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Abstract

A database of a large number of fingerprint images is
highly desired for designing and evaluating large scale fin-
gerprint search algorithms. Compared to collecting a large
number of real fingerprints, which is very costly in terms of
time, effort and expense, and also involves stringent privacy
issues, synthetic fingerprints can be generated at low cost
and does not have any privacy issues to deal with. How-
ever, it is essential to show that the characteristics and ap-
pearance of real and synthetic fingerprint images are suffi-
ciently similar. We propose a Generative Adversarial Net-
work (GAN) to generate 512 x 512 rolled fingerprint images.
Our generative model for rolled fingerprints is highly effi-
cient (12ms/image) with characteristics of synthetic rolled
prints close to real rolled images. Experimental results
show that our model captures the properties of real rolled
fingerprints in terms of (i) fingerprint image quality, (ii) dis-
tinctiveness and (iii) minutiae configuration. Our synthetic
fingerprint images are more realistic than other approaches.

1. Introduction

A fingerprint refers to the friction ridge patterns on a
human fingertip [19]. Due to the perceived uniqueness
and persistence of friction ridge patterns, large scale Auto-
mated Fingerprint Identification Systems (AFIS) have been
widely deployed in both law enforcement and numerous
civilian applications. For example, the FBI’'s Next Gen-
eration Identification (NGI) database, one of the world’s
largest law enforcement database, maintains about 120 mil-
lion subjects’, including both criminal and civil tenprints,
for background check and criminal search. During August
2017 alone, 847,403 criminal searches and 3,397,167 civil
searches were received by NGI'. Representative examples
of large scale civilian applications include (i) the OBIM
(formerly the US-VISIT) program by the Department of
Homeland Security [4] and (ii) India’s Aadhar project [5],

Uhttps://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view

Figure 1. Comparing real fingerprint images ((a) and (d)) and syn-
thesized fingerprint images ((b), (c), (e) and (f)). Images in (a) and
(d) are from FVC2002 DB1 [13] consisting of plain impressions
and NIST SD4 [3] consisting of rolled impressions, respectively.
Images in (b) and (e) were synthesized using the approaches in
[10] and [28], respectively, and images in (c) and (f) were syn-
thesized by the proposed approach. All the above images are at a
resolution of 500dpi.

which is now the largest biometrics deployment in the world
with an enrollment that already exceeds 1.1 billion tenprints
(along with corresponding irises and photos) of supposedly
distinct individuals. For the task of identifying a fingerprint
in such massive scale applications, high identification accu-
racies (low F'PIR and F'NIR values) and extremely effi-
cient search are critical. As the sizes of these databases will
continue to grow over time, there is a need to predict the
scalability of current search algorithms

A number of fingerprint indexing? algorithms [23, 9, 8]
have been proposed in literature to improve the search speed

2Biometric search examines biometric database against a probe to re-
turn either a candidate list or a comparison decision that the probe does
or does not match with one or more references [ISO/IEC 2382-37:2017].
Indexing refers to a technique which speeds up the search by using special
organization of data.
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Table 1. A summary of major studies on fingerprint synthesis reported in the literature.

Algorithm

Orientation
model

Minutiae
model

Ridge structure

model

Comments

Cappelli et al. [10] | Zero-pole random model

model

Gabor filtering

The three models are used independently; synthetic
fingerprints do not visually appear to be realistic;
no analysis on “fingerprintness” [27] of synthetic
fingerprints; synthesizes plain fingerprints

Johnson et al. [17] | Zero-pole random model

model

Gabor filtering

The three models are used independently; synthetic
fingerprints do not visually appear to be realistic;
no analysis on “fingerprintness” of synthetic finger-
prints; synthesizes plain fingerprints

statistical
model

Zhao et al. [28] Zero-pole

model

AF-FM model

The three models are used independently; synthetic
fingerprints do not visually appear to be realistic;
no analysis on “fingerprintness” of synthetic finger-
prints; synthesizes rolled fingerprints

Bontrager et al. [7]

Wasserstein GAN (WGAN)

128 x 128 fingerprint patches

Proposed

Improved WGAN using Autoencoder for initialization

Efficient algorithm for synthesizing 512x512
rolled fingerprint images. A database of 10 million
synthetic rolled fingerprints was generated; Fin-
gerprintness was analyzed and search experiments
were conducted with two different galleries, one
consisting of 250K real rolled prints and another
with synthesized rolled prints.

and accuracy. However, there are only a few public do-
main fingerprint databases available to researchers for per-
formance evaluation. To our knowledge, the largest publicly
available fingerprint database is NIST SD14 [1] which has
54,000 fingerprint images from 27,000 fingers (two impres-
sions per finger). Although some improvements in search
algorithms’ performance have been shown on this database
[23, 9], it is not clear how these approaches will scale
up with fingerprint database size, say 100 million finger-
prints, comparable to those used in law enforcement and
civil ID projects. It is well known that the identification
accuracy drops almost linearly with the increase in gallery
size [26]. In some of the studies [23, 8] proprietary fin-
gerprint databases have been used to augment the gallery
size for performance evaluation. For example, one million
rolled fingerprints from various law enforcement agencies
were used in [23] and 250,000 rolled fingerprints from a
different law enforcement agency were used in [8]. How-
ever, these databases are still much smaller than operational
databases.

In the absence of large public domain fingerprint
databases, search accuracies in terms of F'PI R (False Posi-
tive Identification Rate) and F'N IR (False Negative Identi-
fication Rate) are estimated using /"M R (False Match Rate)
and F'N M R (False Non-Match Rate) values using

FNIR = FNMR, (1)
FPIR=1-(1-FMR)", )

where N is the size of the database [16]. The limitations of

using this formula are well known, see for example [12]. As
sizes of the criminal and civil databases continue to grow,
we need capabilities to accurately predict how the search
accuracies will scale up using both theoretical analysis as
well as empirical support. Furthermore, because some of
the studies have used proprietary databases with possibly
different characteristics, it is not possible to evaluate their
search algorithms on a common database for a fair compar-
ison. A large scale publicly available fingerprint database
is therefore highly desired. Unfortunately, due to increased
emphasis on privacy laws® related to fingerprints, it is un-
likely that any government agency will release a large col-
lection of fingerprints in the public domain. Over the last
two years, NIST has taken down several public domain fin-
gerprint databases (NIST SD27 [2] and NIST SD14 [1])
from its website that were available to researchers for many
years. This was done apparently due to privacy issues.
Collecting a large number of real fingerprints is in-
deed costly in terms of time, effort and expense, and also
involves stringent user consent and Institutional Review
Board (IRB)* issues. The only option left is then to syn-
thesize realistic fingerprint images [14, 28, 21]. The typical
approach adopted in the synthesis process is as follows: (i)
generate fingerprint ridge orientation field and minutiae us-
ing statistical models, (ii) use Gabor filtering [10] or the
AM-FM model [28] to generate friction ridge pattern, and
(iii) insert additive noise models [17] to make synthetic fin-

3http://www.sos.state.nm.us/uploads/files/ CH36-HB15-2017..pdf
“https://en.wikipedia.org/wiki/Institutional_review_board
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Figure 2. Flowchart of the proposed fingerprint synthetic generator. Dotted arrows show the training of the convolutional autoencoder, in-
cluding encoder Gen and decoder G 4c., and the solid arrows show the training of -WGAN [15], including generator GG and discriminator
D, where the decoder G ge. is used to initialize fingerprint generator G. P(z) is the 512-dimensional standard multivariate normal distri-
bution. During fingerprint image synthesis, a 512-dimensional random vector is input to the generator G to obtain a synthetic fingerprint.
The loss function, which a Wasserstein metric consisting of the probability distributions of real images and synthetic images and gradient
penalty, is used to optimize the parameters in G and D using backpropagation (red dotted arrows).

gerprint images appear realistic. Table 1 summarizes some
of the prominent published approaches to fingerprint syn-
thesis. Fig. 1 compares real fingerprint images with syn-
thesized fingerprint images for both plain and rolled finger-
prints. There are a number of limitations of these published
approaches:

1. The synthetic fingerprint images visually look differ-
ent from the real fingerprint images, as can be seen in
Figs. 1 (b) and (e), because of the additive noise to
the master/ideal fingerprint images generated by Ga-
bor filtering and AM-FM models. As a comparison,
the corresponding synthetic images generated by our
model are shown in Figs. 1 (c) and (f), respectively,
which appear realistic.

2. Minutiae distribution models and minutiae sampling
approaches do not consider the local minutiae configu-
rations. Hence these approaches may generate invalid
minutiae configurations. Gottschlich and Huckemann
[14] showed that by using minutiae distribution alone,
they could successfully classify real and synthetic fin-
gerprints generated by SFinge [10]. Compare Figs. 1
(b) and (e).

3. Some unrealistic ridge patterns are generated due to
the independent processes of minutiae sampling and
ridge generation (compare Figs. 1 (b) and (e)).

4. A fixed ridge spacing (sum of the widths of ridge and
valley) is typically used for generating a fingerprint
image. By using two ridge spacing features with ad-
ditional four features, Chen et al. [11] reported a 98%
accuracy in separating synthetic fingerprints by SFinge
[10] from real fingerprints.

5. Although all these approaches can generate any num-
ber of synthetic fingerprints, there was no validation

done to determine the similarity between real and syn-
thetic fingerprint images.

Deep Convolutional Generative Adversarial Networks
(DCGAN) [22] have shown great promise in generating
synthetic face images from random input vectors. Mai et
al. [18] showed that by using the augmented face databases
generated by DCGAN, the reconstructed face images from
deep face templates can be used to successfully launch
presentation attacks. Bontrager et al. [7] generated mas-
ter prints (partial fingerprints) for presentation attacks us-
ing Wasserstein GAN (WGAN) [6], which leverages the
Wasserstein distance to produce a value function with better
theoretical properties than DCGAN. However, the sizes of
synthetic image in these studies (128 x 128 pixels in [7], and
96 x 96 pixels in [18]) are significantly smaller compared to
the typical size (512 x 512 pixels) of 500 dpi rolled finger-
prints. Directly using these GANSs to synthesize 512 x 512
rolled fingerprint images, in our experience, leads to syn-
thetic fingerprint images that are similar to each other. In
other words, there is no diversity among the set of 512x512
synthetic rolled fingerprints generated by DCGAN.

The contributions of this paper are as follows.

1. Synthesis of rolled fingerprint images (512x512 pix-
els) using an improved-WGAN (I-WGAN) framework
[15]. A Convolutional Autoencoder was trained for
initializing the -WGAN which improves synthetic fin-
gerprint image characteristic and appearance.

2. Efficient synthesis procedure with an average time of
12ms per 512x512 rolled fingerprint image. Thus we
are able to generate 10 million synthetic rolled finger-
print images in a little over one day using a desktop
with 17-6700K CPU@4.00GHz and GTX 1080 GPU.



3. Demonstrated the similarity between synthesized and
operational rolled fingerprint images in terms of (i) fin-
gerprint image quality, (ii) distinctiveness, (iii) minu-
tiae configuration, and (iv) identification accuracies.

2. Proposed Fingerprint Synthesis

The proposed fingerprint synthesis is based on the
improved-WGAN (I-WGAN) [15], which includes a gen-
erator (G) and a discriminator (D), also called a “critic”
in [15, 6]. A convolutional auto-encoder (CAE), consist-
ing of an encoder G, to extract a 512-dimensional repre-
sentation from an input fingerprint and a decoder G 4. to
reconstruct the input fingerprint from the representation, is
trained. The decoder G .. is then used to initialize the gen-
erator G to train the I-WGAN, which improves the finger-
print image quality and diversity. Fig. 2 shows the flowchart
of the training process of the proposed fingerprint synthesis
approach.

2.1. Improved-WGAN

Wasserstein GAN (WGAN) [6] leverages the Wasser-
stein distance to produce a value function which has bet-
ter theoretical properties than the original DCGAN. How-
ever, WGAN requires that the discriminator or critic must
lie within the space of 1-Lipschitz function. The authors of
[15] showed that critic weight clipping can lead to patholog-
ical behavior and proposed an improved-WGAN. The gen-
erator (G) operates on a random vector input 2,2~ p(z), to
generate a fingerprint image & while the discriminator (D)
outputs the critic value. The I-WGAN is trained to min-
imize the Wasserstein metric consisting of the probability
distributions of real images and synthetic images and gradi-
ent penalty. The objective loss function (L) is defined as

L= mén max Eyznp, [D(z)] — Egnp,[D(2)]
+ AE;op, [(VaD(2) — 1)%], (3)

where P, is the real image distribution, P, is the model
distribution implicitly defined by & = G(2), z ~ p(2),
P; denotes uniform sampling between pairs of points from
the data distribution P, and the generator distribution P,
and A is the set of 1-Lipschitz functions. For details of I-
WGAN, we refer the readers to [15].

Our I-WGAN architecture for 512 x 512 rolled finger-
print image synthesis, as shown in table 2, follows the
guidelines suggested by Radford et al. [22]. There is one
project and reshape layer and seven deconvolutional layers
(also called fractional-stride [22]) in the generator G. The
project and reshape layer generates 4 x4 feature maps from
a 512-dimensional input random vector. Each one of the
seven convolutional layers has a kernel size of 4 x 4 and a
stride size of 2 x 2 to successively enlarge the feature map
size by a factor of 2. The output image is therefore of size

512x512. The numbers of channels output by the project
and reshape layer and the subsequent 7 convolutional lay-
ers are 1,024, 512, 256, 128, 64, 32, 16 and 3, respectively.
The discriminator D is essentially an inverse of GG, except
that the output of D is a scalar value in the range (—o0, 00).
ReLU activation is used in G for all layers except for the
output, which uses tanh. LeakyReL.U activation is used in
D for all layers except for the output, which also uses tanh.
Batch normalization, which stabilizes the learning process,
is employed in both G and D.

2.2. Convolutional Autoencoder

(©) (d)

Figure 3. Examples of the reconstructed fingerprint images by the
proposed CAE shown in Fig. 2. (a) and (c) 512 x 512 input rolled
fingerprint images; (b) and (d) reconstructed 512 x 512 fingerprint
images of (a) and (c), respectively.

Convolutional Autoencoder (CAE) models [20] are
trained in an unsupervised mode to extract compact repre-
sentations from unlabeled input. The encoder G, trans-
forms an input into a low-dimensional representation, and
the decoder G 4. is tuned to reconstruct the initial input
from this representation through the minimization of a cost
function. The architecture of the decoder G 4 is exactly the
same as that of the generator G, so that G .. trained by the
CAE can be used to initialize GG. The difference between D
and G, is the last layer, where the output of D is a scalar
value while the output of G, is a 512-dimensional feature
vector. Let X be the set of training fingerprint images. The
CAE is trained to minimize the objective Lo 4p, which is
defined as:

Loag =Y |le—#|l3, “

zeX
where % is the reconstruction of x+ € X computed as
Gaec(Genc(x)). As shown in Fig. 3, compared to the in-



Table 2. The network architecture of [-WGAN generator. The
values in Size In and Size Out columns follow the format of
height x width x #channels. The values in Kernel column
follow the format of height X width, stride. The architecture
of the discriminator is the reverse (switch input and output) of the
generator architecture and the output of discriminator is a scalar

value activated by a LeakyReLU function.

Layer Size In Size Out Kernel
Project and | 512x1 (1) 4x4 x1024 -
reshape

convl 4x4 x1024 8x8 x512 4x4,2
conv2 8x8 x512 16x16 x256 4x4,2
conv3 16x16 x256 32x32 x128 4x4,2
conv4 32x32 x128 64x64 x64 4x4,2
convS 64 x64 x64 128x 128 x32 4x4,2
convb 128x128 x32 256x256 x16 4x4,2
conv7 256x256 x16 512x512x%3 4x4,2

(@) (b)

© (d)

Figure 4. Examples of rolled fingerprint images used to train the
generator for fingerprint synthesis. The NFIQ 2.0 [24] values of
images in (a), (b), (c) and (d) are 1, 41, 62 and 93, respectively.
Note that the range of NFIQ 2.0 value is from 0O to 100, with 0
being the lowest quality and 100 being the highest quality.

put fingerprint images, their reconstructed fingerprint im-
ages are of higher quality in terms of ridge clarity and con-
trast. Using G e, to initialize -WGAN generator thus en-
sures that it generates high quality fingerprint images.

2.3. Training Details

In order to train the CAE and I-WGAN, a rolled finger-
print database with 250K fingerprint images from a law en-
forcement agency [8] is used. Some example images of dif-
ferent quality from the training database are shown in Fig.

4. Although all these fingerprint images have the same res-
olution of 500 dpi, their sizes vary from 407 x 346 pixels to
750 800 pixels due to different sizes of friction ridge ar-
eas in them. Since 500 dpi fingerprint images of size 512
512 pixels cover sufficient friction ridge area for compar-
ison, all the training fingerprint images are pre-registered
using the approach in [8] and converted to 512x 512 pix-
els. This pre-registration consists of the following steps: (i)
orientation field estimation, (ii) reference point localization
based on the orientation field, (iii) transforming orientation
field against a dictionary with 36 orientation fields using
the reference point based Hough transform, and (iv) image
registration based on estimated orientation field transforma-
tion.

No data augmentation and image pre-processing is ap-
plied to the training set except normalizing the pixel val-
ues to the range [-1,1]. The model is implemented us-
ing tensorpack’® and trained on a desktop with i7-6700K
CPU@4.00GHz and GTX 1080 GPU. The network weights
were initialized using a normal distribution with zero mean
and a standard deviation of 0.02 and the batch size is set to
32. Adam is used for optimization, with a fixed learning
rate of 2x10~4, and a momentum of 0.5.

3. Experimental Results

The generation of synthesized fingerprint images is ef-
ficient. It takes about 12ms per image on a desktop with
i7-6700K CPU@4.00GHz and GTX 1080 GPU. Thus, we
were able to generate 10 million fingerprint images in 33
hours. In order to evaluate fingerprintness of the output im-
ages of our synthesis algorithm and compare it with real
fingerprint images, we utilized the following 5 databases,
where each dataset consists of 2,000 fingerprint images
from 2,000 different fingers.

DB1 NIST SD4: First 2,000 images (f0001-f2000) from
NIST SD4 [3].

DB2 Proposed synthesis: 2,000 synthesized images by the
proposed approach.

DB3 CASIA: CASIA-FingerprintV5 database® consists of
images from 4,000 fingers (2,000 fingers from each of
right and left hands). We use the first impression of
2,000 fingers of the right hands.

DB4 IBG Novetta: 2,000 synthesized images by the IBG
Novetta software [21].

DB5 SFinge: 2,000 synthesized images by SFinge [10].

Note that DB1 and DB2 are rolled fingerprint databases
while DB3-DBS5 are plain fingerprint image databases. In-
stead of comparing our synthesized rolled fingerprints to the
synthesized plain fingerprints from [21] and [10], we are go-
ing to show that our synthesized rolled prints are closer to

Shttps://github.com/ppwwyyxx/tensorpack
Shttp://www.idealtest.org/dbDetailForUser.do?id=7



Figure 5. Examples of synthesized rolled fingerprint images (512 x 512 at a resolution of 500 dpi) by the proposed approach.
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Figure 6. Distributions of NFIQ 2.0 values for images in the five
databases. The range of NFIQ 2.0 value is [0,100] with O indicat-
ing the lowest quality and 100 being the highest quality value.

rolled prints in NIST SD4 than the synthesized plain fin-
gerprints to the real plain fingerprints in CASIA database
in terms of (i) fingerprint quality (Fig. 6), (ii) distinctive-
ness (Fig. 7) and (iii) distribution of minutiae configurations
(Fig. 8).

3.1. Fingerprint Image Quality

NFIQ 2.0 (NIST Finger Image Quality) [24] is an open
source software which is an updated version of the widely
used NFIQ [25]. The range of output values of NFIQ 2.0
is [0, 100] with O being the lowest quality and 100 being
the highest quality. Fig. 5 shows 24 randomly synthesized
fingerprint images by the proposed approach. The distribu-
tions of NFIQ 2.0 values on the five datasets are shown in
Fig. 6. The average NFIQ 2.0 values for the NIST SD4, pro-
posed synthesis procedure, CASIA database, IBG Novetta
and SFinge are approximately 44, 62, 39, 40 and 65, re-

spectively. The proposed approach, like SFinge, tends to
generate high quality fingerprint images because of our use
of G 4ec to initialize -WGAN generator.

3.2. Distinctiveness

In order to evaluate the diversity of synthesized finger-
prints, we compute the pair-wise comparison scores for
each database using Verifinger SDK 6.37. This leads to
around 2 million (2,000 x 1,999/2) impostor scores for
each database. Fig. 7 shows the five comparison score dis-
tributions in log scale. While these score distributions are
very close each other, there are large variations at the higher
range of score values. The maximum impostor comparison
scores on DB1-DBS5 are 51, 47, 110, 131 and 95, respec-
tively. This indicates that the diversity of synthetic finger-
print images, in terms of their distinctiveness, is higher for
the proposed approach than other two approaches [21, 10].

3.3. Minutiae Configuration

Fingerprint minutiae are regarded as the most discrimi-
native features for fingerprint recognition [19]. Therefore,
the spatial distribution of minutiae configurations extracted
from the synthesized fingerprints is an indicator of their fin-
gerprintness. Gottschlich and Huckemann [14] showed that
2D minutiae histogram (2DMH) is effective in separating
real fingerprint images from synthetic fingerprints. In this
section, we compare the 2D minutiae histograms to evaluate
the fingerprintness of synthetic fingerprint images. Given
an input fingerprint image, its minutiae set is extracted by
Verifinger SDK 6.3, and its 2-dim. minutiae histogram is
constructed by computing the pairwise minutiae distances
(d < 200 pixels) in terms of location and directional differ-
ence (« in degrees). Specifically, the inter-minutiae distance
d is divided into intervals of 20 pixels and inter-minutiae an-

http://www.neurotechnology.com/verifinger.html
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Figure 7. Impostor score distributions of the five fingerprint
databases (DB1-DBS). The minimum and maximum comparison
score values output by Verifinger SDK 6.3 are 0 and 6,356, re-
spectively. Higher the score, more similar are the two fingerprint
images. Note that the probability of occurrence is shown in log
scale to illustrate the differences at the higher range of values.

gular difference « is divided into intervals of 18°. Hence the
2D minutiae histogram consists of 10x 10 bins. Fig. 8 com-
pares the average 2D minutiae histograms (Ave-2DMH) for
the five fingerprint databases, DB1-DBS5.

In order to compute the similarity between real finger-
print images and synthetic fingerprint images in terms of
minutiae configurations, we use the Euclidean distances be-
tween the Ave-2DMHs. In order to alleviate the effect of
fingerprint image types and number of minutiae, each Ave-
2DMH is normalized with 0 mean and 1 standard devia-
tion. Since DB1 and DB2 contain rolled fingerprint im-
ages, and DB3-DB5 contain plain fingerprint databases, we
compute the inter-histogram Euclidean distances between
DB1 and DB2, which is 2.96, and between DB3 and DB4
(DBS), which is 3.3 (3.94). This suggested that the synthe-
sized rolled fingerprint images by our approach (DB2) are
closer to real rolled fingerprint images (NIST SD4 in DB1)
than the other two synthetic approaches whose images are
in DB4 and DB5 [21, 10].

3.4. Fingerprint Search

Recall that one of main goals of this paper is to synthet-
ically generate a large collection of fingerprints for large
scale fingerprint search evaluation. Fingerprint search ac-
curacy is also an indicator of the diversity of synthesized
fingerprints, as shown in [26]; the identification accuracy
drops with the increase in gallery size. In this section,
we adopt a deep learning based fingerprint search algo-
rithm proposed in [8] for the evaluation. To compare the
search performance against 250K real rolled fingerprint im-
ages we used for training, we also generate 250K synthe-

(@ (b)

(© (@ (e)

Figure 8. Images in (a)-(e) are average 2D minutiae histograms
(shown as heat maps) of DB1(NIST SD4), DB2 (proposed syn-
thesis approach), DB3 (CASIA), DB4 (IBG Novetta) and DBS5
(SFinge), respectively. Recall, DB2, DB4 and DBS5 contain syn-
thesized fingerprint images. These images were upsampled by a
factor of 16 for better visual quality.

sized fingerprint images. In addition to these two databases
as gallery, two rolled fingerprint databases, namely, NIST
SD4 (2,000 fingers, 2 impressions per finger) [3] and NIST
SD14 (27,000 fingers, 2 impressions per finger) [1], are also
used in the experiments. The “F” impressions in these two
databases were used as gallery and “S” impressions were
used as query. Fig. 9 compares the rank-20 identification
accuracies against real fingerprint images and synthetic fin-
gerprint images used to augment the gallery. The rank-20
identification accuracies against synthesized fingerprint im-
ages in the gallery on NIST SD4 (NIST SD14) are 98.7%
(98.7%) to 96.1% (95.0%) for augmented gallery sizes O
and 250K, respectively. This decrease shows that the down-
ward trend in search accuracy w.r.t. background size is the
same for synthesized rolled prints as real rolled prints. We
do notice that the identification accuracies against synthetic
fingerprints are about 5% higher compared to real finger-
prints. This could possibly be explained due to the stochas-
tic nature of our fingerprint generator. We plan to verify this
by generating an ensemble of 250K rolled synthetic images.

4. Conclusions and Future Work

Generating synthetic fingerprints is a low cost and effi-
cient way for designing and evaluating large scale finger-
print search algorithms. Moreover, it does not have any
privacy issues unlike sharing real fingerprint images. How-
ever, available approaches for fingerprint synthesis gener-
ate intermediate features, namely, ridge orientation field,
ridge frequency field and minutiae, separately, which can
result in unrealistic fingerprint images. By leveraging the
developments in Generative Adversarial Network (GAN),
i.e., Improved-WGAN (I-WGAN), we are able to generate
realistic quality 512 x 512 rolled fingerprint images. The
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Figure 9. Rank-20 identification accuracies on NIST SD4 and

NIST SD14 against real fingerprint images and synthesized fin-
gerprint images with different augmented gallery sizes.

average time for generating a 512 x 512 rolled fingerprint
image is about 12ms. Synthesizing rolled fingerprint im-
ages, not done previously, is essential for evaluating large-
scale fingerprint search, particularly in law enforcement and
forensic applications. Based on distributions of minutiae
configurations and impostor scores by Verifinger SDK 6.3,
the proposed synthetic fingerprints are closer to the corre-
sponding distributions for real fingerprints. Future work in-
cludes (i) incorporating diversity criteria in training process
and (ii) evaluating capacity of deep learning-based finger-
print recognition using GANS.
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