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Abstract

Latent fingerprints are the most frequently encountered
and reliable crime scene evidence used in forensics inves-
tigations. Automatic methods for quantitative assessment
of a latent in terms of (i) value for individualization (VID),
(ii) value for exclusion only (VEO), and (iii) no value (NV),
are needed to minimize the workload of latent examiners
so that they can pay more attention to challenging prints
(VID and NV latents). Current value determination is ei-
ther made by examiners or predicted given manually anno-
tated features. Because both of these approaches depend
on human markup, they are subjective and time consum-
ing. We propose a fully automatic method for latent value
determination based on the number, reliability, and com-
pactness of the minutiae, ridge quality, ridge flow, and the
number of core and delta points. Given the small number
of latents with VEO and NV labels in two latent databases
available to us (NIST SD27 and WVU), only a two-class
value determination is considered, namely VID and VID,
where the VID class contains VEO and NV latents. Ex-
perimental results show that the value determination by the
proposed method (i) obviates the need for examiner markup
while maintaining the accuracy of value determination and
(ii) can predict the AFIS performance better than examin-
ers.

1. Introduction
Latent fingerprints (latents or marks) refer to friction

ridge patterns lifted at crime scenes and are one of the
most important evidence used in forensics investigations.
Due to the generally low quality of latents, the Analysis,
Comparison, Evaluation and Verification (ACE-V) method-
ology [5] relies on manual feature markup and verification.
FBI’s Integrated Automated Fingerprint Identification Sys-
tem (IAFIS) conducted 14,653 latent feature searches and
2,682 latent image searches during September 2015 alone
[1]. This indicates a significant effort required by exam-
iners for markup and examination of AFIS candidate lists.
While human markup is necessary for all the submitted la-
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Figure 1: Latents of different values. (a), (b) and (c) are deter-
mined by examiners to be VID, VEO and NV, respectively.

tent queries in the current framework, high quality latents
can be handled in a fully automated fashion, or “lights-out”
mode. To that end, an accurate and robust method to deter-
mine the value of a latent is needed.

In the analysis of ACE-V, each latent is assigned one
of the following three values by a latent examiner [3] (see
Figure 1 for examples): value for individualization (VID),
value for exclusion only (VEO), and no value (NV). VID
and VEO latents are typically considered to be “of value”
and used for further comparison, while NV latents are typi-
cally discarded to avoid unnecessary feature annotation and
comparison. Therefore, an erroneous NV determination for
a latent may lead to missed opportunity to identify the sus-
pect, while an erroneous “of value” determination takes up
examiner time for fruitless comparisons [22]. It should be
noted that some forensic agencies only use VID latents for
comparison [3]. This prevailing practice of manual value
determination highly depends on the examiner skill and ex-
perience, therefore it is subjective and lacks transparency.
According to the fingerprint examiners’ “black box” study,
which examined the consensus of latent value determina-
tion by examiners [20, 21], the repeatability (intra-examiner
variability) of value determination was 84.6% after a gap of
several months, while reproducibility (inter-examiner sim-
ilarity) was only 75.2%; moreover, for some latents, the
value determination by examiners even changed from VID
to NV when examined at different times. Another serious
shortcoming of value determination by examiners is that it
may not be indicative of the AFIS performance. The ELFT-
EFS report [14] showed that a significant portion of VEO or
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NV latents, as determined by examiners, could be success-
fully identified by an AFIS.

In a typical forensic agency1, the latent examiners work
in a symbiotic manner with the agency’s AFIS in “semi-
lights-out mode” (semi-automatic search), where the exam-
iners first do the value determination and markup and the
AFIS then provides the candidate list to the examiner for
verification. In this scenario, the value of a latent deter-
mined by examiners is actually coupled to a specific AFIS.
This has been previously referred to as “value determination
by AFIS” [24].

Given all the above mentioned shortcomings of exam-
iners value determination, it is desirable to develop an ob-
jective measure of value determination, which can (1) al-
leviate subjectivity, (2) reduce workload for examiners and
increase throughput, and (3) learn an AFIS-dependent value
determination to improve the overall performance (i.e., hit
rate and throughput) of the “semi-lights out mode” system.

To our knowledge, there is no fully automatic method
for latent value determination in the published literature. A
commonly practiced heuristic for value determination is the
number of minutia points in a latent (examiner markup); a
minimum of 7 minutiae are required for further comparison
as reported in [7]. However, minutiae count alone, without
other features such as ridge clarity and minutiae configu-
rations, may not be sufficient for value assessment. The
work in [15] utilized similarity score output by a tenprint
SDK for value determination without any latent feature ex-
traction. Yoon et al. [24] investigated a set of level-1 and
level-2 features to define Latent Fingerprint Image Quality
(LFIQ). After feature selection, LFIQ was finally defined
in terms of two features: average ridge clarity and the to-
tal number of minutiae. The LFIQ was extended in [23]
by incorporating additional features, namely connectivity of
good ridge structures, minutiae reliability, and finger posi-
tion. This augmented feature set resulted in good predic-
tion of the identification performance of a state-of-the-art
AFIS. However, LFIQ requires manually annotated minu-
tiae, which is both arduous and subjective.

To understand how latent examiners determine the value
of latents, Ulery et al. [22] modeled the relationship be-
tween value determination and feature annotation by cer-
tified latent examiners. The annotated features included
level-1 features (fingerprint pattern, orientation and singular
points), level-2 features (minutiae), level-3 features (dots,
incipient ridges, pores, etc.), and image clarity. Their results
showed that while minutiae count was strongly associated
with value determination, the correlation between examiner
annotation and value determination has limitations due to
lack of reproducibility of both manual annotation and value
determination.

1The workflow for latent processing may vary from one agency to the
other.
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Figure 2: Proposed latent search framework. Quantitative value
determination is an important component (shown in red).

Table 1 compares value determination studies reported
in the literature which are all based on manually annotated
features, specifically minutiae. In this paper, our goal is
to develop a fully automatic latent value assessment ap-
proach, which can improve the accuracy and efficiency of
the latent search process (see Figure 2). We present a fully
automatic latent feature extractor where the features are
the number of minutiae, ridge clarity, ridge flow, singular
points, and minutia reliability. Experimental results on two
latent databases, NIST SD27 and WVU, demonstrate that
the proposed latent value assessment method is consistent
for both examiners and AFIS.

The main contributions of this paper are:
1. A fully automatic feature extraction method that con-

sists of minutiae-based, ridge-based, singularity-based
and ridge flow-based features.

2. A proposed method for automatic latent value deter-
mination that obviates the need for examiner markup
without sacrificing the value determination accuracy.

2. Proposed method for latent value assessment
Figure 3 illustrates the main steps of the proposed value

assessment algorithm. We first present details of the pro-
posed latent processing and automatic minutiae extraction,
followed by extraction of additional features used for value
assessment.

2.1. Latent processing and minutiae extraction

As shown in Figure 4, a latent image often includes mul-
tiple impressions. Therefore, marking the region of interest
(ROI) is regularly the first task of an examiner. Our pro-
posed algorithm assumes that the ROI is marked; the main
steps post-ROI markup are shown in Figure 5 and explained
below.

2.1.1 Ridge flow estimation

Ridge flow, or orientation field, is essential for ridge struc-
ture enhancement, minutiae extraction, pattern type classi-
fication, and identification. For ridge flow estimation of the
input latent, we use the ConvNet-based algorithm proposed
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Table 1: Value determination studies published in the literature.

Study Features Latent database Comments
Yoon et al. [24] Ridge quality and number of

minutiae
NIST SD27 (258 la-
tents) and WVU (449
latents)

Manually marked minutiae re-
quired

Yoon et al. [23] Ridge quality, minutiae reliabil-
ity and finger position

NIST SD27 and WVU Manually marked minutiae re-
quired

Ulery et al. [22] Features at all 3 levels and im-
age clarity

1,850 latents from 6
sources

All features were manually an-
notated

Sankaran et al. [19] Ridge clarity and ridge quality NIST SD27 A tenprint AFIS rather than a
latent AFIS was used

Olsen et al. [17] A subset of features specified in
NFIQ 2.0

No latent prints were
used, only 749 live-
scan prints were used

Tenprints rather than latents
were used; manually marked
minutiae required

Proposed approach Number of minutiae, ridge clar-
ity, core and delta, and ridge
flow features

NIST SD27 and WVU Automatic feature extractor de-
veloped by the authors; state-
of-the-art latent AFIS2 used
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Figure 3: Illustration of the proposed automatic latent value determination algorithm. Target values for the classifier are VID and VID
(VEO or NV).

Figure 4: Latents containing multiple friction ridge patterns; re-
gion of interest (ROI) is indicated by an examiner.

in [8], which has shown the best performance in terms of the
accuracy of the estimated ridge flow compared to manually
annotated ridge flow. The ridge flow of the input latent im-
age (Figure 5 (a)) is estimated within each block of 16×16
pixels (illustrated in Figure 5 (b)).

2.1.2 Latent image normalization

Given that the variation of gray values is minimum along the
ridge orientation and maximum along the direction normal
to the local ridge orientation, the normalized image IN of
the input latent I is obtained as follows:

1. Expand the block-wise ridge flow (section 2.1.1) to
pixel-wise ridge flow (θ) by bilinear interpolation.

2. At pixel (i, j), place an oriented window of size (n ×
m) defined in the local ridge coordinate system, as
shown in Figure 6 (n and m are empirically set to 11
and 7, respectively).

3. Compute the X − signature [13], {Xk}n−1
k=0 , of the

2Latent SDK does not reveal minutiae or other features.

3



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Illustration of the main steps in automatic minutiae extraction. (a) Input latent (I) with ROI, (b) estimated ridge flow, (c)
normalization of I (IN ), (d) enhancement of IN (E), (e) normalization of E (EN ), (f) estimated quality map, (g) cropped latent image
based on ridge quality map, and (h) detected minutiae (red) and manually annotated minutiae (blue). In (g) and (h), the automatical
cropping explains the irregular boundary.

Local ridge orientation

Oriented window

X

X-signature

maxX
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Figure 6: Oriented window and X−signature.

ridges and valleys within the oriented window, where

Xk=
1

m

m−1∑
d=0

I(u, v), k = 0, 1, ..., n− 1, (1)

u= i+(d−m
2
) cos θ(i, j)+(k−n

2
) sin θ(i, j),

v=j+(d−m
2
) sin θ(i, j)+(

n

2
−k) cos θ(i, j).

4. Select the minimum value, minX , and maximum
value, maxX , of {Xk}n−1

k=0 .
5. Convert I(i, j) to the range [0, 1] by

IN (i, j) =


1, if I(i, j) > maxX,

0, if I(i, j) < minX,
I(i,j)−minX
maxX−minX , otherwise.

(2)
Comparison of Figures 5 (a) and (c) shows that the contrast
of ridges and valleys in the normalized latent image is sig-
nificantly improved.

2.1.3 Ridge enhancement

The goal of ridge enhancement is to improve the ridge clar-
ity for minutiae extraction. Fingerprint enhancement meth-
ods generally assume that the ridge and valley widths are
the same, which does not hold for latent prints. Figure 7
(a) shows an example latent where the ridge width is larger
than the valley width which leads to some spurious valleys
by Gabor filtering, as shown in Figure 7 (b). To circumvent
this, we propose a dictionary based method consisting of
the following two steps:

(a) (b) (c)

Figure 7: Latent ridge enhancement. (a) Input latent image, (b)
binarization of the enhanced latent by Gabor filtering, and (c) bi-
narization of the enhanced latent by the proposed dictionary based
approach. Note that some spurious valleys are generated in (b).

1. Dictionary Construction: To generate ridge structure
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Figure 8: Dictionary element construction. (a) A valley image, (b)
a ridge image, and (c) an element constructed by (a) and (b).

Figure 9: A subset of dictionary elements used for latent ridge
enhancement. The ridge width is not always the same as valley
width.

dictionary elements with unequal ridge and valley
widths, we combine two sine images, a ridge image
and a valley image. For a specific orientation α, ridge
width wr and valley width wv , the ridge image Dr and
valley image Dv are constructed as follows:

Dv(y, x) =

{
sin πl

wv
, if 0 6 l < wv,

0, otherwise,
(3)

Dr(y, x) =

{
− sin π(l−wv)

wr
, if wv 6 l < w,

0, otherwise,
(4)

where l = mod(d,w), d = x cos(π2 −α)−y sin(
π
2 −

α)+O; O is the offset in the range {0, 1, ..., w − 1}
and w = wr + wv . A dictionary element D is then
constructed by the ridge image and valley image (D=
Dr+Dv). Figure 8 illustrates the dictionary construc-
tion process. In order to accommodate various types
of ridge structure, α is set in the range [0◦,180◦) with
a step size of 3◦, w is in [7,14] and wv is in [3, w/2+1]
with step size of 1 pixel. This results in a ridge struc-
ture dictionary with 38,400 elements of size 32×32
pixels. Note that dictionary elements with the same
orientation form a subdictionary for the subsequent re-
construction. Example dictionary elements are shown
in Figure 9.

2. Enhancement via reconstruction: The normalized la-
tent IN is divided into overlapping patches of size
32× 32 pixels. For each patch, the dominant orien-
tation is used to find the corresponding subdictionary.
The dictionary element most similar to the patch is se-
lected from the subdictionary and used to reconstruct
the patch. The enhanced latent is finally obtained by

quilting all the reconstructed patches together. Figure
5 (d) shows the enhanced fingerprint imageE, and Fig-
ure 5 (e) shows the normalized image of E (EN ).

2.1.4 Ridge quality estimation

Ridge quality is crucial to ensure that spurious minutiae are
not detected which, in turn, is important for latent value as-
sessment. But, assessing latent ridge quality is challeng-
ing due to background noise and poor ridge structure. The
dictionary-based quality measure [9] for latent segmenta-
tion and enhancement has two limitations: (1) mismatch be-
tween the contrast of latent image and dictionary elements
and (2) dictionary elements cannot account for all possible
ridge patterns. We improve the approach in [9] and combine
it with two coherence measures to define an effective ridge
quality.

The enhanced and normalized image (EN ) of IN in Fig-
ure 5 (e) is used as a template, and the similarity between
patches from IN and EN is used to define ridge quality.
Since this quality measure is based on patches, it is regarded
as a coarse level ridge quality Rc.

Orientation coherence [6] is a measure of the collinear-
ity of gradients in a local region. Let Coh(I) denote the
orientation coherence map of fingerprint image I . Based
on our observations that (i) values of both Coh(IN ) and
Coh(E) are high for foreground ridge structures, (ii) only
Coh(E) is high for recoverable corrupted region, and (iii)
neither Coh(IN ) nor Coh(E) is high for the noisy back-
ground, Coh(IN ) and Coh(E) are used to define fine level
ridge quality. Rc, Coh(IN ), and Coh(E) are normalized
into the range (0,1) using the sigmoid function. Without
ambiguity, we use the same symbols for normalized qual-
ity measures. Fine level ridge quality Rf is then defined as
{Coh(IN ) + Coh(E)}. The overall ridge quality R is de-
fined as [Rf +Rc−T ] , where T is a quality threshold used
to separate background and foreground. Figure 5 (f) shows
the ridge quality map of the latent in Figure 5 (a).

2.1.5 Minutiae extraction

Minutiae are extracted only in good quality regions (R>0),
through the following steps: (1) binarize good quality re-
gions of EN based on the algorithm in [11]; (2) remove
small islands and fill small holes in the binarized image;
(3) thin the binarized image to obtain the skeleton; (4) re-
move short spurs and connect broken ridges; and (5) detect
minutiae in the skeleton using the method in [18]. Figure 5
(h) compares our automatically extracted minutiae against
minutiae obtained from manual markup by an examiner.

5



Table 2: Feature vector used for quantitative value assessment.

Feature no. Description
1 Number of minutiae extracted in the latent
2-8 Sum of reliability of minutiae that have re-

liability value ≥ t, t=0, 0.1, ..., 0.6

9 Average area of the triangles in minutiae
Delaunay triangulation

10 Area of the convex hull of minutiae set
11-17 Sum of ridge quality of blocks that have

quality value ≥ t, t=0, 0.1, ..., 0.6

18 Number of singular points (core and delta)
[16]

19 Standard deviation of the ridge flow (orien-
tation map) in the foreground

2.1.6 Minutiae reliability

Minutiae reliability, which is critical for latent value assess-
ment, is defined in terms of ridge quality (RM ) at minutia
M (section 2.1.4), minutiae compactness f , and finger posi-
tion [23]. Since a minutia with close neighboring minutiae
is typically considered to be of poor quality [10], we define
compactness f of a minutia (M ) as

f =


0 if d > d1

1 if d < d2
(d1−d)
d1−d2 , otherwise,

(5)

where d is the average distance betweenM and its two near-
est minutiae, d1 and d2 are empirically set as 60 and 20,
respectively.

A latent consisting of the central part of a fingerprint is
more likely to find a hit with its true mate because it gen-
erally contains more information. This suggests that higher
weight should be assigned to the minutiae located in the
central part of the latent. The reliability of minutia M is
then defined as QM = RM · (1−f) · w, where w is a two-
dimensional Gaussian function of (x, y), where x (y) is the
difference between the x (y)-coordinate of a minutia and the
reference point in the latent [23].

2.2. Feature vector for latent value assessment

Table 2 summarizes the features used in the proposed
automatic latent value assessment. The first 10 features are
minutiae-related features, where feature numbers 9 and 10
characterize the spatial distribution of the minutiae set. Fea-
tures 11-17 are ridge features, feature 18 is the number of
singular points using complex filtering [16], and feature 19
is an orientation feature.

2.3. Learning latent value assessment

In order to learn latent value assessment, we need a train-
ing database with “true” (ground truth) value labels. True

Table 3: Latent database description. Values determined by ex-
aminers were reported in [12] and values determined by AFIS (in
parentheses) are obtained using the hit rate of a latent AFIS3.

NIST SD27 WVU
No. of latents 258 449

Capture environment
operational
casework

laboratory
environment

No. of VID latents 210 (176) 370 (317)
No. of VID latents 48 (82) 79 (132)

values can be provided either by latent examiners or deter-
mined by the hit rate (true mate is retrieved at rank-1 in the
candidate list) of a state-of-the-art latent AFIS. Hence we
design two different classifiers, one based on hit rate pro-
vided by AFIS and the other based on ground truth values
provided by examiners. For value determination by exam-
iners, all latents determined as VID by examiners constitute
class yVID while latents determined as VEO and NV consti-
tute the second class, namely yVID. For value determination
by AFIS, a latent belongs to yVID if its mate is the top can-
didate in the candidate list output by AFIS, otherwise, it
belongs to yVID. Two binary (yVID vs. yVID) classifiers, i.e.,
Random Forest (RF) and Support Vector Machine (SVM),
are used for value assessment. Due to the imbalanced train-
ing set (no. of samples in yVID is significantly larger than the
no. of samples in yVID), the separating hyperplane of SVM
is skewed towards the majority class (Figure 10 (a)). To
compensate for this, we use SVM bias refinement (referred
to as “SVM+BR”) to improve the overall classification ac-
curacy by grid search (Figure 10 (b)).
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Figure 10: SVM bias refinement. (a) Separating hyperplane output
by SVM and (b) refined separating hyperplane (SVM+BR).

3. Experimental results
3.1. Databases

Two latent fingerprint databases, NIST SD27 [2] and
WVU [4], are used for training and evaluation of the pro-

3The latent matcher used here is one of the top performers in NIST
evaluations [14].
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posed latent value assessment method following 10-fold
cross-validation protocol. The characteristics of these two
databases are summarized in Table 3. We train two mod-
els: one for value determination by examiners and the other
for value determination by AFIS. For the AFIS dependent
value determination, the hit rate of a state-of-the-art latent
matcher is used; the size of the reference database is ex-
tended to 100,000, including 707 mates of the latents in the
two databases. If the true mate of a latent can be retrieved
as the top candidate, it is referred as VID by AFIS (class
yVID), otherwise it is referred as VID by AFIS (class yVID).

3.2. Performance evaluation

A 10-fold cross validation is adopted where each of the
two latent databases is partitioned into 10 subsets. Indi-
vidual subsets from NIST SD27 and WVU are combined
to form 10 folds. The classifier is trained using 9 of the
10 folds and evaluated on the remaining fold; this proce-
dure is repeated 10 times, each time with a different fold for
evaluation. We report the mean and variance of the perfor-
mance metrics. Since learning value assessment is a binary
classification problem, the efficacy of the value assessment
methods is evaluated using two metrics, i.e., classification
accuracy and Area Under the Curve (AUC) of ROC. To
compute AUC, we use the signed distance output by SVM
(positive for one side of hyperplane and negative on another
side) which measures the distance between a test latent and
the hyperplane in the feature space. While the two classifi-
cation methods, RF and SVM+BR, have comparable clas-
sification accuracies, SVM+BR has a higher AUC value.
Due to space limitation, we only report the performance
of SVM+BR. We also compare the proposed method with
LFIQ [23], which requires manual minutiae markup.

Table 4: Confusion matrix, classification accuracy (%) and AUC
of the proposed method and LFIQ when the ground truth is pro-
vided by examiners. Numbers in the brackets indicate s.d. based
on 10-fold cross validation. Each fold has ∼70 latents.

Method Proposed* LFIQ [23]**

ŷVID ŷVID ŷVID ŷVID
yVID 534 46 546 34
yVID 56 71 51 76
Classification
accuracy

85.6% (2.4%) 88.0% (3.8%)

AUC 0.892 (0.033) 0.903 (0.045)
* Automatically extracted features.
** Manually annotated minutiae.

Let ŷVID and ŷVID denote the predicted class labels of
yVID and yVID, respectively. Tables 4 and 5 compare con-
fusion matrices, classification accuracies and AUC of the
proposed method and LFIQ for predicting value determina-
tion by examiners and AFIS, respectively. Table 6 shows the
confusion matrix of value determinations by examiners and

Table 5: Confusion matrix, classification accuracy (%) and AUC
of the proposed proposed and LFIQ when the ground truth is
provided by AFIS (Rank-1 retrieval).

Method Proposed* LFIQ [23]**

ŷVID ŷVID ŷVID ŷVID
yVID 447 46 433 60
yVID 99 115 103 111
Classification
accuracy

79.5% (7.2%) 76.9% (4.1%)

AUC 0.824 (0.069) 0.835 (0.059)
* Automatically extracted features.
** Manually annotated minutiae.

.
Table 6: Confusion matrix illustrating the differences in the value
determination by examiners and AFIS on latents in NIST SD 27
and WVU databases (total of 707 latents).

Method VID by AFIS VID by AFIS

VID by examiners 458 122
VID by examiners 35 92

Consistency (%) 77.8%

AFIS, illustrating the difficulty of establishing the ground
truth for latent value.

Based on these results, we make the following observa-
tions.
• Performance of the proposed automatic value assess-

ment method is comparable to LFIQ, that requires ex-
aminer markup.
• Table 5 shows that the proposed value assessment

works slightly better (79.5%) than LFIQ (76.9%) in
predicting the AFIS hit rate.
• Table 6 shows that only 77.8% of the 707 latents in

the two databases have the same value determinations
(consistency) by examiners and AFIS. This shows the
challenge is establishing the ground truth for value de-
termination of latents.
• Ground truth values provided by examiners lead to

better classification accuracy, as well as AUC, than
ground truth values provided by AFIS. This was also
observed in [24]. The main reason is that value deter-
mination by AFIS also depends on the quality of mated
reference prints.

Figure 11 shows example latents where the proposed
value assessment agrees with value determined by examin-
ers. Figure 12 shows example latents where automatic value
assessment differs from value determined by examiners.

4. Conclusions and future work
An objective method for assessing the value of a la-

tent is critical to avoid unnecessary markup and compari-
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(a) (b) (c) (d)

Figure 11: NIST SD27 latents for which the automatic value deter-
mination agrees with the examiner determined value. (a) Cropped
latent (G020) and its quality map (b) with ground truth VID; (c)
cropped latent (U204) and its quality map (d) with ground truth
VID.

(a) (b) (c) (d)

Figure 12: NIST SD27 latents for which the automatic value de-
termination does not agree with examiner determined value. (a)
Cropped latent (B120) and its quality map (b) with ground truth
VID but classified as VID; (c) cropped latent (G057) and its qual-
ity map (d) with ground truth VID but classified as VID.

son efforts by latent examiners. Current latent value de-
termination is made either by examiners or by algorithms
that require manual minutiae annotation. Both of these ap-
proaches are subjective in nature. In this paper, we present
an objective latent value assessment method based on au-
tomatically extracted features from latents. Experimental
results on NIST SD27 and WVU latent databases demon-
strate the efficacy of the proposed method. Our quantitative
value assessment can be further improved by (i) extracting
multiple minutiae sets (templates) using a multi-resolution
approach; (ii) using feature selection algorithms to obtain
compact yet salient latent feature representation; and (iii)
improving the computational efficiency (current Matlab im-
plementation takes about 15 secs per latent, on average).
We are also in the process of acquiring a larger operational
latent database for robust training and evaluation of value
determination.
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