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Abstract—Latent fingerprints are one of the most important and widely used sources of evidence in law enforcement and forensic

agencies. Yet the performance of the state-of-the-art latent recognition systems is far from satisfactory, and they often require manual

markups to boost the latent search performance. Further, the COTS systems are proprietary and do not output the true comparison

scores between a latent and reference prints to conduct quantitative evidential analysis. We present an end-to-end latent fingerprint

search system, including automated region of interest (ROI) cropping, latent image preprocessing, feature extraction, feature

comparison , and outputs a candidate list. Two separate minutiae extraction models provide complementary minutiae templates. To

compensate for the small number of minutiae in small area and poor quality latents, a virtual minutiae set is generated to construct a

texture template. A 96-dimensional descriptor is extracted for each minutia from its neighborhood. For computational efficiency, the

descriptor length for virtual minutiae is further reduced to 16 using product quantization. Our end-to-end system is evaluated on three

latent databases: NIST SD27 (258 latents); MSP (1,200 latents), WVU (449 latents) and N2N (10,000 latents) against a background

set of 100K rolled prints, which includes the true rolled mates of the latents with rank-1 retrieval rates of 65.7%, 69.4%, 65.5%, and

7.6% respectively. A multi-core solution implemented on 24 cores obtains 1ms per latent to rolled comparison.

Index Terms—Latent fingerprint recognition, end-to-end system, deep learning, autoencoder, minutiae descriptor, texture template,

reference fingerprint.
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1 INTRODUCTION

LATENT fingerprints1 are arguably the most important
forensic evidence that has been in use since 1893 [1].

Hence, it is not surprising that fingerprint evidence at crime
scenes is often regarded as ironclad. This effect is com-
pounded by the depiction of fingerprint evidence in media
in solving high profile crimes. For example, in the 2008 film
The Dark Knight2 a shattered bullet is found at a crime
scene. The protagonists create a digital reconstruction of the
bullet’s fragments, upon which a good quality fingermark
is found, unaffected by heat or friction from the firing of
the gun, nor by the subsequent impact. A match is quickly
found in a fingerprint database, and the suspect’s identity is
revealed!

The above scenario, unfortunately, would likely have a
much less satisfying outcome in the real forensic case work.
While processing of fingermarks has improved considerably
due to advances in forensics, the problem of identifying
latents, whether by forensic experts or automated systems,
is far from solved. The primary difficulty in the analysis
and identification of latent fingerprints is their poor quality
(See Fig. 1). Compared to rolled and slap prints (also called
reference prints or exemplar prints), which are acquired
under supervision, latent prints are lifted after being un-
intentionally deposited by a subject, e.g., at crime scenes,
typically resulting in poor quality in terms of ridge clarity
and presence of large background noise. In essence, latent
prints are partial prints, containing only a small section of
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1. Latent fingerprints are also known as latents or fingermarks
2. https://www.imdb.com/title/tt5281134/
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Fig. 1: Examples of low quality latents from the MSP latent
database ((a) and (b)) and their true mates ((c) and (d)).

the complete fingerprint ridge pattern. And unlike reference
prints, investigators do not have the luxury of requesting a
second impression from the culprit if the latent is found to
be of extremely poor quality.

The significance of research on latent identification is
evident from the volume of latent fingerprints processed
annually by publicly funded crime labs in the United States.
A total of 270,000 latent prints were received by forensic
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labs for processing in 2009 [2] which rose to 295,000 in 2014,
an increase of 9.2% [2]. In June 2018, the FBI’s Next Gen-
eration Identification (NGI) System received 19,766 requests
for Latent Friction Ridge Feature Search (features need to
be marked by an examiner) and 5,692 requests for Latent
Friction Ridge Image Search (features are automatically ex-
tracted by IAFIS) [3]. These numbers represent an increase of
6.8% and 25.8%, respectively, over June 2017 [3]. Every year,
the Criminal Justice Information Services (CJIS) Division
gives its Latent Hit of the Year Award to latent print examiners
and/or law enforcement officers who solve a major violent
crime using the Bureau’s Integrated Automated Fingerprint
Identification System, or IAFIS3.

National Institute of Standards & Technology (NIST)
periodically conducts technology evaluations of fingerprint
recognition algorithms, both for rolled (or slap) and latent
prints. In NIST’s most recent evaluation of rolled and slap
prints, FpVTE 2012, the best performing AFIS achieved a
false negative identification rate (FNIR) of 1.9% for single
index fingers, at a false positive identification rate (FPIR) of
0.1% using 30,000 search subjects (10,000 subjects with mates
and 20,000 subjects with no mates) [4]. For latent prints,
the most recent evaluation is the NIST ELFT-EFS where
the best performing automated latent recognition system
could only achieve a rank-1 identification rate of 67.2%
in searching 1,114 latents against a background containing
100,000 reference prints [4]. The rank-1 identification rate of
the best performing latent AFIS was improved from 67.2%
to 70.2%4 [5] when feature markup by a latent expert was
also input, in addition to the latent images, to the AFIS. This
gap between reference and latent fingerprint recognition
capabilities is primarily due to the poor quality of friction
ridges in latent prints (See Fig. 1). This underscores the need
for developing automated latent recognition with both high
speed and accuracy5. An automated latent recognition sys-
tem will also assist in developing quantitative assessment
of validity and reliability measures6 for latent fingerprint
evidence as highlighted in the 2016 PCAST [6] and the 2009
NRC [7] reports.

In the biometrics literature, the first paper on latent
recognition was published by Jain et al. [8] in 2008 by using
manually marked minutiae, region of interest (ROI) and
ridge flow. Later, Jain and Feng [9] improved the identifi-
cation accuracy by using manually marked extended latent
features, including ROI, minutiae, ridge flow, ridge spacing
and skeleton. However, marking these extended features
in poor quality latents is very time-consuming and might
not be feasible. Hence, the follow-up studies focused on
increasing the degree of automation, i.e., reduction in the
numbers of manually marked features for matching, for
example, automated ROI cropping [10], [11], [12], [13], ridge
flow estimation [12], [14], [15], [16] and ridge enhancement
[17], [18], [19], deep learning based minutiae extraction [20],

3. https://www.fbi.gov/video-repository/newss-latent-hit-of-the-
year-program-overview/view.

4. The best accuracy using both markup and image is 71.4% @ rank-1.
5. Automated latent recognition is also referred to as lights-out recog-

nition; objective is to minimize the role of latent examiners in latent
recognition.

6. Commercial AFIS neither provide extracted latent features nor the
true comparison scores. Instead, only truncated and/or modified scores
are reported.

[21], [22], [23], and comparison [24]. However, these studies
only focus on specific modules in a latent AFIS and do not
build an end-to-end system.

Cao and Jain [25] proposed an automated latent recog-
nition system which includes automated steps of ridge flow
and ridge spacing estimation, minutiae extraction, minutiae
descriptor extraction, texture template (also called virtual
minutiae template) generation and graph-based matching,
and achieved the state-of-the-art accuracies on two latent
databases, i.e., NIST SD27 and WVU latent databases. How-
ever, their study has the following limitations: (i) manually
marked ROI is needed, (ii) skeleton-based minutiae extrac-
tion used in [25] introduces a large number of spurious
minutiae, and (iii) a large texture template size (1.4MB)
makes latent-to-reference comparison extremely slow. Cao
and Jain [26] improved both identification accuracy and
search speed of texture templates by (i) reducing the tem-
plate size, (ii) efficient graph matching, and (iii) implement-
ing the matching code in C++. In this paper, we build a
fully automated end-to-end system, and improve the search
accuracy and computational efficiency of the system. We
report results on three different latent fingerprint databases,
i.e., NIST SD27, MSP and WVU, against a 100K background
of reference prints.

2 CONTRIBUTIONS

The design and prototype of the proposed latent fingerprint
search system is a substantially improved version of the
work in [25]. Fig. 2 shows the overall flowchart of the
proposed system. The main contributions of this paper are
as follows:

• An autoencoder based latent fingerprint enhance-
ment for robust and accurate extraction of ROI, ridge
flow and ridge spacing.

• An autoencoder based latent minutiae detection.
• Complementary templates: three minutiae templates

and one texture template. These templates were se-
lected from a large set of candidate templates to
achieve the best recognition accuracy.

• Reducing descriptor length of minutiae template and
texture template using non-linear mapping [27]. De-
scriptor for reference texture template is further re-
duced using product quantization for computational
efficiency.

• Latent search results on NIST SD27, MSP, and WVU
latent databases against a background of 100K rolled
prints show the state-of-the-art performance.

• A multi-core solution implemented on Intel(R)
Xeon(R) CPU E5-2680 v3@2.50GHz takes ⇠1ms
per latent-to-reference comparison. Hence, a latent
search against 100K reference prints can be com-
pleted in 100 seconds. Latent feature extraction time
is ⇠15 seconds on a machine with Intel(R) i7-
7780@4.00GHz (CPU) and GTX 1080 Ti (GPU).

3 LATENT PREPROCESSING

3.1 Latent Enhancement via Autoencoder

We present a convolutional autoencoder for latent enhance-
ment. The enhanced images are required to find robust and
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Fig. 2: Overview of the proposed end-to-end latent identification system. Given a query latent, three minutiae templates
and one texture template are generated. Two matchers, i.e., minutiae template matcher and texture (virtual minutiae)
template matcher are used for comparison between the query latent and reference prints.

accurate estimation of ridge quality, flow, and spacing. The
flowchart for network training is shown in Fig. 3.

Encoder Decoder

High quality 
fingerprint patch

Degraded fingerprint 
patch

Fig. 3: A convolutional autoencoder for latent enhancement.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4: Fingerprint patch pairs (128⇥ 128 pixels) consisting of
high quality patches (top row) and their corresponding de-
graded patches (bottom row) for training the autoencoder.

Since there is no publicly available dataset consisting
of pairs of low quality and high quality fingerprint image
for training the autoencoder, we degrade 2,000 high quality
rolled fingerprint images (NFIQ 2.07 value > 70) to cre-
ate image pairs for training. The degradation process in-

7. NFIQ 2.0 [28] ranges from 0 to 100, with 0 indicating the lowest
quality and 100 indicating the highest quality fingerprint.

volves randomly dividing fingerprint images into overlap-
ping patches of size 128 ⇥ 128 pixels, followed by additive
gaussian noise and Gaussian filtering with a parameter �

(� 2 (5, 15)). Fig. 4 shows some examples of high qual-
ity fingerprint patches and their corresponding degraded
versions. In addition, data augmentation methods (random
rotation, random brightness and change in contrast) were
used to improve the robustness of the trained autoencoder.

The convolutional autoencoder includes an encoder and
a decoder, as shown in Fig. 3. The encoder consists of 5
convolutional layers with a kernel size of 4 ⇥ 4 and stride
size of 2, while the decoder consists of 5 deconvolutional
layers (or transposed convolutional layer [29]) also with a
kernel size of 4 ⇥ 4 and stride size of 2. The activation
function ReLU (Rectified Linear Units) is used after each
convolutional layer or deconvolutional layer with the excep-
tion of the last output layer, where the tanh function is used.
Table 1 summarizes the architecture of the convolutional
Autoencoder.

The autoencoder trained on rolled prints does not work
very well in enhancing latent fingerprints. So, instead of raw
latent images, we input only the texture component of the
latent by image decomposition [12] to the autoencoder. Fig.
5 (b) shows the enhanced latent corresponding to the latent
image in Fig. 5 (a). The enhanced latents have significantly
higher ridge clarity than input latent images.

3.2 Estimation of Ridge Quality, Ridge Flow and Ridge

Spacing

The dictionary based approach proposed in [12] is modified
as follows. Instead of learning the ridge structure dictionary
using high quality fingerprint patches, we construct the
dictionary elements with different ridge orientations and
spacings using the approach described in [30]. Fig. 6 illus-
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Ridge quality, ridge flow and ridge spacing estima-
tion. (a) Latent fingerprint image, (b) enhanced using the
autoencoder, (c) ridge quality estimated from (b) and ridge
dictionary in Fig. 6, (d) cropping overlaid on the input latent
image, (e) ridge flow overlaid on (the input latent image (a))
and (f) ridge spacing shown as a heat map

Fig. 6: Ridge structure dictionary (90 elements) for estimat-
ing ridge quality, ridge flow and ridge spacing. The patch
size of the dictionary elements is 32⇥ 32 pixels. Figure
retrieved from [30].

trates some of the dictionary elements in vertical orientation
with different widths of ridges and valleys.

In order to estimate the ridge flow and ridge spacing, the
enhanced latent image output by the autoencoder is divided
into 32⇥ 32 patches with overlapping size of 16⇥16 pixels.
For each patch P , its similarity si with each dictionary
element di (normalized to mean 0 and s.d. of 1) is computed
as si = P ·di

||P ||+↵ , where · is the inner product, || · || denotes
the l2 norm and ↵ (↵ = 300 in our experiments) is a
regularization term. The dictionary element dm with the
maximum similarity sm (sm >= si, 8i 6= m) is selected
and the ridge orientation and spacing of P are regarded

TABLE 1: The network architecture of autoencoder. Size
In and Size Out columns follow the format of height ⇥
width ⇥ #channels. Kernel column follows the format of
height ⇥ width, stride. Conv and Deconv denote con-
volutional layer and deconvolutional layer (or transposed
convolutional layer), respectively.

Layer Size In Size Out Kernel

Input 128⇥128 ⇥ 1 - -
Conv1 128⇥128 ⇥ 1 64⇥64 ⇥16 4⇥4, 2
Conv2 64⇥64 ⇥16 32⇥32 ⇥32 4⇥4, 2
Conv3 32⇥32 ⇥32 16⇥16 ⇥64 4⇥4, 2
Conv4 16⇥16 ⇥64 8⇥8 ⇥128 4⇥4, 2
Conv5 8⇥8 ⇥128 4⇥4 ⇥256 4⇥4, 2
Deconv1 4⇥4 ⇥256 8⇥8 ⇥128 4⇥4, 2
Deconv2 8⇥8 ⇥128 16⇥16 ⇥64 4⇥4, 2
Deconv3 16⇥16 ⇥64 32⇥32 ⇥32 4⇥4, 2
Deconv4 32⇥32 ⇥32 64⇥64 ⇥16 4⇥4, 2
Deconv5 64⇥64 ⇥16 128⇥128 ⇥1 4⇥4, 2

as the corresponding values of dm. The ridge quality of
the patch PI in the input latent image corresponding to
P is defined as the sum of sm and the similarity between
PI and P . Figs. 5 (c), (d) and (f) show the ridge quality,
ridge flow and ridge spacing, respectively. Patches with
ridge quality larger than sr (sr = 0.35 in our experiments)
are considered as valid fingerprint patches. Morphological
operations, including open and close operations, are used to
obtain a smooth cropping. Fig. 5 (d) shows the cropping
(ROI) of the latent in Fig. 5 (a).

4 MINUTIAE DETECTION VIA AUTOENCODER

A convolutional Autoencoder-based minutiae detection ap-
proach is proposed in this section. Two minutiae extractor
models are trained: one model (MinuNet reference) is trained
using manually edited minutiae on reference fingerprints
while the other one (MinuNet Latent) is fine-tuned based on
MinuNet reference using manually edited minutiae on latent
fingerprint images.

4.1 Minutiae Editing

In order to train networks for minutiae extraction for latent
and reference fingerprints, a set of ground truth minutiae

are required. However, marking minutiae on poor quality
latent fingerprint images and low quality reference fin-
gerprint images is very challenging. It has been reported
that even experienced latent examiners have low repeata-
bility/reproducibility [31] in minutiae markup. To obtain
reliable minutiae ground truth, we designed a user interface
to show a pair of latent and its corresponding reference fin-
gerprint images side by side; the reference fingerprint image
assists in editing minutiae on the latent. The editing tool
includes operations of insertion, deletion, and repositioning
minutiae points (Fig. 7). Instead of starting markup from
scratch, some initial minutiae points and minutiae corre-
spondences were generated using our automated minutiae
detector and matcher. Because of this, we refer to this
manual process as minutiae editing to distinguish it from
markup from scratch.
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Fig. 7: User interface for minutiae editing. It consists of
operators for inserting, deleting, and repositioning minu-
tia points. A latent and its corresponding rolled mate are
illustrated here. Only the light blue minutiae in latent cor-
respond with the pink minutiae in the mate shown in green
lines.

The following editing protocol was used on the initially
marked minutiae points: i) remove spurious minutiae de-
tected outside the ROI and those erroneously detected due
to noise; ii) the locations of remaining minutiae points were
adjusted as needed to ensure that they were accurately
localized, iii) missing minutiae points which were visible
in the image were marked; iv) minutiae correspondences
between latent and its rolled mate were edited, including
insertion and deletion; A thin plate spline (TPS) model was
used to transform minutiae in latent and its rolled mate,
and v) a second round of minutiae editing (steps (i)-(iv) )
was conducted on latents. One of the authors carried out
this editing process.

For training a minutiae detection model for reference fin-
gerprints, i.e., MinuNet reference, a total of 250 high quality
and poor quality fingerprint pairs from 250 different fingers
from the MSP longitudinal fingerprint database [32] were
used. A finger was selected if there is an impression (image)
of it with the highest NFIQ 2.0 value Q

h and the lowest
NFIQ 2.0 value Q

l which satisfies the following criterion
(Qh �Q

l) > 70. This ensured that we can obtain both high
quality and low quality images for the same finger (See Fig.
8). A COTS SDK was used to get the initial minutiae and
correspondences between selected fingerprint image pairs.

Given the significant differences in the characteristics
of latents and rolled reference fingerprints, we fine-tuned
the MinuNet reference model using minutiae in latent finger-
print images. A total of 300 latent and reference fingerprint
pairs from the MSP latent database were used for retraining.
The minutiae detection model MinuNet reference was used
to extract initial minutiae points and a graph based minutiae
matching algorithm proposed in [25] was used to establish
initial minutiae correspondences.

4.2 Training Minutiae Detection Model

Fig. 9 shows a convolutional autoencoder-based network for
minutiae detection. The advantages of this model include: i)

(a) (b)

(c) (d)

Fig. 8: Examples of rolled fingerprint images from the MSP
longitudinal database [32] for training a network for minu-
tiae detection for reference prints. The fingerprint images in
the first row are of good quality while the corresponding
fingerprint images of the same fingers in the second row
are of low quality. The good quality fingerprint images in
the first row were used to edit minutiae in poor quality
fingerprint images in the second row.

a large training set since the image patches can be input
to the network instead of the whole images , and ii) gen-
eralization of the network to fingerprint images larger than
the patches. In order to handle the variations in the number
of minutiae in fingerprint patches, we encode the minutiae
set as a 12-channel minutiae map and pose the training of
minutiae detection model as a regression problem.

A minutia point m is typically represented as a triplet
m = (x, y, ✓), where x and y specify its location, and ✓

is its orientation (in the range [0, 2⇡]). Inspired by minutia
cylinder-code [33], we encode a minutiae set as a c-channel
heat map and pose the minutiae extraction as a regression
problem (c=12 here). Let h and w be the height and width
of the input fingerprint image I and T = {m1,m2, ...,mn}
be its ISO/IEC 19794-2 minutiae template with n minutiae
points, where mt = (xt, yt, ✓t), t = 1, ..., n. Its minutiae
map H 2 R

h⇥w⇥12 is calculated by accumulating contribu-
tions from each minutiae point. Specifically, for each point
(i, j, k), a response value M(i, j, k) calculated as

M(i, j, k) =
nX

t=1

Cs((xt, yt), (i, j)) · Co(✓t, 2k⇡/12) (1)

where the two terms Cs((xt, yt), (i, j)) and Co(✓t, 2k⇡/12)
are the spatial and orientation contributions of minutia mt

to image point (i, j, k), respectively. Cs((xt, yt), (i, j)) is
defined as a function of the Euclidean distance between
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(xt, yt) and (i, j):

Cs((xt, yt), (i, j)) = exp(� ||(xt, yt)� (i, j)||22
2�2

s

), (2)

where �s is the parameter controlling the width of the
Guassian. Co(✓t, 2k⇡/12) is defined as a function of the
difference in orientation value between ✓t and 2k⇡/12:

Co(✓t, 2k⇡/12) = exp(�d�(✓t, 2k⇡/12)

2�2
s

), (3)

and d�(✓1, ✓2) is the orientation difference between angles
✓1 and ✓2:

d�(✓1, ✓2) =

(
|✓1 � ✓2| �⇡  ✓1 � ✓2 < ⇡,
2⇡ � |✓1 � ✓2| otherwise.

(4)

Fig. 10 illustrates 12-channel minutiae map, where the bright
spots indicate the locations of minutiae points. This autoen-
coder architecture used for minutiae detection is similar to
the autoencoder for latent enhancement with parameters
specified in Table 1. The three differences are thati i) the
input fingerprint patches are size of 64 ⇥ 64 pixels, ii) the
output is a 12-channel minutiae map rather than a single
channel fingerprint image, and ii) the number of of convo-
lutional layers and deconvolutional layers are 4 instead of
5.

Encoder Decoder

Minutiae mapInput fingerprint patch

Fig. 9: Training convolutional autoencoder for minutiae
extraction. For each input patch, the output is a 12-channel
minutia map, where the ith channel represents the minu-
tiae’s contributions to orientation i · ⇡/6.

(a) (b)

Fig. 10: An example of a minutiae map. (a) Manually
marked minutiae overlaid on a fingerprint patch and (b)
12-channel minutiae map. The bright spots in the channel
images indicate the location of minutiae points while the
channel indicates the minutiae orientation.

The two minutiae detection models introduced ear-
lier, MinuNet reference and MinuNet Latent, are trained. For
reference fingerprint images, the unprocessed fingerprint
patches are used for training. On the other hand, latent
fingerprint images were processed by short-time Fourier
transform (STFT) for training in order to alleviate the differ-
ences in latents; the model MinuNet Latent is a fine-tuned
version of the model MinuNet reference.

(" − 1)&
6

"&
6

(" + 1)&
6

)(*, ,, " − 1 %12)

)(*, ,, ")

)(*, ,, " + 1 %12)

/

Fig. 11: Minutia orientation (✓) extraction using quadratic
interpolation.

(a) (b)

(c) (d)

Fig. 12: Examples of minutiae extracted on reference finger-
print images. Images in the first row are of good quality
while the images in the second row are of poor quality.

4.3 Minutiae Extraction

Given a fingerprint image of size w ⇥ h in the infer-
ence stage, a w ⇥ h ⇥ 12 minutiae map M is output by
a minutiae detection model. For each location (i, j, c) in
M , if M(i, j, c) is larger than a threshold mt and it is
a local max in its neighboring 5 ⇥ 5 ⇥ 3 cube, a minu-
tia is marked at location (i, j). Minutia orientation ✓ is
computed by maximizing the quadratic interpolation based
on f((c� 1) · ⇡/6) = M(i, j, (c � 1)%12), f(c · ⇡/6) =
M(i, j, c) and f((c+ 1) · ⇡/6) = M(i, j, (c+1)%12), where
a%b denotes a modulo b. Fig. 11 illustrates minutia orienta-
tion estimation from the minutiae map. Fig. 12 shows some
examples of minutiae extracted in reference fingerprints.

5 MINUTIA DESCRIPTOR

A minutia descriptor contains attributes of the minutia
based on the image characteristics in its neighborhood.
Salient descriptors are needed to establish robust and accu-
rate minutiae correspondences and compute the similarity
between a latent and reference prints. Instead of speci-
fying the descriptor in an ad hoc manner, Cao and Jain
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Fig. 13: Extraction of minutia descriptor using CNN.

[25] showed that descriptors learned from local fingerprint
patches provide better performance than ad hoc descrip-
tors. Later they improved both the distinctiveness and the
efficiency of descriptor extraction [26]. Fig. 13 illustrates the
descriptor extraction process. The outputs (l�dimensional
feature vector) of three patches around each minutia are
concatenated to generate the final descriptor with dimen-
sionality 3l. Three values of l ( i.e., l=32, 64, and 128),
were investigated; we empirically determine that l = 64
provides the best tradeoff between recognition accuracy and
computational efficiency. In this paper, we adopt the same
descriptor as in [26] , where the descriptor length L = 192.

Input 
descriptor 

Non-Linear Mapping

Compressed 
descriptor 

Fig. 14: Framework for descriptor length reduction [27]
which reduces descriptor length from 192 to 96.

y1 y2 y3 …… ym

Ld/m dimension

q1
256 

centroids
q2 q3 qm

q1(y1) q2(y2) q3(y3)
……. qm(ym)

Fig. 15: Illustration of descriptor product quantization.

Since there are a large number of virtual minutiae
(⇠ 1, 000) in a texture template, further reduction of de-
scriptor length is essential for improving the comparison
speed between input latent and 100K reference prints. We
utilized the non-linear mapping network of Gong et al.
[27] for dimensionality reduction. The network consists of
four linear layers (see Fig. 14), where the objective is to

(a) (b)

Fig. 16: Virtual minutiae in two rolled prints; stride size
s=32.

minimize the distance between the cosine similarity of two
input descriptors and the corresponding cosine similarity
of two output compressed descriptors. Empirical results
show that the best value of the descriptor length in the
compressed domain (Ld) in terms of recognition accuracy
is 96. In order to further reduce the virtual minutiae de-
scriptor length, product quantization is adopted. Given a
Ld-dimensional descriptor y, it is divided into m subvec-
tors, i.e., y = [y1|y2|...|ym], where each subvector is of
size Ld/m. The quantizer q contains m subquantizers i.e.,
q(y) 7! [q1(y1)|q2(y2)|...|qm(ym)], where each subquantizer
quantizes the input subvector into the closest centroid out
of the 256 centroids trained by k-means clustering. Fig. 15
illustrates the product quantization process. The distance
D(x, q(y)) between an input 96-dimensional descriptor x

and a quantized descriptor q(y) is computed as

D(x, q(y)) =
mX

i=1

||xi � c
i
q(yi)||, (5)

where xi is the ith subvector of x, c
i
q(yi)

is the q(yi)th
centroid of the ith subvector and || · || is the Euclidean
distance. The final dimensionality of the descriptor of rolled
prints is m = 16.

6 REFERENCE TEMPLATE EXTRACTION

Given that the quality of reference fingerprints, on average,
is significantly better than latents, a smaller number of
templates suffice for reference prints compared to latents.
Each reference fingerprint template consists of one minu-
tiae template and one texture template. The model Min-

uNet reference was used for minutiae detection on reference
fingerprints. Since the reference fingerprint images were
directly used for training, no preprocessing on the reference
fingerprint images is needed. Fig. 12 show some examples
of minutiae sets extracted on low quality and high quality
rolled fingerprint images. For each minutia, the descriptor
is extracted following the approach shown in Fig. 13 with
descriptor length reduction via nonlinear mapping in Fig.
14.

A texture template for reference prints is introduced
in the same manner as for latents. The ROI for reference
prints is defined by the magnitude of the gradient and the
orientation field with a block size of 16 ⇥ 16 pixels as in
[34]. The locations of virtual minutiae are sampled by raster
scan with a stride of s and their orientations are the same as
the orientations of its nearest block in the orientation field.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 17: Latent minutiae extraction. (a) Input latent, (b)-
(f) automated extracted minutiae sets after i) STFT based
enhancement, ii) autoencoder based enhancement, iii) con-
trast based enhancement, followed by STFT based enhance-
ment, iv) decomposition followed by Gabor filtering, and
v) contrast based enhancement followed by Gabor filtering,
respectively, and (g) common minutiae generated from (b)-
(e) using majority voting. Minutiae sets in (b), (d) and (g)
are selected for matching. Note that minutiae sets in (b) and
(c) are extracted by MinuNet Latent but the mask is not used
to remove spurious minutiae in case mask is inaccurate.

The virtual minutiae close to the mask border are ignored.
Fig. 16 shows virtual minutiae extracted in two rolled prints.
Similar to real minutiae, a 96-dimensional descriptor is first
obtained using Fig. 13 and Fig. 14, and then further reduced
to 16 dimensions using product quantization.

Algorithm 1 Latent template extraction algorithm

1: Input: Latent fingerprint image
2: Output: 3 minutiae templates and 1 texture template
3: Enhance latent by autoencoder; estimate ROI, ridge flow

and ridge spacing
4: Process friction ridges: (i) STFT, (ii) contrast enhance-

ment + STFT, (iii) autoencoder, (iv) decomposition +
Gabor filtering and (v) contrast enhancement + Gabor
filtering

5: Apply minutiae model MinuNet Latent to processed im-
ages (i) and (ii) in step 4 to generate minutiae sets 1 (Fig.
17 (b)) and 2 (Fig. 17 (c))

6: Apply minutiae model MinuNet reference to processed
images (iii) - (v) in step 5 to generate minutiae sets 3
(Fig. 17 (d)), 4 (Fig. 17 (e)) and 5 (Fig. 17 (f))

7: Generate a common minutiae set 6 (Fig. 17 (g)) using
minutiae sets 1-5

8: Extract descriptors for minutiae sets 1, 3 and 6 to obtain
the final 3 minutiae templates

9: Generate a texture template using virtual minutiae and
the associated descriptor

7 LATENT TEMPLATE EXTRACTION

In order to extract complementary minutiae sets for la-
tents, we apply two minutiae detection models, i.e., Mi-

nuNet Latent and MinuNet reference, to four differently
processed latent images as described earlier. This results in
five minutiae sets. A common minutiae set (minutiae set
6) is obtained from these five minutiae sets using majority
voting. A minutia is regarded as a common minutia if two
out of the four minutiae sets contain that minutia, which
means the distance between two minutiae locations is less
than 8 pixels and the difference in minutia orientation is
less than ⇡/6. Fig. 17 shows these five minutiae sets. For
computational efficiency, only minutiae sets 1, 3 and 6 are
retained for matching. Each selected minutiae set as well as
the set of associated descriptors form a minutiae template.
The texture template consists of the virtual minutiae located
using ROI and ridge flow [26], and their associated descrip-
tors. Algorithm 1 summarizes the latent template extraction
process.

8 LATENT-TO-REFERENCE PRINT COMPARISON

Two comparison algorithms, i.e., minutiae template com-
parison and texture template comparison, are proposed for
latent-to-reference comparison (See Fig. 18).

8.1 Minutiae Template Comparison

Each minutiae template contains a set of minutiae points,
including their x, y-coordinates and orientations, and their
associated descriptors. Let M l = {ml

i = (xl
i, y

l
i,↵

l
i, d

l
i)}

nl
i=1

denote a latent minutiae set with nl minutiae, where
(xl

i, y
l
i), ↵

l
i and d

l
i are x� and y�coordinates, orientation

and descriptor vector of the ith minutia, respectively. Let
M

r = {mr
j = (xr

j , y
r
j ,↵

r
j , d

r
j)}

nr
j=1 denote a reference print

minutiae set with nr minutiae, where (xr
j , y

r
j ), ↵

r
j and d

r
j

are their x� and y�coordinates, orientation and descriptor
of the jth reference minutia, respectively. The comparison



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Minutiae template 1

Minutiae template 2

Minutiae template 3

Texture template

Minutiae template 

Texture template

!"#,%

!"#,&

!"#,'

!##

La
te

nt
 te

m
pl

at
es

R
ef

er
en

ce
 te

m
pl

at
es

Fig. 18: Latent-to-reference print templates comparison.
Three latent minutiae templates are compared to one ref-
erence minutiae template, and the latent texture template is
compared to the reference texture template. Four compari-
son scores are fused to generate the final comparison score.

algorithm in [26] is adopted for minutiae template compari-
son. For completeness, we summarize the minutiae template
comparison algorithm in Algorithm 2.

Algorithm 2 Minutiae template comparison algorithm

1: Input: Latent minutiae template M
l with nl minutiae

and reference minutiae template M
r with nr minutiae

2: Output: Similarity score
3: Compute the nl ⇥ nr similarity matrix (S) using the

cosine similarity between descriptors
4: Normalize the similarity matrix from S to S

0 using the
approach in [35]

5: Select the top N (N=120) minutiae correspondences
based on the normalized similarity matrix

6: Remove false minutiae correspondences using simpli-
fied second-order graph matching

7: Remove additional false minutiae correspondences us-
ing full second-order graph matching

8: Compute similarity smt between M
l and M

r

8.2 Texture Template Comparison

Similar to the minutiae template, a texture template con-
tains a set of virtual minutiae points, including their x,
y-coordinates and orientations, and associated quantized
descriptors. Let T l = {ml

i = (xl
i, y

l
i,↵

l
i, d

l
i)}

nl
i=1 and T

r =
{mr

j = (xr
j , y

r
j ,↵

r
j , d

r
j)}

nr
j=1 denote a latent texture template

and a reference texture template, respectively, where d
l
i

is a 96-dimensional descriptor of the ith latent minutia
and d

r
j is the 96/m-dimensional quantized descriptor of

the jth reference minutia. The overall texture template
comparison algorithm is essentially the same as the minu-
tiae template comparison algorithm in Algorithm 2 with
two main differences: i) descriptor similarity computation
and ii) top N virtual minutiae correspondences selection.

The similarity s(dli, d
r
j) between d

l
i and d

r
j is computed

as s(dli, d
r
j) = D0 � D(dli, d

r
j), where D0 is a threshold

and D(dli, d
r
j) is defined in Eq. (5) which can be computed

offline.
Instead of normalizing all scores and then selecting

the top N (N = 200 for texture template comparison)
initial virtual minutiae correspondences among all nl ⇥ nr

possibilities, we select the top 2 reference virtual minutiae
for each latent virtual minutiae based on virtual minutiae
similarity and select the top N initial virtual minutiae corre-
spondences among 2 ·nl possibilities (2 ·nl correspondences
are all selected if 2·nl <= N ). In this way, we further reduce
the computation time.

8.3 Similarity Score Fusion

Let sMT,1, sMT,2 and sMT,3 denote the similarities between
the three latent minutiae templates against the single ref-
erence minutiae template. Let sTT denote the similarity
between the latent and reference texture templates. The final
similarity score s between the latent and the reference print
is computed as the weighted sum of sMT,1, sMT,2, sMT,3

and sTT as below:

s = �1sMT,1 + �2sMT,2 + �3sMT,3 + �4sTT , (6)

where �1, �2, �3 and �4 are the weights that sum to 1;
their values are empirically determined to be 1, 1, 1 and
0.3, respectively.

8.4 Implementation

Both minutiae template comparison and texture template
comparison algorithms are implemented in C++. In ad-
dition, matrix computation tool Eigen8 is used for faster
minutiae similarity computation. OpenMP (Open Multi-
Processing)9, an application programming interface (API)
that supports multi-platform shared memory multiprocess-
ing programming, is used for code parallelization. Hence
the latent-to-reference comparison algorithm can be exe-
cuted on multiple cores simultaneously. The search speed
(⇠1.0 ms per latent to reference print comparison) on a
24-core machine is able to achieve about 10-times speedup
compared to a single-core machine.

9 EXPERIMENTS

In this report, three latent databases, NIST SD27 [36], MSP
and WVU databases are used to evaluate the proposed
end-to-end latent AFIS. Table 2 summarizes the three la-
tent databases and Fig. 19 shows some example latents. In
addition to the mated reference prints, we use additional
reference fingerprints, from NIST SD14 [37] and a forensic
agency, to enlarge the reference database to 100,000 for
search results reported here. We follow the protocol used in
NIST ELFT-EFS [38], [39] to evaluate the search performance
of our system.

8. https://github.com/libigl/eigen
9. https://www.openmp.org/resources/openmp-compilers-tools/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

NIST SD27

MSP latent database

WVU latent database

N2N latent database

Fig. 19: Examples of latents from the four databases.

TABLE 2: Summary of latent databases.

Database No. of latents Source
NIST SD27 258 Forensic agency
MSP 1,200 Forensic agency
WVU 449 Laboratory
N2N 10,000 Laboratory

9.1 Evaluation of Descriptor Dimension Reduction

We evaluate the non-linear mapping based descriptor di-
mension reduction and product quantization on NIST SD27
against a 10K gallery. Non-linear mapping is adopted to re-
duce the descriptor length of both real minutiae and virtual
minutiae. Three different descriptor lengths, i.e., 128, 96 and
64, are evaluated. Table 3 compares the search performance
of different descriptor lengths. There is a slightly drop for
96- and 48-dimensional descriptors, but a significantly drop
for 48-dimensional descriptors.

Because of the large number of virtual minutiae, we
further reduce the descriptor length of virtual minutiae
using product quantization. Table 4 compares the search
performance of texture template on NIST SD27 using three
different number of subvectors of 96-dimensional descrip-
tors, i.e., m = 24, 16 and 12. m = 16 achieves a good
tradeoff between accuracy and feature length. Hence, we
use non-linear mapping to reduce the descriptor length from
192 dimension to 96 dimension and then further reduce
virtual minutiae descriptor length to m = 16 using product
quantization in the following experiments.

TABLE 3: Search performance on NIST SD27 after non-linear
mapping

Dimension Rank-1 Rank-5 Rank-10
192 72.5% 77.5% 79.5%
96 71.3% 77.5% 79.1%
48 61.6% 67.8% 70.9%

TABLE 4: Search performance of texture template on NIST
SD27 using different product quantization (PQ) settings.

Value of m Rank-1 Rank-5 Rank-10
Without PQ 65.5 70.5% 74.8%
m =24 64.3% 69.8% 72.1%
m =16 63.6% 69.4% 71.3%
m =12 58.9% 65.1% 69.8%

9.2 Search Performance

We benchmark the proposed latent AFIS against one of the
best COTS latent AFIS10 as determined in NIST evaluations.
Two fusion strategies, namely score-level fusion (with equal
weights) and rank-level fusion (top-200 candidate lists are
fused using Borda count), are adopted to determine if
the proposed algorithm and COTS latent AFIS have com-
plementary search capabilities. In addition, the algorithm
proposed in [25] is also included for comparison on NIST
SD27 and WVU databases.

The performance is reported based on close-set identi-
fication where the query is assumed to be in the gallery.
Cumulative Match Characteristic (CMC) curve is used for
performance evaluation. Fig. 20 compares the five CMC
curves on all 258 latents in NIST SD27 as well as subsets
of latents of three different quality levels (good, bad and
ugly) and Fig. 21 compares the four CMC curves on 1,200
latents in MSP latent database. On both operational latent
databases, the performance of our proposed latent AFIS is
comparable to that of COTS latent AFIS. In addition, both
rank-level and score-level fusion of two latent AFIS can
significantly boost the performance, which indicates that
these two AFIS provide complementary information. Figs.
22 (a) and (b) show two examples that our latent AFIS can
retrieve their true mates at rank-1 but the COTS AFIS cannot
due to overlap between background characters and friction
ridges. Figs. 22 (c) and (d) show two failure cases of the
proposed latent AFIS due to the broken ridges. The rank-1
accuracy of proposed latent AFIS on NIST SD27 is slightly
higher than the algorithm proposed in [25] even though
manually marked ROI was used in [25].

The five CMC curves on 449 latents in WVU database
are compared in Fig. 23 and the four CMC curves on 10,000
latents in N2N database are compared in Fig. 24. Both WVU
and N2N databases were collected in laboratory. The latents
in these two latent databases are dry (ridges are broken), and
are significantly from operational latents which were used
for fine-tuning minutiae detection model and rolled prints
which were used for training Autoencoder for enhancement,
the minutiae detection model and enhancement model do

10. The latent COTS used here is one of the top-three performers
in the NIST ELFT-EFS evaluations [38], [39] and the method in [25].
Because of our non-disclosure agreement with the vendor, we cannot
disclose its name.
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(a) (b)

(c) (d)

Fig. 20: Cumulative Match Characteristic (CMC) curves of our latent search system and COTS latent AFIS, their score-level
and rank-level fusions, and semi-automatic algorithm of Cao and Jain [25] on (a) all 258 latents in NIST SD27, (b) subset
of 88 “good” latents, (c) subset of 85 “bad” latents and (d) subset of 85 “ugly” latents. Note that the scales of the y-axis in
these four plots are different to accentuate the differences between the different curves.

Fig. 21: CMC curves of our latent search system, COTS
latent AFIS, and score-level and rank-level fusion of the two
systems on the MSP latent database against 100K reference
prints.

not work well on WVU latent database. This explains why
the performance of the proposed latent AFIS is lower than
COTS latent AFIS. Fig. 25 shows some examples where
the enhancement model fails. This indicates that additional

dry fingerprints are needed for proposed training for deep
learning based approaches.

10 SUMMARY

We present the design and prototype of an end-to-end
fully automated latent search system and benchmark its
performance against a leading COTS latent AFIS. The con-
tributions of this paper are as follows:

• Design and prototype of the first fully automated
end-to-end latent search system different curves.

• Autoencoder-based latent enhancement and minu-
tiae detection.

• Efficient latent-to-reference print comparison. One
latent search against 100K reference prints can be
completed in 100 seconds on a machine with Intel(R)
Xeon(R) CPU E5-2680 v3@2.50GHz.

There are still a number of challenges we are trying to
address listed below.

• Improvement in automated cropping module. The
current cropping algorithm does not perform well
on dry latents in WVU and N2N databases.
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(a) (b)

(c) (d)

Fig. 22: Our latent AFIS can retrieve the true mates of latents
in (a) and (b) at rank-1 which the COTS latent AFIS cannot.
COTS latent AFIS can retrieve the mates of latents in (c) and
(d) at rank-1 while our latent AFIS cannot. One minutiae
set extracted by our AFIS is overlaid on each latent. These
latents are from the NIST SD27 database.

Fig. 23: CMC curves of our latent search system, COTS
latent AFIS. Score-level and rank-level fusions of the two
systems on the WVU latent database against 100K reference
prints show that the bot the fusion schemes boost the overall
recognition accuracy significantly.

• Obtain additional operational latent databases for
robust training for various modules in the search
system.

• Include additional features, e.g., ridge flow and ridge
spacing, for similarity measure.
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