
Fingerprint Indexing and Matching: An Integrated Approach

Kai Cao and Anil K. Jain
Department of Computer Science and Engineering

Michigan State University, East Lansing, Michigan 48824
{kaicao,jain}@cse.msu.edu

Abstract

Large scale fingerprint recognition systems have been de-
ployed worldwide not only in law enforcement but also in
many civilian applications. Thus, it is of great value o
identify a query fingerprint in a large background finger-
print database both effectively and efficiently based on in-
dexing strategies. The published indexing algorithms do not
meet the requirements, especially at low penetrate rates, be-
cause of the difficulty in extracting reliable minutiae and
other features in low quality fingerprint images. We pro-
pose a Convolutional Neural Network (ConvNet) based fin-
gerprint indexing algorithm. An orientation field dictionary
is learned to align fingerprints in a unified coordinate sys-
tem and a large longitudinal fingerprint database, where
each finger has multiple impressions over time, is used to
train the ConvNet. Experimental results on NIST SD4 and
NIST SD14 show that the proposed approach outperforms
state-of-the-art fingerprint indexing techniques reported in
the literature. Further indexing results on an augmented
gallery set of 250K rolled prints demonstrate the scalabil-
ity of the proposed algorithm. At a penetrate rate of 1%,
a score-level fusion of the proposed indexing and a state-
of-the-art COTS SDK provides 97.8% rank-1 identification
accuracy with a 100-fold reduction in the search space.

1. Introduction

Fingerprints are one of the most important biometric traits

to identify individuals due to their perceived uniqueness and

persistence of friction ridge patterns [13]. With decades

of research and development, large scale fingerprint recog-

nition systems have been deployed worldwide not only in

law enforcement and forensic agencies but also in numerous

civilian applications. For example, the FBI’s Next Genera-

tion Identification (NGI) database, one of the world’s largest

law enforcement database, allows federal and state agencies

to search more than 70 million civil fingerprints submitted

for background checks alongside another 50 million or so

Whose fingerprint?

Gallery

Fingerprint Indexing Algorithm

A subset for detailed comparison

Query

Output

Figure 1: Fingerprint matching framework.

prints submitted for criminal investigations1. Representa-

tive examples of civilian applications include (i) the OBIM

(formerly the US-VISIT) program by the Department of

Homeland Security [1] and (ii) India’s Aadhar project [2],

which is now the largest biometrics deployment in the world

with an enrollment that already exceeds 1.1 billion tenprints

(along with corresponding irises and photos) of supposedly

unique individuals2. For the task of identifying a fingerprint

in such massive scale applications, both high identification

accuracy and high search efficiency are critical. Fingerprint

indexing is necessary to quickly locate a subset of candi-

dates from the large background database, followed by a

detailed comparison of the query with the subset of finger-

prints to give the final output, as shown in Fig. 1. However,

an efficient retrieval of a candidate list should ensure that

the true mate of the query is indeed present in the candidate

list. This challenging problem continues to be of significant

interest to biometrics community.

The purported uniqueness of fingerprints is characterized by

three levels of features: (i) level-1 features, such as pattern

type, orientation field and ridge frequency field; (ii) level 2

features, e.g., minutiae and (iii) level 3 features which in-

cludes attributes at a very-fine scale, such as ridge shape,

1https://theintercept.com/2017/02/04/the-fbi-is-building-a-national-

watchlist-that-gives-companies-real-time-updates-on-employees/
2https://uidai.gov.in/about-uidai/about-uidai.html

Longitudinal fingerprint database

…

…

……

Images of the same finger

Aligned fingerprint database

…

…

……

Images of the same finger

p

Inception
V3

Query fingerprint Aligned fingerprint

Similarity
computation

Background

Candidate list Output

Fusion

COTS
SDK

Figure 2: Overview of the proposed fingerprint indexing and matching algorithm. Dotted arrows denote the offline learning

process while the solid arrows denote the online indexing process.

pores and incipient ridges. Given the difficulty of automatic

extraction of level-3 features [8], fingerprint indexing ap-

proaches are primarily based on level-1 and level-2 features.

Level-1 feature based indexing approaches [11, 9] typically

align the fingerprint images based on reference points (e.g.

core or maximum curvature point) or orientation field and

then extract a fixed length feature vector of orientation field

or ridge frequency for indexing. While level-1 indexing is

faster compared to level-2 indexing, they have two main

limitations: (i) the alignment is not robust and (ii) the in-

dexing is not very effective due to low discriminability of

level-1 features [6].

Minutiae based fingerprint indexing algorithms [6, 15, 3,

7, 19] generally extract a set of rotation and translation

invariant features from minutiae points and use hashing

techniques for indexing. Examples of the invariant fea-

tures include geometric features from minutiae triplets [3]

and minutiae quadruplets [7], and minutiae descriptors [6].

Table 1 summarizes these approaches. However, without

any global constraints, local minutiae structures in the query

fingerprint may lead to high similarity to non-mated gallery

fingerprints. To alleviate this, fusion of level-1 and level-2

features for indexing has been used, e.g., [14], [5], to boost

the indexing effectiveness. The minutiae-based fingerprint

indexing approaches also have their own limitations: (i) it is

difficult to extract fixed-length feature vector for indexing,

(ii) indexing performance relies on accurate minutiae ex-

traction which is difficult for poor quality fingerprints, and

(iii) indexing may lead to some loss in identification accu-

racy. None of the indexing approaches in the literature are

able to maintain identification accuracy at low penetration

rate.

To address the limitations of level-1 and level-2 index-

ing, we propose a convolutional neural network (ConvNet)

based fingerprint indexing. In order to align fingerprints

into a unified coordinate system, a fingerprint orientation

field dictionary is learned for fingerprint alignment. A lon-

gitudinal fingerprint database [21] (a total of 440K finger-

prints from 37,410 different fingers) is used to train a Con-

vNet. The output of the last fully connected layer of the

ConvNet is used as the fixed-length feature vector for in-

dexing. This approach has the following advantages: (i) the

fixed-length feature vector is efficient for indexing and, at

the same time, useful for template protection and (ii) minu-

tiae extraction is not needed for indexing. The proposed

indexing algorithm outperforms state-of-the-art algorithms

on two public domain databases, i.e., NIST SD4 and NIST

SD14. Furthermore, we show that the identification accu-

racy is boosted by score level fusion of the proposed index-

ing and a COTS fingerprint SDK.

The main contributions of this paper are as follows:

1. Designed a fingerprint indexing algorithm by leverag-

ing a large longitudinal fingerprint database to train a

ConvNet to generate a fixed-length feature vector is ef-

ficient for indexing. The proposed algorithm does not

explicitly extract fingerprint minutiae.

2. Developed a robust approach for aligning fingerprints

into a unified coordinate system.

3. Demonstrated superior indexing performance on two

different benchmark databases over state-of-the-art al-

gorithms. By fusing the indexing scores and scores

from a COTS fingerprint SDK, both the identification

accuracy and search efficiency are improved.

Table 1: A summary of studies on fingerprint indexing for rolled prints*.

Algorithm Fingerprint
Features Approach Fingerprint

Database**
ER@

PR=1%
ER@

PR=5%
ER@

PR=10%

Bhanu and Tan [3] Minutiae Triplets NIST SD4 26% 16.5% 14.5%

Jiang et al. [9] OF + RF OF Clustering NIST SD4 n.a. 13.7% 10.5%

Liu and Yap [12] OF Polar Complex Mo-

ments

NIST SD4 34% 20% 12%

Cappelli et al. [6] Minutiae MCC descriptor
NIST SD4 6.8% 4.7% 3.9%

NIST SD14 8.9% 6.7% 4.9%

Cappelli &

Ferrara [5]
Minutiae+OF MCC descriptor

NIST SD4 9.5% 1.5% 0.8%

NIST SD14 10.4% 2.1% 1.2%

Su et al. [15] Minutiae+Pose
MCC descriptor

+ pose constraints

NIST SD4 5.2% 3.5% 2.97%

NIST SD14 4.8% 3.0% 2.33%

Proposed*** Texture ConvNet
NIST SD4 1.35% 0.75% 0.40%

NIST SD14 1.07% 0.26% 0.19%

OF: orientation field; RF: ridge frequency field; MCC: minutiae cylinder code; ER: error rate; PR: penetrate rate.

* Some of the numbers shown in the table were estimated from the plots in the corresponding papers.

** All 2,000 fingerprint pairs in NIST SD4 are included while only the last 2,700 fingerprint pairs in NIST SD14 are included.

*** The performance reported here is just for fingerprint indexing without fusion with AFIS.

2. Fingerprint Indexing Algorithm
Fig. 2 outlines the proposed fingerprint indexing algorithm

which consists of offline learning and online fingerprint in-

dexing modules.

2.1. Offline Learning and Template Generation

2.1.1 Learning Orientation field Dictionary

(a) (b) (c)

Figure 3: Illustrating fingerprint image preprocessing. (a)

Input fingerprint image, (b) contrast enhanced fingerprint

image and (c) ROI.

Alignment is crucial to extract transformation invariant fea-

tures for fingerprint indexing. In order to align the training

fingerprints into a unified coordinate system, we learn a fin-

gerprint orientation field dictionary by manually marking

the orientation of the finger joint and automatically detect

the reference point3. 2,000 high quality rolled fingerprints

3Fingerprint reference point is defined as the point with the maximum

curvature on the convex ridge

(NFIQ4 ≤ 2) from 2,000 different fingers are selected from

the large longitudinal fingerprint database used in [21] to

learn an orientation field dictionary for fingerprint align-

ment. Given a fingerprint image I , it is first contrast en-

hanced using the following procedure:

I∗(i, j) =
I(i, j)−meanI(i, j)

varI(i, j)
, (1)

where I∗ is the contrast-enhanced image, meanI and varI
are local pixel-wise mean and variation images, respec-

tively. The gradient magnitude of I∗ is used for region of

interest (ROI) segmentation to extract the foreground con-

sisting of friction ridge pattern. See Fig. 3. The ConvNet-

based approach [4] is applied to I∗ to compute the finger-

print orientation field with block size of 16×16 pixels. Fig.

4 (b) shows the orientation field within ROI of an input fin-

gerprint shown in Fig. 4 (a). For training data, the orienta-

tion of finger joint (Δθ) is manually marked and reference

point (x, y) is detected automatically using the approach in

[20]. The orientation field O is aligned to ensure orientation

of finger joint is horizontal (rotation by −Δθ) and the ref-

erence point is located at x0 = 16 and y0 = 15 on a target

orientation field consisting of 32 × 32 blocks, as shown in

Fig. 4 (d). Formally, the aligned orientation field Ox,y,−Δθ

is computed as follows:

Ox,y,−Δθ(p, q) = Φ(O(i, j)−Δθ), (2)

4NFIQ ranges from 1 to 5, with 1 indicating the highest quality and 5

indicating the lowest quality fingerprint [17].

(a) (b)

(c) (d)

Figure 4: Illustrating fingerprint alignment for training

dataset for learning orientation field dictionary. (a) Auto-

matically extracted reference point and manually marked

orientation of finger joint, and (c) aligned fingerprint based

on reference point and orientation of finger joint, (b) and

(d) show orientation fields of (a) and (b), respectively. The

images in (a) and (b) are 700 × 700 and the images in (c)

and (d) are 512 × 512 . The block size for orientation field

extraction is 16× 16.

Computational
layer

Input layer

Figure 5: Architecture of Kohonen network [10] used for

orientation field dictionary learning. There are 6 rows and 6

columns in the computational layer, which results in a total

of 36 cluster centers. The inputs to the network are 2,048-

dimentional vectors (32× 32× 2) by concatenating cosine

and sine components of 32×32×2 orientation field blocks.

where

q = (j − x) cos(−Δθ)− (i− y) sin(−Δθ) + x0, (3)

p = (i− y) cos(−Δθ) + (j − x) sin(−Δθ) + y0, (4)

and Φ(·) is defined as

Φ(α) =

⎧⎪⎨
⎪⎩

α− π if α ≥ π/2,

α+ π if α < −π/2,

α otherwise.

(5)

Given an aligned orientation field, O, with 32 × 32 block

size, [cos 2O, sin 2O] values are concatenated for every el-

ement of the 32x32 block to form a 2,048-dimensional vec-

tor. With the 2,000 aligned orientation fields, the Koho-

nen network [10], a self-organizing map (SOM) with a

single computational layer arranged in rows and columns

(Fig. 5), is adopted to learn an orientation field dictionary,

D = {D1, D2, ..., D36}. Fig. 6 shows all 36 learned dic-

tionary elements along with their singular points (core and

delta), if present. The five fingerprint types are easily iden-

tified among the learned dictionary elements.

2.1.2 Fingerprint Alignment

Given a fingerprint I , its ROI R, orientation field O within

R and reference point (x, y) are computed following the

procedures in section 2.1.1. Given the aligned orientation

field dictionary elements and the reference point of the in-

put fingerprint, rotation Δθ is the only parameter to be de-

termined. The optimal value Δθopt is the value which min-

imizes the difference between Ox,y,Δθ and one of the ori-

entation field dictionary elements. Formally,

Δθopt = argmin
Δθ

{min
k

Diff(Ox,y,Δθ, Dk)} (6)

where Ox,y,Δθ is as defined in E.q (2) and

Diff(Ox,y,Δθ, Dk) is the dissimilarity between Ox,y,Δθ and

orientation field dictionary element Dk defined as follows:

Diff(Ox,y,Δθ, Dk) =
∑

(i,j)∈Rx,y,Δθ

d(i, j) (7)

d(i, j) = sin2(Ox,y,Δθ(i, j)−Dk(i, j)), (8)

where Rx,y,Δθ is the aligned ROI based on Eqs. (3) and

(4). For each orientation field dictionary element Dk, a

reference point-based Hough transform (Algorithm 1) is

proposed to find the best rotation Δθk between O and Dk

and the dissimilarity is evaluated using Eq. (8). The rota-

tion with the smallest dissimilarity is selected as the optimal

Δθopt, i.e., Δθopt = argminΔθk Diff(Ox,y,Δθk , Dk). The

fingerprint image I is then rotated by Δθopt and translated

to ensure reference point coincides with (x0, Y0).

2.1.3 Training ConvNet

In order to train a powerful ConvNet for fingerprint in-

dexing, multiple fingerprint impressions of the same fin-

ger are needed, which is similar to training a ConvNet for

face search [18]. For this purpose, we select 3,741 sub-

jects with more than 12 impressions from MSP longitudi-

Figure 6: Orientation field dictionary with 36 elements, learned from 2,000 good quality rolled prints with NFIQ ≤ 2. Each

orientation is 32× 32 pixels shown as a block. Red circles denote the core points and the blue triangles denote delta points.

nal fingerprint database [21], which results in around 440K

fingerprints from 37,410 different fingers, i.e., classes, for

training the ConvNet from scratch. As far as we know,

MSP longitudinal fingerprint database is the largest longi-

tudinal fingerprint database in literature. After aligning all

training fingerprints using the approach in section 2.1.2, a

ConvNet is trained to group the fingerprints by fingers. A

number of ConvNet architectures, such as AlexNet, VGG,

GoogLeNet, and Inception V2-V3, have been proposed in

literature for image and object recognition. Among these ar-

chitectures, Inception V3 [16] not only achieves a very good

recognition performance but also improves the efficiency by

replacing two-dimensional filters by two one-dimensional

filters. In this paper, we adopt Tensorflow based Inception

V35 implementation. The 512× 512 fingerprint images are

first downsampled by a factor of 0.65 to 333 × 333 pixels

and then randomly cropped to 299×299 pixels which is the

input image size of Inception V3; the cropping is needed to

accommodate the potential localization errors in reference

point extraction. A factor of 0.65 is selected for downsam-

pling because we need to cover most of the friction ridges in

a 299× 299 region. Data augmentation techniques, such as

random contrast and random brightness, are adopted to en-

sure the model is robust to different variations in fingerprint

images.

5https://github.com/tensorflow/models/tree/master/slim/nets

Algorithm 1 Reference point-based Hough transform

1: Input: Ridge flow O, ROI R and reference point (x, y),
kth orientation field dictionary element Dk

2: Output: Rotation Δθk
3: Initialize the accumulator array A
4: for all block pairs in (i, j, α) ∈ O and (m,n, β) ∈ Dk

do
5: Compute p and q using Eqs. (3) and (4)

6: if abs(q − n) > 5 or abs(p−m) > 5 then
7: Continue

8: Δγ = Φ(β − α)
9: if abs(Δγ) > π/2 then

10: Δγ = Φ(Δγ − π)

11: A(Δγ) = A(Δγ) + 1

12: Smooth A using a Gaussian low-pass filter with σ = 1
13: Δθk = argmaxA

2.1.4 Template Generation

For each fingerprint image in the gallery, it is first aligned

as described in section 2.1.2 and then down sampled by a

factor of 0.65 for reasons mentioned earlier. The central

299 × 299 region is input to the trained ConvNet and the

output of the last fully connected layer, which is a 2,048-

dimensional feature vector, is considered as fingerprint’s

representation. For fast computation of cosine distance used

for similarity, the representation is normalized with unit

length. Given a gallery G with N fingerprints, it is rep-

resented as G = {gi|i = 1, ..., N}, where gi is a 2,048-

dimensional feature vector for the ith gallery fingerprint.

2.2. Online Indexing

Given a query fingerprint Q, its 2,048-dimensional repre-

sentation q is extracted in a manner similar to gallery finger-

prints. The indexing similarity score between q and gi ∈ G,

S(q, gi), is computed as the inner product of q and gi since

both q and gi have the unit length. Formally,

S(q, gi) = qT · gi. (9)

Finding the set of top-k most similar fingerprints Ck(f) in

the gallery G is then formulated as:

Ck(f) = Rankk({S(q, gi)|gi ∈ G}), (10)

where Rankk(·) is a function that finds the top-k largest

values in a set.

3. Experimental Results

This section describes the database and experiments carried

out to evaluate the proposed indexing algorithm and to com-

pare it with the state-of-the-art approaches in the literature.

Penetration rate (%)
1 2 3 4 5 6 7 8 9 10

E
rr

or
 ra

te
 (%

)

0

1

2

3

4

5

6

7

Cappelli et al.[6]
Su et al. [15]
Cappelli & Ferrara [5]
Proposed

Figure 7: Comparison of indexing performance on NIST

SD4. 2,000 “F” fingerprints are used as gallery and the re-

maining 2,000 “S” fingerprints are used as query.

Penetration rate (%)
1 2 3 4 5 6 7 8 9 10

E
rr

or
 ra

te
 (%

)

0

1

2

3

4

5

6

7

8

9

Cappelli et al.[6]
Su et al. [15]
Cappelli & Ferrara [5]
Proposed

Figure 8: Comparison of indexing performance on last

2,700 fingerprint pairs (24301-27000) from NIST SD14

used in previous studies [6], [5] and [15] .

3.1. Datasets

The experiments are conducted on the following two public

domain fingerprint datasets:

• NIST SD46: Contains 2,000 distinct fingers with 2

rolled impressions (“F” and “S”) per finger (4,000 im-

ages in total). The database is evenly distributed over

five fingerprint pattern types, i.e., arch, left loop, right

loop, tented arch and whorl with 800 images/class.

• NIST SD147: Contains 27,000 distinct fingers with 2

rolled impressions (“F” and “S”) per finger (54,000 im-

ages in total).

In addition, 250,000 rolled fingerprints from a forensic

agency are used to enlarge the gallery fingerprint database.

A large gallery database allows us to investigate indexing

efficacy and efficiency with increasing gallery size.

6http://www.nist.gov/srd/nistsd4.cfm
7http://www.nist.gov/srd/nistsd14.cfm

(a) (b)

Figure 9: Two poor quality fingerprints from NIST SD4. (a)

F0427 and (b) F1192.

Penetration rate (%)
1 2 3 4 5 6 7 8 9 10

E
rr

or
 ra

te
 (%

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NIST SD4
NIST SD14

Figure 10: Indexing performance of the proposed approach

on NIST SD4 and NIST SD14 when the gallery was aug-

mented with 250K rolled images.

Rank
0 2 4 6 8 10 12 14 16 18 20

Id
en

tif
ic

at
io

n
ra

te
 (%

)

91

92

93

94

95

96

97

98

99

COTS Matcher
Proposed Indexing
COTS Matcher + Proposed Indexing

Figure 11: Identification performance by score-level fusion

of a COTS SDK and the proposed indexing on NIST SD4.

3.2. Indexing Performance

For a fair comparison with other approaches reported in lit-

erature, we first report the indexing performance on each of

these two databases without using additional rolled prints to

enlarge the background database size. For experiments with

NIST SD4, The 2,000 “F” impressions are used as gallery

fingerprints, and the 2,000 “S” impressions as query. For

experiments with NIST SD14, the “F” and “S” impressions

of the last 2,700 pairs of fingerprints are used as gallery fin-

gerprints and query fingerprints, respectively, as used in pre-

vious studies [6], [5], [15]. Indexing performance is usually

Table 2: Error rate at a fixed penetration rate of 5% with

different size, N , of augmented database. The error rate

does not increase, even drops on NIST SD4, because more

fingerprints are included in top 5% as the N increases.

Database N

0K 10K 50K 100K 250K

NIST SD4 0.75% 0.40% 0.35% 0.35% 0.35%

NIST SD14 0.56% 0.54% 0.55% 0.55% 0.56%

measured by plotting the error rate vs. penetration rate. The

error rate at a given penetration rate p% refers to the fraction

of query prints for which the correct mates could not be re-

trieved within p% of the background database (penetration

rate). Figs. 7 and 8 report the trade-off curves between er-

ror rate and penetration rate for NIST SD4 and NIST SD14,

respectively. Note that the error rates reported in [6], [5]

and [15] are estimated from the plots in their papers. Figs.

7 and 8 show that the proposed ConvNet-based fingerprint

indexing algorithm outperforms results reported in [6], [5]

and [15] significantly, especially at low penetrate rates. On

NIST SD4, our indexing system could not find the mates of

only 8 fingerprints at penetrate rate of 10%. These errors

are primarily due to the poor quality of query or gallery fin-

gerprints as shown in Fig. 9. Similar observations can be

made for NIST SD14.

In order to test the indexing performance on larger back-

ground database, we included additional 250,000 rolled fin-

gerprints in the background database. The results in Fig. 10

and Table 2 confirm the scalability of our algorithm. Note

that entire NIST SD14 including 27,000 fingerprint pairs is

used for this experiments.

3.3. Fusion of Indexing and Comparison

To test if the proposed indexing algorithm can maintain

or even boost the identification performance of a state-of-

the-art fingerprint SDK at a low penetrate rate, we use a

COTS SDK. Given a query fingerprint image, top 1% of

background database are retrieved using the proposed in-

dexing algorithm. The COTS SDK is then used for one-

to-one comparison. The similarity scores output by the

COTS SDK and indexing similarity scores (Eq. (9)) are,

respectively, normalized to [0,1] using min-max normaliza-

tion and these scores are fused using a weighted sum rule.

Due the higher recognition performance of the COTS SDK,

the weights assigned to the COTS SDK scores and index-

ing scores are empirically determined as 0.7 and 0.3, re-

spectively. Fig. 11 compares the Cumulative Match Curve

(CMC) curves of COTS SDK and the fusion of COTS SDK,

indexing score, and proposed indexing algorithm on NIST

SD4 using “F” impressions as gallery and “S” impressions

as query. Experiments on a large background database are

pending and we will update the results once the paper is

accepted. It is evident that the proposed indexing algo-

(a) (b)

(c) (d)

Figure 12: Two fingerprint pairs ((a) and (c); (b) and (d))

from NIST SD4 along with the minutiae sets extracted by

the COTS SDK. The file names of (a), (b), (c) and (d) are

S1174, S1869, F1174 and F1869, respectively. The COTS

SDK could not find the mates of (a) and (b) at rank-1 be-

cause it could not extract sufficient number of correspond-

ing minutiae for comparison. However, the score-level fu-

sion of the COTS SDK and proposed indexing algorithm

was successful in finding the true mates of (a) and (c) (re-

spectively, (b) and (d)) at rank-1.

rithm can improve not only the identification efficiency (100

times) but also the identification accuracy (from 97.2% to

97.8% at rank 1). Fig. 12 shows two fingerprint pairs

for which the COTS SDK could not find the mates of the

queries at rank-1 but the fusion could. The main reason is

that the COTS SDK could not extract sufficient number of

reliable minutiae for comparison.

3.4. Computational Time

The fingerprint alignment and indexing were implemented

on a server with 12 cores @ 2.50 GHz, 256 GB RAM run-

ning Linux O.S using Matlab 2014b. The ConvNet train-

ing and feature extraction using trained ConvNet were con-

ducted on a desktop with i7-6700k @ 4.00 GHz, 32 GB

RAM, GeForce GTX 1080, using Tensorflow8. For the fin-

gerprint alignment, 24 threads (Matlab function: parpool)
were used and the average computational time is 203 mil-

liseconds per fingerprint. The average computational time

for feature extraction from the aligned fingerprints is about

74ms. The average indexing time for a query against the

250K background is about 300 milliseconds. The template

size per fingerprint image is 8KB.

8https://www.tensorflow.org/

4. Conclusions
Fingerprint indexing, despite tremendous progress in pro-

cessor technologies, is crucial for efficient search of grow-

ing size of fingerprint databases in a variety of identification

applications. The state-of-the-art fingerprint indexing algo-

rithms are primarily based on minutiae which are not robust

to poor quality fingerprints. Furthermore, it i difficult to ex-

tract a fixed-length representation from minutiae set for ef-

ficiently indexing. We have proposed a ConvNet based fin-

gerprint indexing approach by learning an orientation field

dictionary for fingerprint alignment; the ConvNet is trained

on a large longitudinal fingerprint database. The perfor-

mance of the proposed indexing algorithm on two rolled

fingerprint databases demonstrates that it outperforms the

state-of-the-art indexing algorithms, especially at low pen-

etrate rates. Our work can be extended in the following di-

rections: (i) improving the speed of fingerprint alignment,

(ii) investigating different ConvNet architectures and loss

functions to improve the indexing accuracy, and (iii) eval-

uating and improving the indexing efficiency and accuracy

on larger background databases.

References
[1] Office of Biometric Identity Management.

http://bias.dhs.gov/obim.

[2] Unique Identification Authority of India. http://uidai.gov.in/.

[3] B. Bhanu and X. Tan. Fingerprint indexing based on novel

features of minutiae triplets. IEEE TPAMI, 25(5):616–622,

May 2003.

[4] K. Cao and A. K. Jain. Latent orientation field estimation via

convolutional neural network. In ICB, pages 349–356, 2015.

[5] R. Cappelli and M. Ferrara. A fingerprint retrieval system

based on level-1 and level-2 features. Expert Systems with
Applications, 39(12):10465 – 10478, 2012.

[6] R. Cappelli, M. Ferrara, and D. Maltoni. Fingerprint in-

dexing based on minutia cylinder-code. IEEE TPAMI,
33(5):1051–1057, May 2011.

[7] O. Iloanusi, A. Gyaourova, and A. Ross. Indexing finger-

prints using minutiae quadruplets. In CVPR 2011 WORK-
SHOPS, pages 127–133, June 2011.

[8] A. K. Jain, Y. Chen, and M. Demirkus. Pores and ridges:

High-resolution fingerprint matching using level 3 features.

IEEE TPAMI, 29(1):15–27, 2007.

[9] X. Jiang, M. Liu, and A. C. Kot. Fingerprint retrieval for

identification. IEEE TIFS, 1(4):532–542, Dec 2006.

[10] T. Kohonen. Self-Organization and Associative Memory.

Springer, 1989.

[11] M. Liu, X. Jiang, and A. C. Kot. Fingerprint retrieval by

complex filter responses. In 18th ICPR, volume 1, pages

1042–1042, 2006.

[12] M. Liu and P.-T. Yap. Invariant representation of orien-

tation fields for fingerprint indexing. Pattern Recognition,

45(7):2532 – 2542, 2012.

[13] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Handbook
of Fingerprint Recognition. Second Edition. Springer, 2009.

[14] A. A. Paulino, E. Liu, K. Cao, and A. K. Jain. Latent fin-

gerprint indexing: Fusion of level 1 and level 2 features. In

IEEE BTAS, pages 1–8, 2013.

[15] Y. Su, J. Feng, and J. Zhou. Fingerprint indexing with pose

constraint. Pattern Recognition, 54:1 – 13, 2016.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

arXiv, 2015.

[17] E. Tabassi, C. Wilson, and C. Watson. Fingerprint image

quality. NISTIR 7151, 2004.

[18] D. Wang, C. Otto, and A. K. Jain. Face search at scale. IEEE
TPAMI, PP(99):1–1, 2016.

[19] Y. Wang, L. Wang, Y. M. Cheung, and P. C. Yuen. Learning

compact binary codes for hash-based fingerprint indexing.

IEEE TIFS, 10(8):1603–1616, Aug 2015.

[20] S. Yoon, K. Cao, E. Liu, and A. K. Jain. LFIQ: Latent finger-

print image quality. In IEEE BTAS, pages 1–8, Sept 2013.

[21] S. Yoon and A. K. Jain. Longitudinal study of fingerprint

recognition. Proceedings of the National Academy of Sci-
ences, 112(28):8555–8560, 2015.

