This paper has been accepted by TIFS

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 1

End-to-End Latent Fingerprint Search

Kai Cao, Member, IEEE, Dinh-Luan Nguyen, Student Member, IEEE, Cori Tymoszek, Student Member, IEEE,
and Anil K. Jain, Fellow, IEEE

Abstract—Latent fingerprints are one of the most important
and widely used sources of evidence in law enforcement and
forensic agencies. Yet the performance of the state-of-the-art
latent recognition systems is far from satisfactory, and they often
require manual markups to boost the latent search performance.
Further, the COTS systems are proprietary and do not output
the true comparison scores between a latent and reference prints
to conduct quantitative evidential analysis. We present an end-to-
end latent fingerprint search system, including automated region
of interest (ROI) cropping, latent image preprocessing, feature
extraction, feature comparison, and outputs a candidate list.
Two separate minutiae extraction models provide complementary
minutiae templates. To compensate for the small number of
minutiae in small ridge area and poor quality latents, a virtual
minutiae set is generated to construct a texture template. A
96-dimensional descriptor is extracted for each minutia from
its neighborhood. For computational efficiency, the descriptor
length for virtual minutiae is further reduced to 16 using product
quantization. Our end-to-end system is evaluated on four latent
databases: NIST SD27 (258 latents); MSP (1,200 latents), WVU
(449 latents) and N2N (10,000 latents) against a background set
of 100K rolled prints, which includes the true rolled mates of
the latents with rank-1 retrieval rates of 65.7%, 69.4%, 65.5%,
and 7.6% respectively. A multi-core solution implemented on 24
cores obtains 1ms per latent to rolled comparison.

Index Terms—Latent fingerprint recognition, end-to-end sys-
tem, deep learning, autoencoder, minutiae descriptor, texture
template, reference fingerprint.

I. INTRODUCTION

ATENT fingerprints' are arguably the most important
forensic evidence that has been in use since 1893 [1].
Hence, it is not surprising that fingerprint evidence at crime
scenes is often regarded as ironclad. This effect is compounded
by the depiction of fingerprint evidence in media in solving
high profile crimes. For example, in the 2008 film The Dark
Knight?> a shattered bullet is found at a crime scene. The
protagonists create a digital reconstruction of the bullet’s
fragments, upon which a good quality fingermark is found,
unaffected by heat or friction from the firing of the gun, nor
by the subsequent impact. A match is quickly found in a
fingerprint database, and the suspect’s identity is revealed!
The above scenario, unfortunately, would likely have a
much less satisfying outcome in the real forensic case work.
While processing of fingermarks has improved considerably
due to advances in forensics, the problem of identifying
latents, whether by forensic experts or automated systems,

Kai Cao, Dinh-Luan Nguyen, Cori Tymoszek and A.K. Jain are with the
Dept. of Computer Science and Engineering, Michigan State University, East
Lansing, MI 48824 U.S.A.

E-mail: {kaicao,jain}@cse.msu.edu

ILatent fingerprints are also known as latents or fingermarks
Zhttps://www.imdb.com/title/tt5281134/

(c) (d

Fig. 1: Examples of low quality latents from the MSP latent
database ((a) and (b)) and their true mates ((c) and (d)).

is far from solved. The primary difficulty in the analysis
and identification of latent fingerprints is their poor quality
(See Fig. 1). Compared to rolled and slap prints (also called
reference prints or exemplar prints), which are acquired under
supervision, latent prints are lifted after being unintentionally
deposited by a subject, e.g., at crime scenes, typically resulting
in poor quality in terms of ridge clarity and presence of large
background noise. In essence, latent prints are partial prints,
containing only a small section of the complete fingerprint
ridge pattern. And unlike reference prints, investigators do not
have the luxury of requesting a second impression from the
culprit if the latent is found to be of extremely poor quality.

The significance of research on latent identification is ev-
ident from the volume of latent fingerprints processed an-
nually by publicly funded crime labs in the United States.
A total of 270,000 latent prints were received by forensic
labs for processing in 2009 [2] which rose to 295,000 in
2014, an increase of 9.2% [2]. In June 2018, the FBI’s
Next Generation Identification (NGI) System received 19,766
requests for Latent Friction Ridge Feature Search (features
need to be marked by an examiner) and 5,692 requests for
Latent Friction Ridge Image Search (features are automatically
extracted by Integrated Automated Fingerprint Identification
System (IAFIS)) [3]. These numbers represent an increase of

caoka
Typewritten Text
This paper has been accepted by TIFS

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 2

6.8% and 25.8%, respectively, over June 2017 [3]. Every year,
the Criminal Justice Information Services (CJIS) Division
gives its Latent Hit of the Year Award to latent print examiners
and/or law enforcement officers who solve a major violent
crime using the Bureau’s Integrated Automated Fingerprint
Identification System, or IAFIS?.

National Institute of Standards & Technology (NIST) peri-
odically conducts technology evaluations of fingerprint recog-
nition algorithms, both for rolled (or slap) and latent prints.
In NIST’s most recent evaluation of rolled and slap prints,
FpVTE 2012, the best performing Integrated Automated Fin-
gerprint Identification System (AFIS) achieved a false negative
identification rate (FNIR) of 1.9% for single index fingers,
at a false positive identification rate (FPIR) of 0.1% using
30,000 search subjects (10,000 subjects with mates and 20,000
subjects with no mates) [4]. For latent prints, the most recent
evaluation is the NIST ELFT-EFS where the best performing
automated latent recognition system could only achieve a
rank-1 identification rate of 67.2% in searching 1,114 latents
against a background containing 100,000 reference prints [4].
The rank-1 identification rate of the best performing latent
AFIS was improved from 67.2% to 70.2%* [5] when feature
markup by a latent expert was also input, in addition to the
latent images, to the AFIS. This gap between reference and
latent fingerprint recognition capabilities is primarily due to
the poor quality of friction ridges in latent prints (See Fig.
1). This underscores the need for developing automated latent
recognition with both high speed and accuracy’. An automated
latent recognition system will also assist in developing quan-
titative assessment of validity and reliability measures® for
latent fingerprint evidence as highlighted in the 2016 PCAST
(President’s Council of Advisors on Science and Technology)
[6] and the 2009 NRC (National Research Council) [7] reports.

In the biometrics literature, the first paper on latent recogni-
tion was published by Jain et al. [8] in 2008 by using manually
marked minutiae, region of interest (ROI) and ridge flow.
Later, Jain and Feng [9] improved the identification accuracy
by using manually marked extended latent features, includ-
ing ROI, minutiae, ridge flow, ridge spacing and skeleton.
However, marking these extended features in poor quality
latents is very time-consuming and might not be feasible.
Hence, the follow-up studies focused on increasing the degree
of automation, i.e., reduction in the numbers of manually
marked features for matching, for example, automated ROI
cropping [10], [11], [12], [13], ridge flow estimation [14],
[12], [15], [16] and ridge enhancement [17], [18], [19], deep
learning based minutiae extraction [20], [21], [22], [23], and
comparison [24], [25], [26]. However, these studies only focus
on specific modules in a latent AFIS and do not build an end-
to-end system.

3https://www.fbi.gov/video-repository/newss-latent-hit-of-the-year-
program-overview/view.

4The best accuracy using both markup and image is 71.4% @ rank-1.

5 Automated latent recognition is also referred to as lights-out recognition;
objective is to minimize the role of latent examiners in latent recognition.

6Commercial AFIS neither provide extracted latent features nor the true
comparison scores. Instead, only truncated and/or modified scores are re-
ported.

Cao and Jain [27] proposed an automated latent recognition
system which includes automated steps of ridge flow and ridge
spacing estimation, minutiae extraction, minutiae descriptor
extraction, texture template (also called virtual minutiae tem-
plate) generation and graph-based matching, and achieved
the state-of-the-art accuracies on two latent databases, i.e.,
NIST SD27 and WVU latent databases. However, their study
has the following limitations: (i) manually marked ROI is
needed, (ii) skeleton-based minutiae extraction used in [27]
introduces a large number of spurious minutiae, and (iii) a
large texture template size (1.4MB) makes latent-to-reference
comparison extremely slow. Cao and Jain [28] improved both
identification accuracy and search speed of texture templates
by (i) reducing the template size, (ii) efficient graph matching,
and (iii)) implementing the matching code in C++. In this
paper, we build a fully automated end-to-end system, and
improve the search accuracy and computational efficiency of
the system. We report results on four different latent fingerprint
databases, i.e., NIST SD27, MSP, WVU and N2N, against a
100K background of reference prints.

II. CONTRIBUTIONS

Instead of training an end-to-end CNN model for latent
fingerprint identification, we have trained several CNN models
for individual modules of the system, i.e., (i) ridge enhance-
ment for ROI, (ii) minutiae set extraction and (iii) minutiae
descriptor computation. This makes it easy for a human to tell
how well the individual modules, i.e. ROI, ridge flow and ridge
spacing maps, minutiae sets and the minutiae correspondences
(between a query latent and a candidate exemplar print) are
performing. In this way, the system will not be easily fooled by
feeding an image which is different from reference prints to the
system [29], [30]. The design and prototype of the proposed
latent fingerprint search system is a substantially improved
version of the work in [27]. Fig. 2 shows the overall flowchart
of the proposed system’. The main contributions of this paper
are as follows:

o An autoencoder based latent fingerprint enhancement for
robust and accurate extraction of ROI, ridge flow and
ridge spacing.

e An autoencoder based latent minutiae detection.

o Complementary templates: three minutiae templates and
one texture template. These templates were selected from
a large set of candidate templates to achieve the best
recognition accuracy.

o Reducing descriptor length of minutiae template and tex-
ture template using non-linear mapping [31]. Descriptor
length for reference texture template is further reduced
using product quantization for computational efficiency.

o Latent search results on NIST SD27, MSP, WVU and
N2N latent databases against a background of 100K
rolled prints show the state-of-the-art performance.

o A multi-core solution implemented on Intel(R) Xeon(R)
CPU E5-2680 v3@2.50GHz takes ~1ms per latent-to-
reference comparison. Hence, a latent search against

"The source code is available at https:/github.com/prip-lab/MSU-
LatentAFIS.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 3

STFT

Query latent

Decomposition +

Ridge flow Gabor filtering

B <
Autoencoder

Ridge spacing

Contrast + STFT

Contrast +
Gabor filtering

Reference print database

Minutiae set 2

Minutiae set 3

Texture template

Candidate list with comparison scores

Estimates of ROI, ridge
flow and ridge spacing

Latent image
processing

Feature extraction and
template generation

Fig. 2: Overview of the proposed end-to-end latent identification system. Given a query latent, three minutiae templates and one
texture template are generated. Two matchers, i.e., minutiae template matcher and texture (virtual minutiae) template matcher
are used for comparison between the query latent and reference prints.

100K reference prints can be completed in 100 seconds.
Latent feature extraction time is ~15 seconds on a ma-
chine with Intel(R) i7-7780@4.00GHz (CPU) and GTX
1080 Ti (GPU).

This paper is substantially improved version of [27] and
[28]. Both the robustness (performance shown on 4 different
latent databases, collected in two different laboratory environ-
ments and by two different forensic agencies) and speed (1 ms
per latent-rolled comparison) of the system are much better
now. The following is a list of major differences between this
paper and [27], [28].

o Automated ROI cropping and a deep learning based
minutiae extractor. In [27] and [28], the ROI was
manually cropped while in this paper, the ROIs are au-
tomatically extracted. That makes our system a complete
automated end-to-end latent AFIS.

o The minutia sets in [27] and [28] were detected using
a skeleton-based approach, so the minutiae can only
be detected on the enhanced latent images not in the
raw latent images. In this paper, we have proposed a
deep learning based minutiae extractor trained on latent
images.

o To improve the recognition performance, we proposed
a method to generate a fused minutia set from multiple
minutia sets.

o The search speed is significantly faster now by using
product quantization and C++ based multi-core imple-
mentation.

III. LATENT PREPROCESSING

A. Latent Enhancement via Autoencoder

We present a convolutional autoencoder for latent enhance-
ment. The enhanced images are required to find robust and

accurate estimation of ridge quality, flow, and spacing. The
flowchart for network training is shown in Fig. 3.

.)
A ,‘»';;,’, j
High quality

Degraded fingerprint
fingerprint patch

patch

Fig. 3: A convolutional autoencoder for latent enhancement.

%&

(a)

Fig. 4: Fingerprint patch pairs (128x 128 pixels) consisting
of high quality patches (top row) and their corresponding
degraded patches (bottom row) for training the autoencoder.

Since there is no publicly available dataset consisting of
pairs of low quality and high quality fingerprint images for
training the autoencoder, we degrade 2,000 high quality rolled
fingerprint images (NFIQ 2.0® value > 70) to create image

8NFIQ 2.0 [32] ranges from 0 to 100, with 0 indicating the lowest quality
and 100 indicating the highest quality fingerprint.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 4

®

Fig. 5: Ridge quality, ridge flow and ridge spacing estimation.
(a) Latent fingerprint image, (b) enhanced using the autoen-
coder, (c) ridge quality estimated from (b) and ridge dictionary
in Fig. 7, (d) cropping overlaid on the input latent image, (e)
ridge flow overlaid on (the input latent image (a)) and (f) ridge
spacing shown as a heat map

pairs for training. The degradation process involves randomly
dividing fingerprint images into overlapping patches of size
128 x 128 pixels, followed by additive gaussian noise and
Gaussian filtering with a parameter o (0 € (5,15)). Fig.
4 shows some examples of high quality fingerprint patches
and their corresponding degraded versions. In addition, data
augmentation methods (random rotation, random brightness
and change in contrast) were used to improve the robustness
of the trained autoencoder.

The convolutional autoencoder includes an encoder and
a decoder, as shown in Fig. 3. The encoder consists of 5
convolutional layers with a kernel size of 4 x 4 and stride size
of 2, while the decoder consists of 5 deconvolutional layers
(or transposed convolutional layer [33]) also with a kernel size
of 4 x 4 and stride size of 2. The activation function ReLU
(Rectified Linear Units) is used after each convolutional layer
or deconvolutional layer with the exception of the last output
layer, where the tanh function is used. Table I summarizes the
architecture of the convolutional Autoencoder.

The autoencoder trained on rolled prints does not work
very well in enhancing latent fingerprints. So, instead of

TABLE I: The network architecture of autoencoder. Size In
and Size Out columns follow the format of height x width x
#channels. Kernel column follows the format of height x
width, stride. Conv and Deconv denote convolutional layer
and deconvolutional layer (or transposed convolutional layer),
respectively.

Layer Size In Size Out Kernel
Input 128x128 x 1 - -

Convl 128x128 x 1 64x64 x16 4x4, 2
Conv2 64x64 x16 32x32 x32 4x4,2
Conv3 32x32 x32 16x16 x64 4x4,2
Conv4 16x16 x64 8x8 x128 4x4,2
Conv5 8x8 x128 4x4 x256 4x4,2
Deconvl 4x4 x256 8x8 x128 4x4, 2
Deconv?2 8x8 x128 16x16 x64 4x4,2
Deconv3 16x16 x64 32x32 x32 4x4,2
Deconv4 32x32 x32 64x64 x16 4x4,2
Deconv5 64x64 x16 128x 128 x1 4x4,2

(b)

(©) (d
Fig. 6: Example of latent decomposition. Images in (b) and
(d) are decomposed texture components of latent images in
(a) and (c), respectively.

raw latent images, we input only the texture component of
the latent by image decomposition [12] (See Fig. 6) to the
autoencoder’®. Image decomposition decompose a latent into a
texture part with local oscillatory patterns and a cartoon part
with piecewise-smooth characteristics containing structured
noise. The cartoon part is discarded and texture part contains
friction ridge pattern and is used for further feature extraction.
Fig. 5 (b) shows the enhanced latent corresponding to the latent
image in Fig. 5 (a). The enhanced latents have significantly
higher ridge clarity than input latent images.

9Because the contrast of the enhanced latent images plays an important role
in latent ROI cropping, we do not want the enhanced texture noise to be used
as groundtruth for training. Another observation is that the ridge continuity
of the texture components is not as good as the original images. Therefore,
we used the original reference prints rather than their texture components for
training the autoencoder.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 5

B. Estimation of Ridge Quality, Ridge Flow and Ridge Spac-
ing

CUIEEELLLLEREELLEREREEELERE LR
ALCEECCCECRRERRCLECOUERREEECELEREREEEELLER R R
LU CECR LI LT ELEEELRLEE LML

Fig. 7: Ridge structure dictionary (90 elements) for estimating
ridge quality, ridge flow and ridge spacing. The patch size of
the dictionary elements is 32x32 pixels. Figure retrieved from
[34].

The dictionary based approach proposed in [12] is modified
as follows. Instead of learning the ridge structure dictionary
using high quality fingerprint patches, we construct the dictio-
nary elements with different ridge orientations and spacings
using the approach described in [34]. Fig. 7 illustrates some
of the dictionary elements in vertical orientation with different
widths of ridges and valleys.

In order to estimate the ridge flow and ridge spacing, the
enhanced latent image output by the autoencoder is divided
into 32 x 32 patches with overlapping size of 16x 16 pixels. For
each patch P, its similarity s; = S(P, d;) with each dictionary
element d; is computed as

P d;

S = TR a T+ ™
where - is the inner product, || - || denotes the ls norm and «
(a = 300 and 8 = 1 in our experiments) is a regularization
term. The dictionary element d,,, with the maximum similarity
Sm (8Sm >= 84, Vi # m) is selected and the ridge orientation
and spacing of P are regarded as the corresponding values of
d.,. The ridge quality of the patch P in the input latent image
corresponding to the P in the enhanced latent image is defined
as the sum of s,,, and the similarity S(Pr, P) (Eq. (1)) between
Pr and P. Figs. 5 (c), (d) and (f) show the ridge quality, ridge
flow and ridge spacing, respectively. Patches with ridge quality
larger than s, (s, = 0.35 in our experiments) are considered as
valid fingerprint patches. Morphological operations, including
open and close operations, are used to obtain a smooth
cropping. Fig. 5 (d) shows the cropping (ROI) of the latent
in Fig. 5 (a).

IV. MINUTIAE DETECTION VIA AUTOENCODER

A convolutional Autoencoder-based minutiae detection ap-
proach is proposed in this section. Two minutiae extractor
models are trained: one model (MinuNet_reference) is trained
using manually edited minutiae on reference fingerprints while
the other one (MinuNet_Latent) is fine-tuned based on Mi-
nuNet_reference using manually edited minutiae on latent
fingerprint images.

A. Minutiae Editing

In order to train networks for minutiae extraction for latent
and reference fingerprints, a set of ground truth minutiae is
required. However, marking minutiae on poor quality latent

EE DIDRRYY]

Fig. 8: User interface for minutiae editing. It consists of oper-
ators for inserting, deleting, and repositioning minutia points.
A latent and its corresponding rolled mate are illustrated here.
Only the light blue minutiae in latent correspond with the pink
minutiae in the mate shown in green lines.

fingerprint images and low quality reference fingerprint images
is very challenging. It has been reported that even experienced
latent examiners have low repeatability/reproducibility [35] in
minutiae markup. To obtain reliable minutiae ground truth,
we designed a user interface to show a pair of latent and
its corresponding reference fingerprint images side by side;
the reference fingerprint image assists in editing minutiae on
the latent. The editing tool includes operations of insertion,
deletion, and repositioning minutiae points (Fig. 8). Instead of
starting markup from scratch, some initial minutiae points and
minutiae correspondences were generated using our automated
minutiae detector and matcher. Because of this, we refer to
this manual process as minutiae editing to distinguish it from
markup from scratch.

The following editing protocol was used on the initially
marked minutiae points: i) remove spurious minutiae detected
outside the ROI and those erroneously detected due to noise;
ii) the locations of remaining minutiae points were adjusted
as needed to ensure that they were accurately localized, iii)
missing minutiae points which were visible in the image were
marked; iv) minutiae correspondences between latent and its
rolled mate were edited, including insertion and deletion; A
thin plate spline (TPS) model was used to transform minutiae
in latent and its rolled mate, and v) a second round of minutiae
editing (steps (i)-(iv)) was conducted on latents. One of the
authors carried out this editing process.

For training a minutiae detection model for reference finger-
prints, i.e., MinuNet_reference, a total of 250 high quality and
poor quality fingerprint pairs from 250 different fingers from
the MSP longitudinal fingerprint database [36] were used. A
finger was selected if there is an impression (image) of it with
the highest NFIQ 2.0 value Q" and the lowest NFIQ 2.0 value
Q' which satisfies the following criterion (Q"—Q') > 70. This
ensured that we can obtain both high quality and low quality
images for the same finger (See Fig. 9). A COTS SDK was
used to get the initial minutiae and correspondences between

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 6

selected fingerprint image pairs.

(c) (@

Fig. 9: Examples of rolled fingerprint images from the MSP
longitudinal database [36] for training a network for minutiae
detection for reference prints. The good quality fingerprint
images in the first row were used to edit minutiae in poor
quality fingerprint images in the second row.

Given the significant differences in the characteristics of
latents and rolled reference fingerprints, we fine-tuned the
MinuNet_reference model using minutiae in latent fingerprint
images. A total of 300 latent images from the MSP latent
database were used for retraining. The minutiae detection
model MinuNet_reference was used to extract initial minu-
tiae points and a graph based minutiae matching algorithm
proposed in [27] was used to establish initial minutiae corre-
spondences.

B. Training Minutiae Detection Model

Fig. 10 shows a convolutional autoencoder-based network
for minutiae detection. The advantages of this model include:
i) a large training set since the image patches can be input
to the network instead of the whole images , and ii) gener-
alization of the network to fingerprint images larger than the
patches. In order to handle the variations in the number of
minutiae in fingerprint patches, we encode the minutiae set as
a 12-channel minutiae map and pose the training of minutiae
detection model as a regression problem.

A minutia point m is typically represented as a triplet
m = (z,y,0), where = and y specify its location, and 6
is its orientation (in the range [0, 27]). Inspired by minutia
cylinder-code [37], we encode a minutiae set as a c-channel
heat map and pose the minutiae extraction as a regression
problem (c=12 here). Let A and w be the height and width
of the input fingerprint image I and T' = {mj, mo,...,my,}

be its ISO/IEC 19794-2 minutiae template with n minutiae
points, where m; = (¢, y, 0:), t = 1,...,n. Its minutiae map
H € RMwx12 ig calculated by accumulating contributions
from each minutiae point. Specifically, for each point (3, j, k),
a response value M (i, j, k) calculated as

M(i,j, k) =Y Co((@e,ye), (5,5)) - Co(Be, 2km/12) (2)

where the two terms Cs((x¢,vt), (4,7)) and Co(0¢, 2km/12)
are the spatial and orientation contributions of minutia m; to
image point (4, j, k), respectively. Cs((z¢, y¢), (4, 7)) is defined
as a function of the Euclidean distance between (z,y:) and
(i,):
. . 2
. L, Yt) — (L7

Culln) 6.3)) = eap(- AW DN

where o, is the parameter controlling the width of the Guas-

sian. C, (0, 2km/12) is defined as a function of the difference
in orientation value between 6; and 2kw/12:

 d(0y, 2km /12)
20?2

and d¢ (61, 02) is the orientation difference between angles 6,

and 65:

do(01,02) = {

Co (0, 2km/12) = exp(), 4)

01 — 62
2r — |91 —92‘

Fig. 11 illustrates 12-channel minutiae map, where the bright
spots indicate the locations of minutiae points. This au-
toencoder architecture used for minutiae detection is similar
to the autoencoder for latent enhancement with parameters
specified in Table I. The three differences are i) the input
fingerprint patches are of size 64 x 64 pixels, ii) the output
is a 12-channel minutiae map rather than a single channel
fingerprint image, and ii) the numbers of convolutional layers
and deconvolutional layers are 4 instead of 5.

—m <0 —0 <,
otherwise.

&)

Encoder Decoder

f_/%
LS, A
Al
Ll

Input fingerprint patch Minutiae map

Fig. 10: Training convolutional autoencoder for minutiae ex-
traction. For each input patch, the output is a 12-channel
minutia map, where the ¢th channel represents the minutiae’s
contributions to orientation i - /6.

The two minutiae detection models introduced earlier, Min-
uNet_reference and MinuNet_Latent, are trained for minutiae
detection on reference fingerprint images and latent fingerprint
images, respectively. For MinuNet_reference, unprocessed ref-
erence fingerprint patches are used for training. On the other
hand, latent fingerprint images were processed by short-time
Fourier transform (STFT) for training in order to alleviate the
differences in latents in training database and testing databases;
the model MinuNet_latent is a fine-tuned version of the model
MinuNet_reference.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 7

A]
7R

Fig. 11: An example of a minutiae map. (a) Manually marked
minutiae overlaid on a fingerprint patch and (b) 12-channel
minutiae map. The bright spots in the channel images indicate
the location of minutiae points while the channel indicates the
minutiae orientation.

/o

M(i,j,c)

. .
M(i,j, (c — 1)%12 Y M(D,j, (c + 1)%12)

1
(c+Drm
6

(c—Dr

1
1
1
1
1
1
1
T
6 6

S

Fig. 12: Minutia orientation (¢) extraction using quadratic
interpolation.

C. Minutiae Extraction

Given a fingerprint image of size w x h in the inference
stage, a w X h x 12 minutiae map M is output by a minutiae
detection model. For each location (4, j, c) in M, if M (i, j,c)
is larger than a threshold m; and it is a local max in its
neighboring 5 X 5 x 3 cube, a minutia is marked at location
(,4). The higher the value of M (i, j,c) is, the more confi-
dent the extracted minutia is. Hence, we define the minutiae
quality or confidence as M (i, j,c). Minutia orientation 6 is
computed by maximizing the quadratic interpolation based
on f((c—1)-7/6) = M(i,5,(c —)%12), f(c-7/6) =
M(i,j,¢) and f((c+1)-7/6) = M(i,7, (c+1)%12), where
a%b denotes a modulo b. Fig. 12 illustrates minutia orienta-
tion estimates from the minutiae map. Fig. 13 shows some
examples of minutiae extracted in reference fingerprints.

V. MINUTIA DESCRIPTOR

A minutia descriptor contains attributes of the minutia based
on the image characteristics in its neighborhood. Salient de-
scriptors are needed to establish robust and accurate minutiae
correspondences and compute the similarity between a latent
and reference prints. Instead of specifying the descriptor in
an ad hoc manner, Cao and Jain [27] showed that descriptors
learned from local fingerprint patches provide better perfor-
mance than ad hoc descriptors. Later they improved both the
distinctiveness and the efficiency of descriptor extraction [28].
Fig. 14 illustrates the descriptor extraction process. Three
different values for feature vector dimensionality, [, i.e., 128,
64 and 32, were evaluated by using 5,460 minutiae corre-
spondences between the latent images and the mated rolled
prints from the NIST SD27 database. (=64 achieved a good
balance between accuracy and complexity [28]. Note that
the descriptor length training used a reference dataset, which

3. R.MIDDLE

©) (d

Fig. 13: Examples of minutiae extracted on reference finger-
print images. Images in the first row are of good quality while
the images in the second row are of poor quality.

A

l-dimensional
feature vector

[-dimensional
feature vector

[-dimensional
feature vector

T,
1! Sz 1

1
[[
| - -
| N TS M| 3/-dimensional fA-——————- ny
| 2 S, - . e ’
¥ descriptor

Fig. 14: Extraction of minutia descriptor using CNN.

is different from the mates of latents in any of the latent
databases. In this paper, we adopt the same descriptor as in
[28] , where the descriptor length L = 192.

In order to understand the CNN based minutiae descriptors,
we illustrate it with a small number of 96 x 96 synthesized
fingerprint patches where those patches have 1) the same ridge
flow and ridge spacing but with different minutiae configura-
tions, and 2) same minutiae configuration but different ridge
flow and ridge spacing. Using the AF-FM models [38] we
show the minutiae descriptors as 8 x 8 heat maps. Fig. 15
illustrates synthesized fingerprint patches, heat maps of their
descriptors, and similarities between descriptors, i.e. inner
product between two normalized vectors, between descriptors.
An analysis of the similarities shows that i) CNN based
descriptors not only capture the texture information, i.e., ridge
flow and ridge spacing, but also minutiae configurations, and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 8

dl
— —
— —
— —
I e
(
— — df -d; = 0.88
e — dT d-. = 0.88
— —_— 1%
\= —— dl -d, =082
e— — df -dg =0.50
-~ © 4. . dl -d, =027
% 7 dl-d, =021
% dl - dg = 0.43
T — @ -dy = 059

&
5
&

.
B
71
X

(8)

—~
=
=

Fig. 15: Synthesized fingerprint patches (96 x 96 pixels) and
their 64-dimensional descriptors (by the first CNN descriptor
extractor in Fig. 14) shown as 8 x 8 heat maps. Fingerprint
patches in (a)-(d) have the same ridge flow and ridge spacing
but different minutiae configurations while fingerprint patches
in (e)-(h) have the same minutiae configuration but different
ridge flows and ridge spacings. Note that the 3 minutiae other
than the center minutia were randomly generated. From the
similarities, i.e. inner product between two normalized vectors,
between descriptors shown on the rightmost side show that the
order of the importance of the features are: ridge flow, ridge
spacing and minutiae.

ii) the order of the importance of the features captured by CNN
based descriptors are ridge flow, ridge spacing and minutiae.
The reason is because ridge flow and ridge spacing are
level-1 features and more reliable for low quality fingerprint
images than level-2 features. There might be some other visual
properties which can affect descriptors and we leave this
investigation as a future work.

Since there is a large number of virtual minutiae (~ 1, 000)
in a texture template, further reduction of descriptor length is
essential for improving the comparison speed between input
latent and 100K reference prints. We utilized the non-linear
mapping network of Gong et al. [31] for dimensionality
reduction. The network consists of four linear layers (see
Fig. 16), where the objective is to minimize the distance
between the cosine similarity of two input descriptors and
the corresponding cosine similarity of two output compressed
descriptors. Empirical results show that the best value of the
descriptor length in the compressed domain (Lg) in terms
of recognition accuracy is 96. In order to further reduce
the virtual minutiae descriptor length, product quantization is
adopted. Given a Lg-dimensional descriptor y, it is divided
into m subvectors, i.e., y = [y1|y2]|---|ym], where each subvec-
tor is of size Ly/m. The quantizer ¢ contains m subquantizers
i.c.s q(y) (g1 (41)[g2(y2)]--| g (ym)], Where each subquan-
tizer quantizes the input subvector into the closest centroid
out of the 256 centroids trained by k-means clustering. Fig.

17 illustrates the product quantization process. The distance
D(xz,q(y)) between an input 96-dimensional descriptor x and
a quantized descriptor ¢(y) is computed as

D(z,q(y)) = > lles = clynlls (6)
i=1

where z; is the ith subvector of z, sz(yi) is the ¢(y;)th centroid
of the ith subvector and ||-|| is the Euclidean distance. The final
dimensionality of the descriptor of rolled prints is m = 16.

VI. REFERENCE TEMPLATE EXTRACTION

Given that the quality of reference fingerprints, on average,
is significantly better than latents, a smaller number of tem-
plates suffices for reference prints compared to latents. Each
reference fingerprint template consists of one minutiae tem-
plate and one texture template. The model MinuNet_reference
was used for minutiae detection on reference fingerprints.
Since the reference fingerprint images were directly used for
training, no preprocessing on the reference fingerprint images
is needed. Fig. 13 show some examples of minutiae sets
extracted on low quality and high quality rolled fingerprint
images. For each minutia, the descriptor is extracted following
the approach shown in Fig. 14 with descriptor length reduction
via nonlinear mapping in Fig. 16.

A texture template for reference prints consists of virtual
minutiae and their descriptors. The virtual minutiae extraction
is the same as [27]. Precisely, an input fingerprint image is
firstly cropped by the magnitude of the gray scale gradient
and the orientation field with a block size of 16 x 16 pixels
is estimated as in [39]. Let (x,y) and « be the location and
orientation of the center of a block within ROI. Each block
(x,y,) is considered as a virtual minutia and its descriptor
extraction is the same as real minutiae descriptor extraction.
Note that the virtual minutiae near to ROI boundary are not
included in the templates because their descriptors are not
reliable.

VII. LATENT TEMPLATE EXTRACTION

In order to extract complementary minutiae sets for latents,
we apply two minutiae detection models, i.e., MinuNet_Latent
and MinuNet_reference, to four differently processed latent
images as described earlier. This results in five minutiae sets.
A common minutiae set (minutiae set 6) is obtained from
these five minutiae sets using majority voting. A minutia is
regarded as a common minutia if two out of the five minutiae
sets contain that minutia, which means the distance between
two minutiae locations is less than 8 pixels and the difference
in minutia orientation is less than 7/6. Fig. 19 shows these
five minutiae sets. For computational efficiency, only minutiae
sets 1, 3 and 6 are retained for matching. Each selected
minutiae set as well as the set of associated descriptors form a
minutiae template. The texture template consists of the virtual
minutiae located using ROI and ridge flow [28], and their
associated descriptors. Algorithm 1 summarizes the latent
template extraction process.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 9

Non-Linear Mapping

|
Linear

BatchNorm
PReLU

Linear
¥

BatchNorm
PReLU

Input
descriptor

Compressed
descriptor

Fig. 16: Framework for descriptor length reduction [31] which reduces descriptor length from 192 to 96.

L /m dimension

N Y2 3
RO OO
centroids

|41(Vl) | |qz()’2) | |qs()’3) |

Ym

Fig. 17: Illustration of descriptor product quantization.

(a) (b)

Fig. 18: Virtual minutiae in two rolled prints; stride size s=32.

VIII. LATENT-TO-REFERENCE PRINT COMPARISON

Two comparison algorithms, i.e., minutiae template compar-
ison and texture template comparison, are proposed for latent-
to-reference comparison (See Fig. 20).

A. Minutiae Template Comparison

Each minutiae template contains a set of minutiae points,
including their z, y-coordinates and orientations, and their
associated descriptors. Let M! = {m! = (2},4},al,d})} 1",
denote a latent minutiae set with n; minutiae, where (z!,y!),
al and d! are z— and y—coordinates, orientation and descrip-
tor vector of the ith minutia, respectively. Let M" = {m§ =
(z%,y5, af, d}) ;L;l denote a reference print minutiae set with
n, minutiae, where (x;,y;), o and dj are their z— and
y—coordinates, orientation and descriptor of the jth reference
minutia, respectively. The comparison algorithm in [28] is
adopted for minutiae template comparison. For completeness,

Algorithm 1 Latent template extraction algorithm

1: Input: Latent fingerprint image

2: Output: 3 minutiae templates and 1 texture template

3: Enhance latent by autoencoder; estimate ROI, ridge flow
and ridge spacing

4: Process friction ridges: (i) STFT, (ii) contrast enhancement
+ STFT, (iii) autoencoder, (iv) decomposition + Gabor
filtering and (v) contrast enhancement + Gabor filtering

5. Apply minutiae model MinuNet_Latent to processed im-
ages (i) and (ii) in step 4 to generate minutiae sets 1 (Fig.
19 (b)) and 2 (Fig. 19 (c))

6: Apply minutiae model MinuNet reference to processed
images (iii) - (v) in step 5 to generate minutiae sets 3
(Fig. 19 (d)), 4 (Fig. 19 (e)) and 5 (Fig. 19 (f))

7: Generate a common minutiae set 6 (Fig. 19 (g)) using
minutiae sets 1-5

8: Extract descriptors for minutiae sets 1, 3 and 6 to obtain
the final 3 minutiae templates

9: Generate a texture template using virtual minutiae and the
associated descriptor

we summarize the minutiae template comparison algorithm in
Algorithm 2.

B. Texture Template Comparison

Similar to the minutiae template, a texture template contains
a set of virtual minutiae points, including their x, y-coordinates
and orientations, and associated quantized descriptors. Let
T = {ml = (olylald)}, and 7 = {mj =
(z%, 9%, a%, dy) ?;1 denote a latent texture template and a
reference texture template, respectively, where d! is a 96-
dimensional descriptor of the ith latent minutia and d7 is the
(96/m)-dimensional quantized descriptor of the jth reference
minutia. The overall texture template comparison algorithm
is essentially the same as the minutiae template comparison
algorithm in Algorithm 2 with two main differences: i) de-
scriptor similarity computation and ii) top N virtual minutiae
correspondences selection. The similarity s(d}, d}) between d
and dj is computed as s(d, d}j) = Do — D(d}, dj), where Dy
is a threshold and D(dﬁ,d;) is defined in Eq. (6) which can
be computed offline.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 10

(@ (b)

(2

Fig. 19: Latent minutiae extraction. (a) Input latent, (b)-
(f) automated extracted minutiac sets after i) STFT based
enhancement, ii) autoencoder based enhancement, iii) contrast
based enhancement, followed by STFT based enhancement,
iv) decomposition followed by Gabor filtering, and v) contrast
based enhancement followed by Gabor filtering, respectively,
and (g) common minutiae generated from (b)-(e) using ma-
jority voting. Minutiae sets in (b), (d) and (g) are selected
for matching. Note that minutiae sets in (b) and (c) are
extracted by MinuNet_Latent but the mask is not used to
remove spurious minutiae in case mask is inaccurate.

Instead of normalizing all scores and then selecting the top
N (N = 200 for texture template comparison) initial virtual
minutiae correspondences among all n; x n,. possibilities, we
select the top 2 reference virtual minutiae for each latent
virtual minutiae based on virtual minutiae similarity and select
the top N initial virtual minutiae correspondences among

Minutiae template 1

Latent templates

Reference templates

Minutiae template 3

Sy

Texture template

Texture template

Fig. 20: Latent-to-reference print template comparisons. Three
latent minutiae templates are compared to one reference minu-
tiae template, and the latent texture template is compared to the
reference texture template. Four comparison scores are fused
to generate the final comparison score.

Algorithm 2 Minutiae template comparison algorithm

1: Input: Latent minutiae template M with n; minutiae and
reference minutiae template A" with n, minutiae

2: Output: Similarity score

3: Compute the n; X n,. similarity matrix (.S) using the cosine
similarity between descriptors

4: Normalize the similarity matrix from S to S’ using the
approach in [40]

5: Select the top N (/N=120) minutiae correspondences
based on the normalized similarity matrix

6: Remove false minutiae correspondences using simplified
second-order graph matching

7: Remove additional false minutiae correspondences using
full second-order graph matching

8: Compute similarity s,,; between M Uand M"

2 - ny possibilities (2 - n; correspondences are all selected if
2-n; <= N). In this way, we further reduce the computation
time.

C. Similarity Score Fusion

Let sps7,1, spr,2 and sy 3 denote the similarities between
the three latent minutiae templates against the single reference
minutiae template. Let sy denote the similarity between the
latent and reference texture templates. The final similarity
score s between the latent and the reference print is computed
as the weighted sum of sy/71, Sym7,2, Smr,3 and spr as
below:

s = Ai1smr,1 + Aasyre + Azsyrz + s, (7)

where A1, Ao, A3 and A\, are the weights that sum to 1;
their values are empirically determined to be 1, 1, 1 and 0.3,
respectively.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 11

D. Implementation

Both minutiae template comparison and texture template
comparison algorithms are implemented in C++. In addition,
matrix computation tool Eigen!® is used for faster minutiae
similarity computation. OpenMP (Open Multi-Processing)'!,
an application programming interface (API) that supports
multi-platform shared memory multiprocessing programming,
is used for code parallelization. Hence the latent-to-reference
comparison algorithm can be executed on multiple cores
simultaneously. The search speed (~1.0 ms per latent to
reference print comparison) on a 24-core machine is able to
achieve about 10-times speedup compared to a single-core
machine.

IX. EXPERIMENTS

£

MSP latent database N2N latent database

Fig. 21: Examples of latents from the four databases.

In this paper, four latent databases, NIST SD27 [41], MSP,
WVU'2 and N2N'3 are used to evaluate the proposed end-to-
end latent AFIS. Due to our non-disclosure agreement with
Michigan State Police, we are not allowed to release MSP
latent database. However, the N2N latent database will be
made available to the research community soon by NIST.
Table II summarizes the four latent databases and Fig. 21
shows some example latents. There are 2,074 latents in the
MSP latent dataset. The first 600 latents were reserved for
minutiae editing; among these, the best 300 latents in terms

10https://github.com/libigl/eigen

https://www.openmp.org/resources/openmp-compilers-tools/

12To request WVU latent fingerprint database, contact Dr. Jeremy Dawson
(Email: Jeremy.Dawson@mail.wvu.edu)

3Those interested in obtaining N2N dataset can sign up here
(https://groups.google.com/a/list.nist.gov/forum/#!forum/n2n-data/join) to re-
ceive a notification when the data is released.

TABLE II: Summary of latent databases.

Database No. of latents | Source

NIST SD27 258 Forensic agency
MSP 1,200 Forensic agency
WVvuU 449 Laboratory
N2N 10,000 Laboratory

of visual quality were actually selected for editing to ensure
the quality of minutiae markups. After removing some palm
prints and latent images of resolution different from 500 ppi,
we selected 1,200 latents (from the remaining 1,474 latents
in MSP database) for evaluation of our end-to-end latent
recognition system. Besides the mated reference prints, we use
additional reference fingerprints, from NIST SD14 [42] and a
forensic agency, to enlarge the reference database to 100,000
for search results reported here. We follow the protocol used in
NIST ELFT-EFS [43], [44] to evaluate the search performance
of our system.

A. Evaluation of Minutiae Extraction

In order to evaluate minutiae sets used for matching, we
plot the precision vs. recall curves of our three minutiae sets
using ground truth minutiae set on NIST SD27. Let the tuples
(p, Yp, Op) and (x4,y,,0,) be the z— and y— coordinates
and orientation of predicted and ground truth minutiae. The
predicted minutia is considered as true if it satisfies the
following constrains:

||(xp»yp) - (‘rgayg)HQ <D (3
min(|0, — 0,4|,27 — |6, — b4]) < O 9

where D and O are the thresholds in pixels and degrees,
respectively. The precision vs. recall curves shown in Figure
22 are plotted by varying the quality value output by minutiae
extractors. As expected, the minutiae sets 2 and 3 have similar
performance whichn is better than minutiae set 1; recall that
minutiae set 1 is directly extracted from STFT processed latent
images without Gabor filtering.

B. Evaluation of Descriptor Dimension Reduction

We evaluate the non-linear mapping based descriptor di-
mension reduction and product quantization on NIST SD27
against a 10K gallery. Non-linear mapping is adopted to
reduce the descriptor length of both real minutiae and virtual
minutiae. Three different descriptor lengths, i.e., 128, 96 and
48, are evaluated. Table III compares the search performance
of different descriptor lengths. There is a slight drop in
performance for 96- and 48-dimensional descriptors, but a
significant performance drop for 48-dimensional descriptors.

Because of the large number of virtual minutiae, we further
reduce the descriptor length of virtual minutiae using product
quantization. Table IV compares the search performance of
texture template on NIST SD27 using three different number
of subvectors of 96-dimensional descriptors, i.e., m = 24,16
and 12. We noticed that m = 16 provides a good tradeoff
between accuracy and feature length. Hence, we use non-linear
mapping to reduce the descriptor length from 192 dimension

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 12

All latents
T T

Precision

Minutiae set 1
Minutiae set 2 | 7
Minutiae set 3

0.2

0.4 0.6
Recall

(2)

0.8

091

08

Precision

Bad latents

T
Minutiae set 1
Minutiae set 2 | 7
Minutiae set 3

02

0.4 0.6
Recall

(©)

0.8

Good latents

Minutiae set 1
Minutiae set 2| 7
Minutiae set 3

09 r

08

07

06

051

Precision

0.4 |

03

0.2

0.1

0 0.2 04 0.6 0.8 1
Recall

(b)

Ugly latents

T T
Minutiae set 1

09 Minutiae set 2|
L Minutiae set 3

08

07

06

051

Precision

04

03

02

0.1

0 0.2 04 0.6 0.8 1
Recall

(d

Fig. 22: Precision-Recall curves on (a) all 258 latents in NIST SD27, (b) subset of 88 “good” latents, (c) subset of 85 “bad”
latents and (d) subset of 85 “ugly” latents. Minutiae set 3 is a common minutiae set generated from other 5 minutiae sets
which may have different quality thresholds. In order to plot Precision-Recall curves for minutiae set 3, we i) first extract other
5 minutiae sets using a very low quality threshold, ii) then generate the common minutiae set and iii) compute the quality
value of each common minutia as the sum of quality values of the same minutiae in other 5 minutiae sets.

TABLE III: Search performance on NIST SD27 after non-

linear mapping

’ Dimension \ Rank-1 \ Rank-5 \ Rank-10 ‘
192 72.5% 77.5% 79.5%
96 71.3% 77.5% 79.1%
48 61.6% 67.8% 70.9%

TABLE IV: Search performance of texture template on NIST
SD27 using different product quantization (PQ) settings.

Value of | Rank-1 Rank-5 | Rank-10
Without PQ [65.5 70.5% 74.8%
m =24 64.3% 69.8% 72.1%
m =16 63.6% 69.4% 71.3%
m =12 58.9% 65.1% 69.8%

to 96 dimension and then further reduce virtual minutiae

descriptor length to m
the following experiments.

16 using product quantization in

C. Search Performance

We benchmark the proposed latent AFIS against one of the
best COTS latent AFIS'* as determined in NIST evaluations.
Two fusion strategies, namely score-level fusion (with equal
weights for the scores from two AFIS) and rank-level fusion
(the top-200 candidate lists generated by each of the two
AFIS and combined using Borda count), are adopted to deter-
mine if the proposed algorithm and COTS latent AFIS have
complementary search capabilities. In addition, the algorithm
proposed in [27] is also included for comparison on NIST
SD27 and WVU databases.

The performance is reported based on close-set identifi-
cation where the query is assumed to be in the gallery.
Cumulative Match Characteristic (CMC) curve is used for
performance evaluation. ROC curve is not applicable to our
case as the objective of the proposed method is to find as
many matching features (real minutiae or virtual minutiae)
as possible to identify the source of the input latent. Fig. 23

14The latent COTS used here is one of the top-three performers in the
NIST ELFT-EFS evaluations [43], [44] and the method in [27]. Because of
our non-disclosure agreement with the vendor, we cannot disclose its name.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 13

All latents
85

80

~
w

Identification rate
-
o

— COTS Latent Matcher
65 = Proposed Latent Matcher
m— Score level fusion
Rank level fusion
m—— Cao and Jain[27]

60
2 4 6 8 10 12 14 16 18 20

Rank
(@)

Bad latents

—

Identification rate
-
w

—— COTS Latent Matcher
—— Proposed Latent Matcher
65 ——Score level fusion

Rank level fusion
= Cao and Jain [27]

2 4 6 8 10 12 14 16 18 20
Rank

(©)

Good latents
100

98

96

2 / /
= 94 I
=z
7 92
U /
b
=
g 90
=
88 . |==——COTs Latent Matcher

m— Proposed Latent Matcher
— Scare level fusion

Rank level fusion
= Cag and Jain[27]

86

84
2 4 6 8 10 12 14 16 18 20

Rank
(b)

Ugly latents
75 gly

Identification rate

—— COTS Latent Matcher

—— Proposed Latent Matcher
45 — Score level fusion

Rank level fusion
= Cag and Jain [27]

40

2 4 6 8 10 12 14 16 18 20
Rank

(d

Fig. 23: Cumulative Match Characteristic (CMC) curves of our latent search system and COTS latent AFIS, their score-level
and rank-level fusions, and semi-automatic algorithm of Cao and Jain [27] on (a) all 258 latents in NIST SD27, (b) subset of
88 “good” latents, (c) subset of 85 “bad” latents and (d) subset of 85 “ugly” latents. Note that the scales of the y-axis in these
four plots are different to accentuate the differences between the different curves.

82

~ ~]
@ @ =3

Identification Rate (%)
-
B

-
[N]

—— COTS Latent Matcher

— Proposed Latent Matcher
—>Score level fusion
Rank level fusion

~
=3

68
2 4 6 8 10 12 14 16 18 20

Rank
Fig. 24: CMC curves of our latent search system, COTS latent
AFIS, and score-level and rank-level fusion of the two systems
on the MSP latent database against 100K reference prints.

compares the five CMC curves on all 258 latents in NIST
SD27 as well as subsets of latents of three different quality
levels (good, bad and ugly). Fig. 24 compares the four CMC
curves on 1,200 latents in MSP latent database. On both these

operational latent databases, the performance of our proposed
latent AFIS is comparable to that of COTS latent AFIS. In
addition, both rank-level and score-level fusion of two latent
AFIS significantly boosts the performance, which indicates
that out AFIS and COTS AFIS provide complementary in-
formation. Figs. 25 (a) and (b) show two examples where our
latent AFIS successfully retrieves the true mates at rank-1 but
the COTS AFIS cannot due to overlap between background
characters and friction ridges. Figs. 25 (c) and (d) show two
failure cases of the proposed latent AFIS due to the broken
ridges. The rank-1 accuracy of proposed latent AFIS on NIST
SD27 is slightly higher than the algorithm proposed in [27]
even though manually marked ROI was used in [27].

The five CMC curves on 449 latents in WVU database
are compared in Fig. 26 and Fig. 27 shows the performance
on 10,000 latents in N2N database. Both WVU and N2N
databases were collected in a laboratory environment. The
latents in these two latent databases are generally dry (ridges
are broken), and significantly different in appearance and in
background from operational latents (NIST SD27 and MSP)
which were used for fine-tuning minutiae detection model. For
this reason, the minutiae detection and enhancement models do

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019 14

© (d

Fig. 25: Our latent AFIS can retrieve the true mates of latents
in (a) and (b) at rank-1 which the COTS latent AFIS cannot.
COTS latent AFIS can retrieve the mates of latents in (c) and
(d) at rank-1 while our latent AFIS cannot. One minutiae set
extracted by our AFIS is overlaid on each latent. These latents
are from the NIST SD27 database.

85

]
=}

75

Identification Rate (%)

:

= COTS Latent Matcher
=— Proposed Latent Matcher
—Score level fusion

- Rank level fusion

—— Cao and Jain [27]

65

0 5 10 15 20
Rank
Fig. 26: CMC curves of our latent search system, COTS latent
AFIS. Score-level and rank-level fusions of the two systems on
the WVU latent database against 100K reference prints show
that both the fusion schemes boost the overall recognition
accuracy significantly.

not work well on WVU latent database. This explains why the
performance of the proposed latent AFIS is lower than COTS
latent AFIS on WVU database. Fig. 28 shows a latent where
our enhancement model fails. This suggests that additional
dry fingerprints are needed for training deep learning based
approaches.

X. SUMMARY

We have presented design and prototype of an end-to-
end fully automated latent search system and benchmark

Identification Rate (%)

— COTS Latent Matcher
= Proposed Latent Matcher

8 5 - Score level fusion 1
—— Rank level fusion

2 4 & 8 10 12 1 16 18 20
Rank

Fig. 27: CMC curves of our latent search system, COTS latent

AFIS, and score-level and rank-level fusion of the two systems

on the N2N latent database against 100K reference prints.

: > U

(@ (b)

Fig. 28: A failure case in the WVU latent database. Because
the training database does not have any dry fingerprints like
the latent image in (a), the enhanced latent image in (b) by
the Autoencoder does not look good.

its performance against a leading COTS latent AFIS. The
contributions of this paper are as follows:

e Design and prototype of the first fully automated end-
to-end latent search system from an academic group. Its
performance on 4 benchmark latent databases competes
well with one of the top performing COTS latent AFIS.

o Autoencoder-based latent enhancement and minutiae de-
tection.

« Efficient latent-to-reference print comparison. One latent
search against 100K reference prints can be completed in
100 seconds on a 24-core machine with Intel(R) Xeon(R)
CPU E5-2680 v3@2.50GHz. A fusion of the proposed
latent AFIS with a state of the art COTS latent AFIS
shows that the two algorithms are complementary as
evidenced by boost in performance.

There are still a number of challenges listed below.

o Improvement in automated cropping module. The current
cropping algorithm does not perform well on dry latents
in WVU and N2N databases.

o Obtain additional a larger number of latent images for
robust training of various modules in the search system.

« Enhance the recognition performance by including level-
1 additional features such as ridge flow and ridge spacing

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, JUNE 2019

in computing similarity value.

o Improve matching strategies and evaluate the perfor-

mance for open-set scenarios.

ACKNOWLEDGMENT

This research is based upon work supported in part by
the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA),
via JARPA R&D Contract No. 2018-18012900001. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of ODNI, IARPA,
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition. Springer, 2009.

“Census of publicly funded forensic crime laboratories,” 2014.

“NGI monthly fact sheet,” June 2018.

C. Watson, G. Fiumara, E. Tabassi, S. L. Cheng, P. Flanagan, and
W. Salamon, “Fingerprint vendor technology evaluation,” no. 8034,
2012.

M. Indovina, V. Dvornychenko, R. A. Hicklin, and G. I. Kiebuzinski,
“Evaluation of latent fingerprint technologies: Extended feature sets
(evaluation #2),” no. 7859, 2012.

President’s Council of Advisors on Science and Technology, “Forensic
science in criminal courts: Ensuring scientific validity of feature-
comparison methods,” http://www.crime-scene-investigator.net/forensic-
science-in-criminal-courts-ensuring-scientific-validity-of-feature-
comparison-methods.html, 2016.

Committee on Identifying the Needs of the Forensic Sciences
Community, National Research Council, “Strengthening
forensic science in the united states: A path forward,”
https://www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf, 2009.

A. K. Jain, J. Feng, A. Nagar, and K. Nandakumar, “On matching latent
fingerprints,” in 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, June 2008, pp. 1-8.

A. K. Jain and J. Feng, “Latent fingerprint matching,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 88-100,
2011.

H. Choi, M. Boaventura, I. A. G. Boaventura, and A. K. Jain, “Auto-
matic segmentation of latent fingerprints,” in IEEE Fifth International
Conference on Biometrics: Theory, Applications and Systems, 2012.

J. Zhang, R. Lai, and C.-C. Kuo, “Adaptive directional total-variation
model for latent fingerprint segmentation,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 8, pp. 1261-1273, 2013.

K. Cao, E. Liu, and A. K. Jain, “Segmentation and enhancement of
latent fingerprints: A coarse to fine ridge structure dictionary,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 9, pp. 1847-1859, 2014.

D.-L. Nguyen, K. Cao, and A. K. Jain, “Automatic latent fingerprint
segmentation,” in /EEE International Conference on BTAS, Oct 2018.
K. Cao and A. K. Jain, “Latent orientation field estimation via convolu-
tional neural network,” in International Conference on Biometrics, 2015,
pp. 349-356.

X. Yang, J. Feng, and J. Zhou, “Localized dictionaries based orientation
field estimation for latent fingerprints,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 5, pp. 955-969, 2014.
J. Feng, J. Zhou, and A. K. Jain, “Orientation field estimation for latent
fingerprint enhancement,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 54, no. 4, pp. 925-940, 2013.

J. Li, J. Feng, and C.-C. J. Kuo, “Deep convolutional neural network
for latent fingerprint enhancement,” Signal Processing: Image Commu-
nication, vol. 60, pp. 52 — 63, 2018.

R. Prabhu, X. Yu, Z. Wang, D. Liu, and A. Jiang, “U-finger: Multi-
scale dilated convolutional network for fingerprint image denoising and
inpainting,” arXiv, 2018.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]
[39]
[40]
[41]

[42]
[43]

[44]

I. Joshi, A. Anand, M. Vatsa, R. Singh, and P. K. S. D. Roy, “Latent
fingerprints enhancement using generative adversarial networks,” in in
Proceedings of IEEE Winter Conference on Applications of Computer
Vision, 2018.

Y. Tang, F. Gao, and J. Feng, “Latent fingerprint minutia extraction using
fully convolutional network,” arXiv, 2016.

L. N. Darlow and B. Rosman, “Fingerprint minutiae extraction using
deep learning,” in 2017 IEEE International Joint Conference on Bio-
metrics (IJCB), Oct 2017, pp. 22-30.

Y. Tang, F. Gao, J. Feng, and Y. Liu, “Fingernet: An unified deep
network for fingerprint minutiae extraction,” in 2017 IEEE International
Joint Conference on Biometrics (IJCB), Oct 2017, pp. 108-116.

D.-L. Nguyen, K. Cao, and A. K. Jain, “Robust minutiae extractor:
Integrating deep networks and fingerprint domain knowledge,” in 2018
International Conference on Biometrics (ICB), Feb 2018, pp. 9-16.

R. Krish, J. Fierrez, D. Ramos, J. Ortega-Garcia, and J. Bigun, “Pre-
registration of latent fingerprints based on orientation field,” IET Bio-
metrics, vol. 4, pp. 42-52, June 2015.

A. Mikaelyan and J. Bigun, “Safe features for matching fingermarks
by neighbourhoods of single minutiae,” in 2014 I4th International
Symposium on Communications and Information Technologies (ISCIT),
Sep. 2014, pp. 181-185.

J. Bigun and A. Mikaelyan, “Frequency map by structure tensor in
logarithmic scale space and forensic fingerprints,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2016, pp. 136-145.

K. Cao and A. K. Jain, “Automated latent fingerprint recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 4, pp. 788-800, 2019.

D. -L. Nguyen, K. Cao and A. K. Jain, “Latent fingerprint recognition:
Role of texture template,” in IEEE International Conference on BTAS,
Oct 2018.

S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 427-436.

S. Gong, V. N. Boddeti, and A. K. Jain, “On the intrinsic dimensionality
of face representation,” 2018.

E. Tabassi, M. A. Olsen, A. Makarov, and C. Busch, “Towards nfiq
II lite: Self-organizing maps for fingerprint image quality assessment,”
NISTIR 7973, 2013.

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” ArXiv e-prints, Mar. 2016.

K. Cao, T. Chugh, J. Zhou, E. Tabassi, and A. K. Jain, “Automatic latent
value determination,” in 2016 International Conference on Biometrics
(ICB), June 2016, pp. 1-8.

B. T. Ulery, R. A. Hicklin, J. Buscaglia, and M. A. Roberts, “Repeata-
bility and reproducibility of decisions by latent fingerprint examiners,”
PloS one, vol. 7, no. 3, p. 32800, 2012.

S. Yoon and A. K. Jain, “Longitudinal study of fingerprint recognition,”
Proceedings of the National Academy of Sciences, vol. 112, no. 28, pp.
8555-8560, 2015.

R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code: A new
representation and matching technique for fingerprint recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp.
2128-2141, 2010.

J. Feng and A. K. Jain, “Fm model based fingerprint reconstruction from
minutiae template.” in Proceedings of the Third International Conference
on Advances in Biometrics, 2009, pp. 544-553.

S. Chikkerur, A. N. Cartwright, and V. Govindaraju, “Fingerprint en-
hancement using STFT analysis,” Pattern Recognition, vol. 40, no. 1,
pp. 198-211, 2007.

J. Feng, “Combining minutiae descriptors for fingerprint matching,”
Pattern Recognition, vol. 41, no. 1, pp. 342-352, 2008.

“NIST Special Database 27,” http://www.nist.gov/srd/nistsd27.cfm.
“NIST Special Database 14,” http://www.nist.gov/srd/nistsd14.cfm.

M. D. Indovina, R. A. Hicklin, and G. I. Kiebuzinski, “Evaluation of
latent fingerprint technologies: Extended feature sets (evaluation 1),”
Technical Report NISTIR 7775, NIST, 2011.

M. D. Indovina, V. Dvornychenko, R. A. Hicklin, and G. 1. Kiebuzinski,
“Evaluation of latent fingerprint technologies: Extended feature sets
(evaluation 2),” Technical Report NISTIR 7859, NIST, 2012.

