part to the
periphery of the 3D finger surface. In future, we will explore
methods to preserve geodesic distances on the 3D finger
surface so as to better preserve ridge frequency values when
determining the mapping between the 2D synthetic fingerprint
image and the 3D finger surface. In the next phase of this
research, we will collaborate with the Materials Measurement
Science Division at NIST to study physical properties of the
human finger such as hardness and electrical conductivity.
This would help us in making an informed choice of printing
material for 3D fingerprint phantoms.
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