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Automated Latent Fingerprint Recognition
Kai Cao and Anil K. Jain, Fellow, IEEE

Abstract—Latent fingerprints are one of the most important and widely used evidence in law enforcement and forensic agencies
worldwide. Yet, NIST evaluations show that the performance of state-of-the-art latent recognition systems is far from satisfactory.
An automated latent fingerprint recognition system with high accuracy is essential to compare latents found at crime scenes to a
large collection of reference prints to generate a candidate list of possible mates. In this paper, we propose an automated latent
fingerprint recognition algorithm that utilizes Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae
descriptor extraction, and extract complementary templates (two minutiae templates and one texture template) to represent the
latent. The comparison scores between the latent and a reference print based on the three templates are fused to retrieve a short
candidate list from the reference database. Experimental results show that the rank-1 identification accuracies (query latent is
matched with its true mate in the reference database) are 64.7% for the NIST SD27 and 75.3% for the WVU latent databases,
against a reference database of 100K rolled prints. These results are the best among published papers on latent recognition
and competitive with the performance (66.7% and 70.8% rank-1 accuracies on NIST SD27 and WVU DB, respectively) of a
leading COTS latent Automated Fingerprint Identification System (AFIS). By score-level (rank-level) fusion of our system with
the commercial off-the-shelf (COTS) latent AFIS, the overall rank-1 identification performance can be improved from 64.7% and
75.3% to 73.3% (74.4%) and 76.6% (78.4%) on NIST SD27 and WVU latent databases, respectively.

Index Terms—Latent fingerprints, reference prints, automated latent recognition, minutiae descriptor, convolutional neural
networks, texture template.
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1 INTRODUCTION

E VER since latent fingerprints (latents or marks1)
were first introduced as evidence to convict a sus-

pect in Argentina in 1893, they have become one of the
most important and widely used sources of evidence
in law enforcement and forensic agencies worldwide
[4]. Latent fingerprint recognition requires recogniz-
ing the mate of a latent print evidence in a database of
reference prints (rolled or slap fingerprints). See Figs.
1 and 2. A majority (60%) of crime laboratories in the
United States reported analyzing latent fingerprints
recovered from crime scenes, and a total of 271,000
latent prints were processed by public forensic crime
laboratories in 2009 alone2. During January 2017,
FBI’s Integrated Automated Fingerprint Identification
System (IAFIS), which maintains the largest criminal
fingerprint database in the world, conducted 17,758
latent “feature” searches (latent features were manu-
ally marked by latent examiners), and an additional
4,160 latent “image” searches [5] (latent features were
automatically extracted by IAFIS).

• Kai Cao and A.K. Jain are with the Dept. of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824
U.S.A.
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1. Latent and mark both refer to a partial and smudgy friction
ridge impression from an unknown source. The term latent is
preferred in North America while mark is preferred outside North
America [1]. We adopt the term latent here to be consistent with
our previous work [2], [3].

2. Bureau of Justice Statistics, Census of Publicly Funded Forensic
Crime Laboratories, 2009.
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Fig. 1: Automated latent recognition framework. A
latent image is input to a latent AFIS, and the top
n candidates with their comparison scores are pre-
sented to a latent expert. The number of candidates,
n, examined is typically less than 20. The true mate
in this example is outlined in red.

Compared to rolled and slap prints (or reference
prints), which are acquired under supervision, latent
prints are lifted after being unintentionally deposited
by a subject, e.g., at crime scenes, typically resulting
in poor quality in terms of ridge clarity and large
background noise. Unlike reference prints, the ac-
tion of depositing finger mark on a surface is not
repeatable if latent prints are found to be of poor
quality. National Institute of Standards & Technology
(NIST) periodically conducts technology evaluations
of fingerprint recognition algorithms, both for rolled
(or slap) and latent prints. In NIST’s most recent
evaluation of rolled and slap prints, FpVTE 2012, the
best performing Automated Fingerprint Identification
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Fig. 2: Illustration of latent to reference (rolled) com-
parison. (a) Input latent with ROI outlined in red,
(b) automatically extracted minutiae in (a) shown
on the latent skeleton, (c) alignment and minutiae
correspondences between the latent and its true mate
(rank-1 retrieval) and (d) alignment and minutiae
correspondences between the latent and the rank-
2 retrieved rolled print. Blue circles denote latent
minutiae and green circles denote rolled minutiae.

System (AFIS) achieved a false negative identification
rate (FNIR) of 1.9% for single index fingers, at a false
positive identification rate (FPIR) of 0.1% using 30,000
search subjects (10,000 subjects with mates and 20,000
subjects with no mates) [6]. For latent prints, the most
recent evaluation is the NIST ELFT-EFS where the
best performing automated latent recognition system
could only achieve a rank-1 identification rate of
67.2% in searching 1,114 latents against a background
containing 100,000 reference prints [7]. The rank-1
identification rate of the best performing latent AFIS
was improved from 67.2% to 70.2%3 [7] when fea-
ture markup by a latent expert was also input, in
addition to the latent images, to the AFIS. This gap
between reference fingerprint recognition and latent
fingerprint recognition capabilities is primarily due to
the poor quality of friction ridges in latent prints. This
underscores the need for developing automated latent
recognition with high accuracy4.

3. The best result using both markups and images is 71.4% rank-1
accuracy.

4. In forensics and law enforcement, automated latent recognition
is also referred as lights-out recognition where the objective is to
minimize the role of latent examiners in latent recognition.

1.1 Current Practice

The standard procedure for latent recognition, as prac-
ticed in forensics agencies, involves four phases: Anal-
ysis, Comparison, Evaluation, and Verification (ACE-V)
[8]. A number of studies have highlighted limitations
of the ACE-V methodology.

1) Repeatability/reproducibility of feature markup.
Ulery et al. [9] and Arora et al. [10] observed a
large variation among the feature markups on
the same latent provided by different examiners
which affects the latent recognition accuracy [7].
The median value of markup reproducibility
was found to be only 46% [9].

2) Repeatability/reproducibility of decision. Examiner
repeatability of comparison decisions was found
to be 90.0% for mated pairs, and only 85.9% for
non-mated pairs [11]. These values were even
lower for comparisons assessed by the examin-
ers as “difficult” (i.e., low quality latents).

3) Throughput. Manual markup requires significant
effort (∼15 min/latent5) by latent examiners.

4) Bias. Since the second examiner in the verifi-
cation phase is only assessing the comparison
decision made by the first examiner, it creates
the potential for confirmation bias (see page 90
in [12]).

Given the current state of latent processing that
relies heavily on forensic examiners, an automated
latent recognition algorithm is urgently needed to
give an accurate, reliable and efficient (i.e., a short)
candidate list for ever growing case workload. An
automated latent recognition system will also assist in
developing quantitative validity and reliability mea-
sures6 for latent fingerprint evidence as highlighted in
the 2016 PCAST [12] and the 2009 NRC [13] reports.

Over the past few years, deep networks, in par-
ticular, convolutional neural networks (ConvNets)
have become the dominant approach for addressing
problems involving noisy, occluded and partial pat-
terns and large numbers of classes. This is supported
by state-of-the-art performance of deep networks in
large-scale image recognition [14], unconstrained face
recognition [15] and speech recognition in cluttered
background [16], where traditional representation and
matching approaches fail. So, it is natural to consider
ConvNets for latent fingerprint recognition. However,
only a few published studies have applied ConvNets
to latent fingerprint recognition, and even these stud-
ies are limited to individual modules, such as ridge
flow estimation [17] and minutiae extraction [18] [19]
of latent AFIS. To our knowledge, there is no pub-

5. https://www.noexperiencenecessarybook.com/eVbzD/microsoft-
powerpoint-nist-fingerprint-testing-standards-v2-02282013-
pptx.html

6. AFIS available from vendors neither provide the latent features
they extract nor the true comparison scores between a latent and a
reference print.
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Fig. 3: Example latents (first row) from NIST SD27
whose true rolled mates (second row) could not be
retrieved at rank-1 by a leading COTS latent AFIS.
This can be attributed to large background noise and
poor quality ridge structure in (a), and small friction
ridge area in (b).

lished study on designing a complete latent AFIS
based on ConvNets.

1.2 Contributions

In this paper, we design and build an automated
latent recognition system7 and evaluate its perfor-
mance against a leading latent AFIS. Meagher and
Dvornychenko [20] define seven tiers of possible la-
tent print “lights out” scenarios. They go on to say
that “for technical reasons, only Tiers 1 and 2 are im-
plementable now or in the near term. Tiers 3 through 7
reflect our concept of an incremental approach to full
lights-out capability.” Our automated latent recogni-
tion system follows under Tier 2 of their definition
where latent print experts submit latent searches and
then receive the AFIS candidate list. All preprocessing,
except region of interest (ROI), minutiae extraction,
template generation and search has been automated.
See Fig. 4.

The main contributions of this paper are as follows:
1) Input latent is represented by three different

templates, each providing complementary in-
formation. Two of the templates are minutiae-
based, whereas the third template is texture-
based. The minutiae in the minutiae-based tem-
plates are extracted, respectively, based on (i)
ridge flow learned from a ConvNet, and (ii)
dictionary of ridge structure elements.

7. The SDK will be available to interested readers once the paper
is accepted.

2) Multi-scale and multi-location windows in the
neighborhood of minutiae are used to learn
minutiae descriptors. To develop salient minu-
tiae descriptors, we train 14 different ConvNets,
where each descriptor ConvNet is trained on a
specific patch size at a specific location around
the minutiae. A systematic feature selection (se-
quential forward selection) showed that only 3
out of the 14 ConvNets are adequate to maintain
rank-1 recognition accuracy at significant com-
putational savings.

3) Second order (minutiae pairs) and third order
(minutiae triplets) graph-based minutiae corre-
spondence algorithms are developed to mini-
mize false minutiae correspondences in latent to
its non-mate comparisons.

4) A prototype of our latent recognition algo-
rithm was evaluated on two different bench-
mark databases: NIST SD27 (258 latents) [21]
and WVU latent DB (449 latents) [22] against
a reference database of 100,000 rolled prints.
The rank-1 retrieval for these two databases are:
64.7% for NIST SD27 and 75.3% for WVU latent
DB. These results with automated preprocessing,
feature extraction, and comparison are superior
to published results on these two databases.

5) Score-level (rank-level) fusion of our algorithm
with a leading COTS latent AFIS, improves the
rank-1 accuracies to 73.3% (74.4%) for NIST
SD27 and to 76.6% (78.4%) for WVU latent DB.
This demonstrates that our approach to auto-
mated latent recognition based on ConvNets is
complementary to that used in the COTS latent
AFIS.

2 RELATED LITERATURE

Given a latent image, the main modules of a la-
tent AFIS include preprocessing (ROI segmentation,
ridge flow estimation and ridge enhancement), feature
(minutiae and texture) extraction and comparison.
Fig. 3 shows challenges in latent processing: back-
ground noise, low contrast of friction ridge structure,
and small friction ridge area. In the following, we
briefly review major published algorithms pertaining
to different modules. For a detailed review, see [23].

(a) ROI segmentation. Published algorithms [24],
[25], [26], [27], [3] do not work well on poor quality
latents. Further, it is a common practice in forensics
for an examiner to mark the ROI, also known as crop-
ping (see Fig 4), especially when there are overlapping
latent impressions. We assume that ROI for the query
latent has been marked.

(b) Ridge flow estimation. Two approaches for com-
puting ridge flow have shown promise: (i) dictionary
based learning, [28], [3] and (ii) ConvNet based learn-
ing [17]. The ridge flow estimates from ConvNet gen-
erally perform better than dictionary based methods
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when evaluated against manually marked ridge flow
[17].

(c) Latent enhancement. Gabor filtering is the most
popular and effective approach, [28], [3], [17]. Other
published approaches include multi-scale ridge dictio-
nary using a set of Gabor elementary functions [29],
and a ridge dictionary with variable ridge and valley
spacings [30].

(d) Feature extraction. A latent minutiae extractor
using stacked denoising sparse autoencoder was pro-
posed in [18], but it showed poor performance on
NIST SD27. While Cao et al. [30] extracted minutiae,
ridge clarity, singular point, and ridge orientation
for automated latent value assessment, they did not
integrate it with a latent matcher. Tang et al. [19]
developed a fully convolutional network for minu-
tiae extraction, but it performed poorly compared to
manually marked minutiae.

(e) Latent comparison. In the absence of a robust
latent minutiae extractor, published latent compari-
son algorithms [2], [31], [32], [33] rely on manually
marked minutiae.

In summary, to our knowledge, no automated latent
recognition algorithm has been published in the liter-
ature. While ConvNets have been used for individual
modules of a latent AFIS, their performance has not
been evaluated in an end-to-end system. Even the
number of available COTS latent AFIS is limited. In
the 2012 NIST ELFT-EFS #2 evaluation, there were
only six participants; the top three performers had
significantly superior performance compared to the
other three. The flowchart of the proposed latent
recognition framework is shown in Fig. 5.

3 PREPROCESSING AND FEATURE EX-
TRACTION
Latent feature extraction is presented in section 3.1,
where latent preprocessing is embedded into minutiae
set extraction, and reference print feature extraction is
provided in section 3.2.

Fig. 4: Latent fingerprints at a crime scene often
contain multiple latent impressions, either of different
individuals or multiple fingers of the same person.
For this reason, a region of interest (ROI), also called
cropping, outlined in red, is typically marked by
examiners to highlight the friction ridge region of
interest.

3.1 Latent Feature Extraction
Minutiae are arguably the most important features in
fingerprint recognition. Two minutiae templates and
one texture template are extracted for each latent (see
Fig. 5). While the two minutiae templates use the
same framework (Fig. 6), they are based on differ-
ent ridge flow estimation methods (ConvNet-based
and Dictionary-based) and ridge enhancement meth-
ods (Dictionary-based and Gabor filtering-based). A
minutiae template consists of ridge flow, a minutiae
set (minutiae locations and orientations), and minu-
tiae descriptors extracted by ConvNets using local
latent patches.

3.1.1 Minutiae Set 1
The first minutiae set is extracted from the approach
in [30], which consists of the following steps: 1) ridge
flow estimation using ConvNet, 2) ridge and valley
contrast enhancement, 3) ridge enhancement by a
ridge structure dictionary with variable ridge and
valley spacing, 4) ridge binarization and thinning, and
5) minutiae detection [34] in the skeleton image.

3.1.2 Minutiae Set 2
A coarse to fine dictionary is adopted to estimate
ridge flow and ridge spacing [3]. Gabor filtering tuned
using the estimated ridge flow and ridge spacing is
used to enhance the ridge structure. Minutiae are
then extracted from the enhanced latent to obtain
minutiae set 2. A comparison in Fig. 5 shows the
complementary nature of minutiae sets 1 and 2.

3.1.3 Texture Template
A texture template is introduced to account for situ-
ations where the latent is of such a small area that
it does not contain sufficient number of minutiae (for
reliable comparison to reference prints) or the latent
is of very poor quality so the minutiae extraction is
not reliable. In a texture template, we represent each
non-overlapping local block (sb × sb pixels) in the
latent by a pair of virtual minutiae. Let (x, y) and α be
the location and orientation of the center of a block.
Then the virtual minutiae pair is located at (x, y, α)
and (x, y, α + π). Note that the virtual minutiae do
not correspond to ridge endings and bifurcations and
the virtual minutiae close to the border are removed.
The same minutia descriptor algorithm (section 3.1.4)
used for the true minutiae sets is also used for virtual
minutiae. The block size is set to 16 × 16 to balance
template efficacy and computational efficiency.

3.1.4 Minutiae Descriptor
A minutia descriptor contains attributes of the minu-
tia based on the image characteristics in its neigh-
borhood. Salient descriptors are needed to eliminate
false minutiae correspondences between a latent and
reference prints. Instead of specifying the descriptor
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Fig. 5: Flowchart of the proposed latent recognition approach. The common minutiae in two true minutiae
sets are shown in red.
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Fig. 6: Minutiae template generation. The same pro-
cedure is used for both minutiae template 1 and
minutiae template 2.

in an ad hoc manner [2], we train ConvNets to learn
minutiae descriptor from local fingerprint patches.
As demonstrated in face recognition, for example,
[36], training a set of ConvNets using multiple im-
age patches at different scales and regions can sig-
nificantly boost the recognition performance. In this
paper, we adopt a multi-scale approach, where fin-
gerprint patches of different sizes and at different lo-
cations (a total of 14 patches) are defined as shown in
Fig. 8. Multiple instances of patches extracted for the
same minutia are used to train 14 different ConvNets8.
The flowchart of minutiae descriptor extraction for
one of the 14 ConvNets is illustrated in Fig. 7. The
details are as follows.

1) Training patch selection. Multiple patches around
the same minutiae extracted from different fin-
gerprint impressions of the same finger are
needed. For this purpose, we utilize MSP lon-

8. The toolbox MatConvNet [37] is used to implement the Con-
vNet architecture. Offline training of the ConvNet is conducted on
a Linux server with Tesla K20 GPUs.

gitudinal fingerprint database9 [35], which con-
tains 1,311 subjects with at least 10 rolled impres-
sions, collected over at least 5 years, with a total
of 165,880 fingerprints. Only those minutiae in
these prints which can be extracted in eight or
more impressions of the same finger are retained
for training. This ensures that we are only us-
ing reliable minutiae. Local fingerprint patches
around these selected minutiae are extracted to
train the ConvNets.

2) Training. We adopt the same ConvNet architec-
ture proposed in [17] for all 14 patch types.
Smaller patches are resized to 160 × 160 pixels
using bilinear interpolation to ensure that we
can use the same ConvNet [17] with 160 × 160
images as input. Random shifts (-5 to 5 pixels)
and rotations (-5◦ to 5◦) of the patches are used
to augment the training set.

3) Latent minutiae descriptor extraction. For each
ConvNet, its 128-dimensional output of the last
fully connected layer is considered as a feature
vector. A minutia descriptor could be a con-
catenation of a subset of the 14 feature vectors
output by the 14 ConvNets.

3.2 Reference Print Feature Extraction
Reference prints are typically of higher quality com-
pared to latents, so it is easier to get reliable minutiae
from them. For this reason, we extract only one minu-
tiae template, but we still extract the texture template.
The reference print minutiae are extracted by a COTS
tenprint AFIS rather than the proposed minutiae ex-
tractor for latents. The ridge flow is extracted by Short

9. No longitudinal latent database is available for training de-
scriptor ConvNet.
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Fig. 7: Minutiae descriptor extraction via ConvNet. The dotted arrows show the offline training process, while
solid arrows show the online process for minutiae descriptor extraction. A total of 800K fingerprint patches
from 50K minutiae, extracted from the MSP longitudinal fingerprint database [35], were used for training the
ConvNet. The patch size shown here is 80× 80 pixels.

(a)

(b)

Fig. 8: Fourteen types of fingerprint patches, with
different size and location, centered at a minutia
(shown in red). Patches at (a) 6 different scales and
(b) in 8 different locations around minutia: top left,
top right, bottom right and bottom left, top, right, left
and bottom. The fingerprint patches shown here are
of size 160 × 160 pixels. The window sizes (scale) in
(a) are 80×80, 96×96, 112×112, 128×128, 144×144,
and 160 × 160 pixels. The windows in (b) are all of
size 96× 96 pixels.

Time Fourier Transform (STFT) [38]. A reference print
minutiae template, similar to latents, includes (i) ridge
flow, (ii) minutiae set and (iii) minutiae descriptors
(section 3.1.4).

The texture template for reference print is extracted

in a manner similar to latents (section 3.1.3). For
computational efficiency, each nonoverlapping block
of sb×sb pixels is considered to define a single virtual
minutia. On average, there are 1,018 virtual minutiae
in a reference print. The texture template consists of
a virtual minutiae set, and their descriptors (section
3.1.4). Since the latent texture template considers two
virtual minutiae, we expect that at least one of them
will be in correspondence with the reference print
virtual minutia in the true mate.

4 LATENT TO ROLLED COMPARISON

Two latent-to-reference print comparison algorithms
are designed: (i) a minutiae template comparison
algorithm and (ii) a texture template comparison al-
gorithm.

4.1 Minutiae Template Comparison

Let M l = {ml
i = (xli, y

l
i, α

l
i)}

nl
i=1 denote the latent

minutiae set with nl minutiae, where (xli, y
l
i) and αl

i

are the location and orientation of the ith minutia,
respectively. Let Mr = {mr

j = (xrj , y
r
j , α

r
j)}nrj=1 denote

a reference print minutiae set with nr minutiae, where
(xrj , y

r
j ) and αr

j are the location and orientation of the
jth rolled minutia, respectively. The minutiae template
comparison algorithm seeks to establish the minutiae
correspondences between M l and Mr. We impose the
constraint that no minutia in one set should match
more than one minutia in the other set. The problem
of minutiae correspondence can be formulated as an
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optimization problem to find the assignment X ∈ S,
where:

S = {X ∈ {0, 1}nl×nr ,∀i,
∑
i

Xi,j 6 1,∀j,
∑
j

Xi,j 6 1},

Xi,j = 1 if ml
i and mr

j are in correspondence and
Xi,j = 0, otherwise.

In the second-order graph based minutiae corre-
spondence algorithm [39], the objective function S2

is defined as:

S2(X) =
∑

i1,i2,j1,j2

H2
i1,i2,j1,j2Xi1,i2Xj1,j2 , (1)

where H2 ∈ Rnl×nr×nl×nr is a 4-dimensional tensor
and H2

i1,i2,j1,j2
measures the compatibility between

latent minutiae pair (ml
i1
,ml

j1
) and rolled minutiae

pair (mr
i2
,mr

j2
).

One limitation of the second-order graph matching
(or pairwise minutiae correspondence) is that it is
possible that two different minutiae configurations
may have similar minutiae pairs. To circumvent this,
higher order graph matching, has been proposed
to reduce the number of false correspondences [40].
Here, we consider the third-order graph matching
(minutiae triplets) whose objective function is given
as:
S3(X) =

∑
i1,j1,k1,i2,j2,k2

H3
i1,i2,j1,j2,k1,k2

Xi1,i2Xj1,j2Xk1,k2 ,

(2)
where H3 ∈ Rnl×nr×nl×nr×nl×nr is a 6-dimensional
tensor and H3

i1,i2,j1,j2,k1,k2
measures the compatibility

between latent minutiae triplet (ml
i1
,ml

j1
,ml

k1
) and

reference print minutiae triplet (mr
i2
,mr

j2
,mr

k2
). Since

H3 is of size (nl ·nr)3 and H2 is of size (nl ·nr)2, this
approach is more computationally demanding than
the second-order graph matching.

4.1.1 Proposed Minutiae Correspondence Algorithm
Minutiae descriptors allow us to consider only a
small subset of minutiae correspondences among the
nl × nr possible correspondences. For computational
efficiency, only the top N (N = 120) minutiae cor-
respondences are selected based on their descriptor
similarities. Since the second-order graph matching is
able to remove most of the false correspondences, we
first use the second-order graph matching, followed
by the third-order graph matching for minutiae corre-
spondence. Algorithm 1 shows the main steps of the
proposed minutiae correspondence algorithm.

In the following, we first present how to construct
H2 and H3 and then give details of the minutiae
correspondence algorithm.

4.1.2 Construction of H2 and H3

The term H2
i1,i2,j1,j2

in Eq. (1) measures the compati-
bility between a minutiae pair (ml

i1
,ml

j1
) of the latent

and a minutiae pair (mr
i2
,mr

j2
) of the reference print.

A 4-dimensional feature vector is computed to char-
acterize each minutiae pair. Let (di1,j1 , θi1 , θj1 , θi1,j1 )

Algorithm 1 Minutiae correspondence algorithm

1: Input: Latent minutiae template with nl minutiae
and reference print minutiae template with nr
minutiae

2: Output: Minutiae correspondences
3: Compute the nl × nr minutiae similarity matrix

using Eq. (10)
4: Select the top N minutiae correspondences based

on the above minutiae similarity matrix
5: Construct H2 based on these N minutiae pairs
6: Remove false minutiae correspondences using Al-

gorithms 2 and 4
7: Construct H3 for the remaining minutiae pairs
8: Remove false minutiae correspondences using Al-

gorithms 3 and 4
9: Output final minutiae correspondences.

and (di2,j2 , θi2 , θj2 , θi2,j2 ) denote two feature vectors
for a minutiae pair from a latent and a reference print,
respectively. Fig. 9 (a) illustrates the feature vector.
H2

i1,i2,j1,j2
is computed as:

H2
i1,i2,j1,j2 = Π4

p=1Z(dp, µp, τp, tp), (3)

where

d1 = |di1,j1 − di2,j2 |, (4)
d2 = min(|θi1 − θi2 |, 2π − |θi1 − θi2 |), (5)
d3 = min(|θj1 − θj2 |, 2π − |θj1 − θj2 |), (6)
d4 = min(|θi1,j1 − θi2,j2 |, 2π − |θi1,j1 − θi2,j2 |), (7)

Z is a truncated sigmoid function, which is defined
as:

Z(v, µp, τp, tp) =

{
1

1+e−τp(v−µp)
, if v ≤ tp,

0, otherwise.
(8)

and µp, τp and tp are parameters of function Z.

mi1

mj1

θi1

θj1

θi1,j1

di1,j1

(a)

θi1

θj1

dk1

θk1

dj1

di1

mi1

mj1
mk1

φk1

φi1

φj1

(b)

Fig. 9: Illustration of feature representation of (a) a
minutiae pair (mi1 ,mj1) and (b) a minutiae triplet
(mi1 ,mj1 ,mk1

), where the solid arrows denote minu-
tiae orientations.

The term H3
i1,i2,j1,j2,k1,k2

in Eq. (2) measures
the compatibility between a minutiae triplet
(ml

i1
,ml

j1
,ml

k1
) of the latent and a minutiae

triplet (mr
i2
,mr

j2
,mr

k2
) of the reference print. A

9-dimensional vector is computed to characterize
each minutiae triplet, as illustrated in Fig. 9 (b).
Let (di1, dj1, dk1, θi1, θj1, θk1, ϕi1, ϕj1, ϕk1) and
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Algorithm 2 Power iteration for the second-order
eigenvalue problem

1: Input: Matrix H2

2: Output: Y , principal eigenvector of H2

3: Initialize Y with small random positive numbers
4: while no convergence do
5: Y ← HY
6: Y ← 1

||Y ||2Y

Algorithm 3 Power iteration for the third-order eigen-
value problem

1: Input: Matrix H3

2: Output: Y , principal eigenvector of H3

3: Initialize Y with small random positive numbers
4: while no convergence do
5: for i do
6: Yi ←

∑
j,kH

3
i,j,kYjYk

7: Y ← 1
||Y ||2Y

(di2, dj2, dk2, θi2, θj2, θk2, ϕi2, ϕj2, ϕk2) denote two
feature vectors corresponding to the two minutiae
triplets from the latent and the reference print,
respectively. Then H3

i1,j1,i2,j2,k1,k2
is computed as:

H3
i1,j1,i2,j2,k1,k2

= Πp=i,j,kΠ3
q=1Z(dpq, µpq, τpq, tpq),

(9)

where

dp1 = |dp1 − dp2|,
dp2 = min(|θp1 − θp2|, 2π − |θp1 − θp2|),
dp3 = min(|φp1 − φp2|, 2π − |φp1 − φp2|),
p = i, j, k.

There are two kinds of distances used in computing
H2 and H3, i.e. Euclidean distance (e.g., Eq. (4))

Algorithm 4 Discretization to ensure a one-to-one
matching

1: Input: Eigenvector Y output by Algorithms 3 or
2

2: Output: Minutiae correspondences C
3: Initialize threshold T
4: Initialize minutiae pair C = {}
5: Set flagl(p) = 0, p = 1, 2, ..., nl

6: set flagr(q) = 0, q = 1, 2, ..., nr

7: while max(Y ) > T do
8: i = arg max(Y )
9: Y(i) = 0

10: if flagl(i1) == 1 or flagr(i2) == 1 then
11: continue
12: else
13: C.append(i1,i2)
14: flagl(i1) = 1
15: flagr(i2) = 1

(a)

(b)

(c)

Fig. 10: Comparison of minutiae correspondences. (a)
14 minutiae pairs found in correspondence between
the latent and a non-mate [31], (b) 7 minutiae pairs
found in correspondence for the same comparison as
in (a) by the proposed method and (c) 13 minutiae
pairs found in correspondences between the latent
and its true mate by the proposed method. Note
that we use manually marked minutiae and MCC
descriptor [41] for a fair comparison with [31].

between minutiae locations, and directional distance
(e.g., Eqs. (5), (6) and (7) ) between minutiae angles.
For the Euclidean distance, µ, τ and t are set as 15, − 1

5
and 40, respectively. For the directional distance, µ, τ
and t are set as 1

12 , −15 and π/4, respectively. These
tolerance values were determined empirically.

4.1.3 Proposed Minutiae Correspondence

Suppose Desli1 = {Desli1(p)}p∈P and Desri2 =
{Desri2(p)}p∈P are two sets of minutia descriptors of
the i1th latent minutia and the i2th reference print
minutia, respectively, where P is a subset of the 14
ConvNets. The descriptor similarity DesSim(i1, i2)
between Desli1 and Desri2 is computed based on cosine
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distance as follows:

DesSim(i1, i2) =
1∑

p∈P 1

∑
p∈P

(Desli1(p))
T ·Desri2(p)

||Desli1(p)|| · ||Desri2(p)||
.

(10)
As in section 4.1.2, the top N minutiae correspon-
dences with the highest similarity values in (10) are se-
lected. Suppose {(i1, i2)}Ni=1 are the N selected minu-
tiae pairs, and Y is an N -dimensional correspondence
vector, where the ith element (Yi) indicates whether i1
is assigned to i2 (Yi = 1) or not (Yi = 0). The objective
function in (1) can be simplified as

S2(Y ) =
∑
i,j

H2
i,jYiYj , (11)

where i = (i1, i2) and j = (j1, j2) are two selected
minutiae correspondences, and H2

i,j is equivalent to
H2

i1,j1,i2,j2
. Objective function (2) can be similarly

rewritten as:

S3(Y ) =
∑
i,j,k

H3
i,j,kYiYjYk, (12)

where i = (i1, i2), j = (j1, j2) and k = (k1, k2) are
three selected minutiae correspondences, and H3

i,j,k is
equivalent to H3

i1,i2,j1,j2,k1,k2
.

The second-order graph matching problem (11) is a
quadratic assignment problem, with no known poly-
nomial time algorithm for solving it. This also holds
for the third-order graph matching problem (12). A
strategy of power iteration, followed by discretiza-
tion [40] is a simple but efficient approach to obtain
approximate solution for (11) and (12). The power
iteration methods for (11) and (12) are shown in
Algorithms 2 and 3, respectively. Algorithm 4 is the
discretization step to ensure a one-to-one matching.

Figs. 10 (a) and (b) compare the proposed minutiae
correspondence algorithm with the method of [31]
on an impostor comparison (latent to a non-mate
comparison). Fig. 10 (c) shows an example of minutiae
correspondences for a genuine match between a latent
and its rolled mate.

4.1.4 Minutiae Template Similarity
The similarity between a latent minutiae template and
a reference minutiae template consists of two parts:
(i) minutiae similarity, i.e., similarity of descriptors
of matched minutiae correspondences, and (ii) ridge
flow similarity. Suppose {(ml

i1
= (xli1 , y

l
i1
, αl

i1
),mr

i2
=

(xri2 , y
r
i2
, αr

i2
))}ni=1 are the n matched minutiae corre-

spondences between the latent and the reference print
by Algorithm 1. The minutiae similarity SM is defined
as:

SM =

n∑
i=1

DesSim(i1, i2), (13)

where DesSim(i1, i2) is the descriptor similarity be-
tween Desli1 and Desri2 in Eq. (10). The ridge flow sim-
ilarity is computed by first aligning the two ridge flow
maps using the minutiae correspondences and then

computing the orientation similarity of overlapping
blocks. The rotation ∆α, and translation (∆x,∆y) is
computed as:

∆α = arctan(

n∑
i=1

sin(∆αi),

n∑
i=1

cos(∆αi)), (14)

∆x =
1

n

n∑
i=1

(xri2 − x
l
i1 cos(∆α) + yli1 sin(∆α)), (15)

∆y =
1

n

n∑
i=1

(yri2 − y
l
i1 cos(∆α)− xli1 sin(∆α)), (16)

where ∆αi = (αr
i2
− αl

i1
). The values of ∆α and

(∆x,∆y) are used for ridge flow alignment. Let
{Ok,1}Kk=1 and {Ok,2}Kk=1 denote the orientations in
the overlapping K blocks for the latent and the refer-
ence print, respectively. The ridge flow similarity SO

is given by

SO =
1

K
|

K∑
k=1

e(2
√
−1(Ok,1−Ok,2))|. (17)

The minutiae template similarity SMT is computed as
the product of the minutiae similarity and ridge flow
similarity,

SMT = SM · SO. (18)

4.2 Texture Template Similarity

The same minutiae comparison algorithm proposed
in section 4.1 can be used for virtual minutiae com-
parison in texture template. However, there are two
main differences: (i) top N = 200 virtual minutiae
correspondences, rather than 200 for real minutiae,
are selected based on descriptor similarity, and (ii) the
texture template similarity STT only consists of the
sum of the similarities of matched virtual minutiae
correspondences in Eq. (13).

4.3 Similarity Score Fusion

Two minutiae templates and one texture template
are extracted for each latent, but only one minutiae
template and one texture template are extracted for
each reference print. Two minutiae template similarity
scores (SMT,1 and SMT,2) are generated by comparing
the two latent minutiae templates against the single
reference minutiae template. The texture similarity
score (STT ) is generated by comparing the latent and
reference print texture templates. The final similarity
score S between the latent and the reference print is
computed as the weighted sum of SMT,1, SMT,2 and
STT as below:

S = λ1SMT,1 + λ2SMT,2 + λ3STT , (19)

where λ1, λ2 and λ3 are the weights. We empirically
determine the values of λ1, λ2 and λ3 to be 1, 1 and
2, respectively.
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Fig. 11: Three selected patch types. The window size
of the leftmost is 80 × 80 pixels. The other two win-
dows are both of size 96× 96 pixels.

5 EXPERIMENTAL RESULTS

There is a dearth of latent fingerprint databases avail-
able to academic researchers. In this paper, we use two
latent databases, NIST SD27 [21] and the West Virginia
University latent database10 (WVU DB) [22] available
to us, to evaluate the proposed latent recognition
algorithm. The NIST SD27 contains 258 latent finger-
prints with their mated reference prints. The WVU
DB contains 449 latents with their mated reference
prints. Note that the NIST SD27 latent database is a
collection of latents from the casework of forensics
agencies, whereas WVU DB was collected in a labo-
ratory setting, primarily by students, at West Virginia
University. As such, the characteristics of these two
databases are quite different in terms of background
noise, ridge clarity, and the number of minutiae. The
ridges in some of the latent images in WVU DB are
broken apparently because of dry fingers. See Fig. 17
for a comparison of the images in the two databases.

In addition to the mated reference prints available
in these databases, we use additional reference prints,
from NIST SD14 [42] and a forensic agency, to enlarge
the reference database to 100,000 for experiments re-
ported here. The larger reference database allows for a
challenging latent recognition problem. We follow the
protocol used in NIST ELFT-EFS [43] [7] to evaluate
the recognition performance of our system.

5.1 Selection of ConvNets for Minutiae Descriptor
Use of all 14 ConvNets, i.e., 14 patch types in Fig.
8, for minutiae descriptor may not be necessary to
achieve the optimal recognition performance. We ex-
plore feature selection techniques to determine a sub-
set of these 14 descriptors that will maintain the latent
recognition accuracy. A sequential forward selection
(SFS) [44] of the 14 patch types, using rank-1 accuracy
as the criterion on the NIST SD27 database, revealed
that 3 out of 14 patch types (Fig. 11) are adequate
without a significant loss in accuracy (75.6% v. 74.4%)
yet giving us a significant speed up. In the following
experiments, we use only these 3 patch types.

5.2 Performance of Individual Latent Templates
Our objective for designing three different templates
is to extract complementary information from latents.
Fig. 12 (a) and Fig. 13 (a) compare the Cumula-
tive Match Characteristic (CMC) curves of the three

10. To request WVU latent fingerprint database, contact Dr.
Jeremy Dawson (Email: Jeremy.Dawson@mail.wvu.edu)

individual templates, namely, minutiae template 1,
minutiae template 2 and texture template, on NIST
SD27 and WVU DB, respectively. The minutiae tem-
plate 1 performs significantly better than the minutiae
template 2 on both latent databases. The main reason
is that the ridge flow used for generating minutiae set
1, based on ConvNet, is more robust than minutiae
set 2 extractor, based on ridge flow dictionary. Note
that the performance of texture template, which does
not utilize any of the true minutiae in latents, is close
to the performance of minutiae template 2 on both
NIST SD27 and WVU DB. This can be attributed
to the virtual minutiae representation in the texture
template and corresponding descriptors extracted by
ConvNets. Fig. 14 shows an example latent whose
true mate can be retrieved at rank 1 using minutiae
template 1 but not minutiae template 2. The main
reason is that the extracted ridge flow for this latent
is better around the lower core point for minutiae
template 1 than minutia template 2. The true mate
of the latent shown in Fig. 15 (a) can be retrieved at
rank 1 using minutiae template 2 but not minutiae
template 1 even though their skeletons look similar.
Fig. 16 shows two latent examples which lack reliable
minutiae but the texture template is able to find their
true mates at rank 1.

TABLE 1: Rank-1 (rank-20) identification rates on
latents from NIST SD27 of different quality levels.

Quality Minutiae
template 1

Minutiae
template 2

Texture
template

Good 73.7% (84.1%) 71.6% (79.6%) 65.9% (83.0%)
Bad 52.9% (68.2%) 47.1% (61.2%) 51.7% (63.5%)
Ugly 27.1% (45.9%) 28.2% (37.7%) 31.8% (47.1%)

The identification accuracies on different quality
latents in NIST SD27 are shown in Table 1. Note the
superior (comparable) performance of the texture (vir-
tual minutiae) template compared to the two minutiae
templates on ugly (bad) latents. We also evaluate
fusion of different subsets of the three templates. The
fusion of any two templates using the weights in Eq.
(19) performs better than any single template, and the
performance can be further improved by fusing all
three templates. This demonstrates that the three tem-
plates proposed here contain complementary infor-
mation for latent recognition. Most significantly, the
texture template, in conjunction with the two minutiae
templates boosts the overall recognition performance
(from 58.5% to 64.7% rank-1 accuracy on NIST SD27
and from 70.6% to 75.3% on WVU DB).

5.3 Benchmarking against COTS Latent AFIS
We benchmark the proposed latent recognition al-
gorithm against one of the best COTS latent AFIS11

11. The latent AFIS used here is one of top-three performers in the
NIST ELFT-EFS evaluations [43] [7]. Because of our non-disclosure
agreement with the vendor, we cannot disclose the name.
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Fig. 12: Cumulative Match Characteristic (CMC) curves for NIST SD27 of (a) individual templates (minutia
template 1, minutia template 2 and texture template) and their fusion, and (b) comparison of the proposed
method with a COTS latent AFIS and score-level and rank-level fusion of the proposed method and COTS
latent AFIS.
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Fig. 13: Cumulative Match Characteristic (CMC) curves for WVU DB of (a) individual templates (minutia
template 1, minutia template 2 and texture template) and their fusion, and (b) comparison of the proposed
method with a COTS latent AFIS and score-level and rank-level fusion of the proposed method and COTS
latent AFIS.

as determined in NIST evaluations. The input to the
latent AFIS are cropped latents using the same ROI
as input to the proposed algorithm. While the COTS
latent AFIS performs slightly better than the proposed
algorithm (Rank-1 accuracy of 66.7% for COTS latent
AFIS vs. 64.7% for the proposed algorithm ) on NIST
SD27, the proposed method outperforms the COTS
latent AFIS on WVU DB (Rank-1 accuracy of 75.3%
vs. 70.8%). See Figs. 12 (b) and 13 (b). The overall
recognition performance can be further improved by
a fusion of the proposed algorithms and COTS latent
AFIS. Two fusion strategies, namely score-level fusion
(with equal weights) and rank-level fusion (two top
100 candidates lists are fused using Borda count [45])
were implemented. Score level fusion of the COTS
and the proposed algorithm results in significantly
higher rank-1 accuracies, i.e., 73.3% on NIST SD27 and
76.6% on WVU DB. For NIST SD27 with a total of 258
latents, the score-level fusion leads to an additional
17 latents whose mates are now retrieved at rank-

1 compared to the COTS latent AFIS alone. Rank-
level fusion results in even better performance (Rank-
1 accuracies of 74.4% on NIST SD27 and 78.4% on
WVU DB ).

Note that rank-level fusion is preferred over score-
level fusion when, for proprietary reasons, a vendor
may not be willing to reveal the comparison scores.
The CMC curves are shown in Figs. 12 and 13. Fig. 17
shows example latents whose true mates can be cor-
rectly retrieved at rank-1 by the proposed method, but
the COTS latent AFIS was not successful. Although
the two example latents from WVU DB (Figs. 17 (c)
and (d)) have large friction ridge area, the latent AFIS
outputs comparison scores of 0 between the latents
and their mates. Apparently, the latent AFIS could
not extract sufficient number of reliable minutiae in
the latents where the ridges are broken. The pro-
posed algorithm with its use of two different ridge
flow estimation algorithms and dictionary-based and
Gabor filtering-based enhancement, is able to obtain
high quality ridge structures and sufficient number of
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(a) (b)

(c) (d)

Fig. 14: A latent whose true mate was retrieved at
rank-1 by minutiae template 1 but not by minutiae
template 2 (rank-2,457). (a) Input latent with its ROI
(G044 from NIST SD27), (b) mated reference print of
(a) with overlaid minutiae, (c) minutiae set 1 of (a)
overlaid on latent skeleton, and (d) minutiae set 2 of
(a) overlaid on latent skeleton.

minutiae.
To compare the proposed ConvNet-based minu-

tiae descriptor with MCC descriptor [41] which is
a popular minutiae descriptor for reference prints,
we replace the ConvNet-based descriptor in latent
minutiae template 1 and reference print minutiae
template by MCC descriptor. The rank-1 accuracies
on NIST SD27 and WVU DB by comparing modified
minutiae template 1 of latents against modified minu-
tiae templates of 100K reference prints are only 21.3%
and 35.2%, respectively. These accuracies are far lower
than the accuracies of the proposed minutiae template
1 with learned descriptors based on ConvNet (rank-
1 accuracies of 51.2% and 65.7% on NIST SD27 and
WVU DB, respectively).

We also compare the proposed latent recognition
algorithm with Paulino et al.’s algorithm [31], which
uses manually marked minutiae and MCC descrip-
tor. The rank-1 identification rates of the proposed
method are about 20% and 32% higher than those
reported in Paulino et al. [31] on NIST SD27 and WVU
DB, respectively.

5.4 Computation Time
The algorithm was implemented in MATLAB and
runs on a server with 12 cores @ 2.50GHz, 256 GB
RAM and Linux operating system. Using 24 threads
(MATLAB function: parpool), the average template ex-
traction time (all three templates with three ConvNets
for minutiae descriptor) per latent is 2,950 ms. Specif-
ically, the average computation times for extraction

(a) (b)

(c) (d)

Fig. 15: A latent whose true mate was retrieved at
rank-1 by minutiae template 2 but not by minutiae
template 1 (rank-2). (a) Input latent with its ROI (U277
from NIST SD27), (b) mated reference print with
overlaid minutiae, (c) minutiae set of (a) 1 overlaid on
latent skeleton, and (d) minutiae set 2 of (a) overlaid
on latent skeleton.

(a) (b)

Fig. 16: Example latents whose true mates were found
at rank-1 by texture template but not by the minutiae
templates. Reliable minutiae from these two latents
could not be extracted due to (a) poor quality (U276
from NIST SD27) and (b) small friction ridge area
(U292 from NIST SD27).

of minutiae set 1 and minutiae set 2 are 820 ms
and 624 ms, respectively, and the average times for
descriptor extraction of minutiae template 1, minutiae
template 2 and texture template are 129 ms, 126 ms
and 1,245 ms, respectively. The average computation
times for minutiae template and texture template of
rolled prints are 408 ms and 2,240 ms, respectively.
Note that the template extraction for the rolled prints
can be precomputed off-line. The average matching
times for minutiae template 1, minutiae template 2
and texture template are 1.13 ms, 0.98 ms and 10.96
ms, respectively.
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(a) (b)

(c) (d)

Fig. 17: Example of latent images which are correctly
identified at rank-1 by the proposed method but not
by a leading COTS latent AFIS. The retrieval rank of
the true mate of (a) by the latent AFIS is 931, but for
latents in (b), (c) and (d), their true mates could not be
found because the comparison score was zero. Latents
in (a) and (b) are from NIST SD27 whereas latents in
(c) and (d) are from WVU DB.

6 CONCLUSIONS AND FUTURE WORK

Latent fingerprints constitute one of the most impor-
tant and widely used sources of forensic evidence in
forensic investigations. Despite this, efforts to design
and build accurate, robust, and fully automated latent
fingerprint recognition systems have been limited.
Only a handful of commercial companies are able
to provide large-scale latent SDKs, but even they
require significant time and effort of latent examiners
in finding the true mate or a “hit” of a query latent.
To our knowledge, open source literature does not
contain any automated latent recognition method. The
latent recognition problem is difficult due to poor
ridge quality, severe background noise, small friction
ridge area, and image distortion encountered in latent
images.

We present an automated latent fingerprint recog-
nition algorithm and benchmark its performance
against a leading COTS latent AFIS. The contributions
of this paper are as follows:

1) Three latent templates, namely, two minutiae
templates and one texture template, are utilized.
These templates extract complementary infor-
mation from latents;

2) A total of 14 patch types are investigated for
minutiae descriptors that are learned via a Con-
vNet. A systematic feature selection method

shows that only 3 out of 14 patch types are
needed to maintain the overall recognition ac-
curacy at a significant savings in computation.

3) Second-order and third-order graph based
minutiae correspondence algorithms are pro-
posed for establishing minutiae correspon-
dences.

4) Experimental results show that the proposed
method performs significantly better than pub-
lished algorithms on two benchmark databases
(NIST SD27 and WVU latent DB) against 100K
rolled prints. Further, our algorithm is compet-
itive and complementary to a leading COTS
latent AFIS. Indeed, a fusion of the proposed
method and COTS latent AFIS leads to a boost in
rank-1 recognition accuracy for both the bench-
mark latent databases.

Our algorithm for latent recognition can be further
improved as follows.

1) ConvNet architectures, e.g., GoogeLeNet [46],
should be considered to improve the recognition
effectiveness.

2) Exploring the use of additional latent features,
such as ridge count and singular points, to fur-
ther boost the recognition performance.

3) Filtering strategies through a cascaded network
of recognition engines should be studied to
improve the system scalability for recognition
against large scale reference set.

4) Acquiring a large collection of latents to train
the ConvNet.

5) Improving the speed of feature extraction and
comparison.
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