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Segmentation and Enhancement of Latent
Fingerprints: A Coarse to Fine Ridge

Structure Dictionary
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Abstract —Latent fingerprint matching has played a critical role in identifying suspects and criminals. However, compared to
rolled and plain fingerprint matching, latent identification accuracy is significantly lower due to complex background noise,
poor ridge quality and overlapping structured noise in latent images. Accordingly, manual markup of various features (e.g.,
region of interest, singular points and minutiae) is typically necessary to extract reliable features from latents. To reduce this
markup cost and to improve the consistency in feature markup, fully automatic and highly accurate (“lights-out” capability) latent
matching algorithms are needed. In this paper, a dictionary-based approach is proposed for automatic latent segmentation and
enhancement towards the goal of achieving “lights-out” latent identification systems. Given a latent fingerprint image, a total
variation (TV) decomposition model with L1 fidelity regularization is used to remove piecewise-smooth background noise. The
texture component image obtained from the decomposition of latent image is divided into overlapping patches. Ridge structure
dictionary, which is learnt from a set of high quality ridge patches, is then used to restore ridge structure in these latent patches.
The ridge quality of a patch, which is used for latent segmentation, is defined as the structural similarity between the patch
and its reconstruction. Orientation and frequency fields, which are used for latent enhancement, are then extracted from the
reconstructed patch. To balance robustness and accuracy, a coarse to fine strategy is proposed. Experimental results on two
latent fingerprint databases (i.e., NIST SD27 and WVU DB) show that the proposed algorithm outperforms the state-of-the-art
segmentation and enhancement algorithms and boosts the performance of a state-of-the-art commercial latent matcher.

Index Terms —Latent fingerprint, image decomposition, segmentation, ridge enhancement, sparse coding, dictionary learning.
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1 INTRODUCTION

LATENT fingerprints (or simply latents or finger
marks) refer to fingerprints lifted from the sur-

faces of objects inadvertently touched or handled
by a person typically at crime scenes. Compared
to rolled and plain fingerprints (or exemplar finger-
prints), which are acquired in an attended mode,
latents are typically of poor quality in terms of ridge
structure, containing background noise and non-linear
distortion (see Fig. 1). Due to these factors, the la-
tent identification (i.e., latent to exemplar matching)
accuracy is much lower than that of exemplar finger-
prints (exemplar to exemplar matching). As an exam-
ple, in NIST evaluations, while the best performing
Automated Fingerprint Identification System (AFIS)
achieved a rank-1 identification rate of 99.4% on a
background database of 10,000 plain fingerprints [1],
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Fig. 1: Three types of fingerprint images. (a) rolled
fingerprint, (b) plain fingerprint, (c) latent fingerprint
with foreground (friction ridge pattern) highlighted
by red outline. Notice the presence of different types
of noise and distortion in (c).

the best performing commercial latent matcher could
only achieve a rank-1 identification rate of 63.4% in
searching 1,114 latents against a background database
containing 100,000 exemplar prints [2].

One of the challenging problems in latent identifi-
cation is how to automatically extract reliable features
in latents, especially latents with poor quality. Given
the difficulty of automatic feature extraction, a manual
markup of various features in latents, such as region
of interest (ROI), singular points and minutiae, is the
current practice. However, this human factor issue in
latent examination has raised some concerns related to
repeatability and reliability [3],[4]. A study conducted
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by NIST showed that the accuracy of a latent matcher
is highly affected by the precision of latent examiner
markup, especially when the latent image itself is not
available to the matche [2]. Studies have shown that
when the comparison time is limited, latent examiners
are more likely to make an inconclusive matching de-
cision between a latent and its mated rolled print [5].
One of the most infamous cases involving mistaken
identity based on latent matching is the Brandon
Mayfield case [6]. Other cases of mistaken identifi-
cations have been reported by the Innocence project
[7]. One of the priorities of FBI’s Next Generation
Identification (NGI) is to support the development
of a lights-out1 capability for latent identification [9].
An essential component of this lights-out capability is
to develop a fully automatic latent feature extraction
module. This is highly desirable to (i) increase the
throughput of latent matching systems, (ii) improve
repeatability of latent feature extraction and, (iii) in-
crease the compatibility between features extracted
in the latents and features extracted in the reference
prints by an AFIS [10].

An AFIS, whether for rolled/plain print matching
or latent matching, typically contains a number of
modules, including region of interest (ROI) segmen-
tation (separating friction ridge from background),
enhancement, feature extraction, and matching. Seg-
mentation, especially for latents, is critical to avoid
extraction of features (e.g., minutiae) in the noisy
background [11]. Enhancing ridge and valley struc-
tures and removing noise in the foreground region are
essential to extract accurate features. The Gabor filter
based fingerprint enhancement [12] can adaptively
improve the clarity of ridge and valley structures; the
filters are tuned based on the local ridge orientation
and frequency. Therefore, for latent enhancement it
is essential to get good estimates of ridge orientation
and frequency fields.

There is a rich body of literature on exemplar fin-
gerprint segmentation [12], [13], [14], [15], orientation
field estimation [12], [16], [15], [17], [18] and frequency
field estimation [19], [15]. But these approaches do not
work well on latent fingerprints due to i) presence of
structured noise, such as lines, markings, characters
and speckles (see Fig. 1 (c)). This structured noise
breaks the ridge flow pattern in the fingerprint and
affects the subsequent processing; ii) poor quality
of ridge structure in the foreground area. The low
clarity of ridge structure makes it difficult to estimate
orientation and frequency fields in latents.

Some approaches have been proposed that specif-
ically address the problem of latent fingerprint seg-
mentation [20], [21], [26], [22], [25] and enhancement
[23], [24], [10]. In [20], the orientation and frequency in

1. Lights-out identification refers to an AFIS requiring minimal
or no human assistance in which a query fingerprint image is
presented as input, and the output consists of a short candidate
list [8].

an image block (typically 8×8 pixels) were estimated
using a local gray intensity projection method; the
distance between center-of-transient points was used
for segmentation. However, no performance evalua-
tion was reported. Short et al. [21] generated an ideal
ridge model template and used the cross-correlation
between a local block and the generated template
to define the local fingerprint quality. However, it
is not clear how to generate good quality template
for latents. Zhang et al. [26] proposed an adaptive
total variation (TV) decomposition model for latent
fingerprint segmentation. They further proposed an
adaptive directional total variation (ADTV) model by
incorporating orientation field and local orientation
coherence [25]. However, the orientation field and its
local coherency were computed from the gray scale
latent images which are not reliable due to the low
quality of friction ridge structure. Choi et al. [22]
used the orientation tensor and Fourier response in
valid frequency regions to segment latent fingerprints.
However, they did not utilize the correlation between
ridge orientation and ridge frequency.

In the latent enhancement approaches reported in
the literature, manual markup of ROI and/or singular
points are typically needed as input [23], [24], [10]. In
[23], the orientation field was obtained by fitting a
polynomial model to the coarse orientation field. The
authors improved this approach by using short-time
Fourier transform (STFT) and randomized RANSAC
[24], but it still required manual markup of ROI and
singular points. Feng et al. proposed a dictionary of
orientation patches to estimate the orientation field
in the manually marked ROI [10]. The orientation
field estimation was posed as an energy minimiza-
tion problem, which consists of the (i) similarity be-
tween orientation patches and orientation dictionary
elements, and (ii) compatibility between neighboring
orientation dictionary elements. However, all these
approaches used a fixed ridge frequency to tune
Gabor filters for latent enhancement. In [25], image
decomposition using the ADTV model was used to
enhance the ridge quality. Table 1 compares various
latent segmentation and enhancement algorithms pro-
posed in the literature.

To address the two main difficulties in latent finger-
print matching, namely presence of structured noise
and poor quality of ridge structure, we propose a
dictionary-based segmentation and enhancement of
latent fingerprint. To remove the structured noise, the
total-variation model with L1 fidelity regularization
[27] is used to decompose a latent into a texture part
and a cartoon part2. The relative reduction rate of local
total variation (LTV ) is used as an index of local oscil-
latory pattern and a nonlinear decomposition method
was proposed for the decomposition. The cartoon

2. Cartoon image is a piecewise-smooth image whose discontinu-
ity set includes in a union of curves whose overall length is finite
[27].



3

TABLE 1: A comparison of latent segmentation and enhancement algorithms proposed in the literature
Algorithm Objective Approach Performance evaluation Databasea Comments

Karimi et al.
[20]

Segmentation &
enhancement

Local gray intensity
projection Not reported Latents: Two latents

from NIST SD27 Not robust to noise

Short et al.
[21] Segmentation

Correlation with
ideal ridge
templates

EER of 33.8% Latents: NIST SD27 Relies on template
generation

Choi et al.
[22] Segmentation

Orientation
tensor and ridge
frequency

Rank-1 identification accu-
racy of 16.28% and 35.19%
on NIST SD27 and WVU
databases, respectively, by
a COTS tenprint matcher

Latents: NIST
SD27 & WVU DB
Background: 31,997
rolled prints

Orientation and fre-
quency maps are
used separately

Yoon et al.
[23] Enhancement

Polynomial model
and zero-pole
model

Rank-1 identification accu-
racy of 35% by VeriFingerb
SDK 4.2

Latents: NIST SD27
Background: 258
rolled prints

Requires ROI,
singular points and
uses fixed ridge
frequency

Yoon et al.
[24] Enhancement STFT and R-

RANSAC

Rank-1 identification accu-
racy of 26% by VeriFinger
SDK 4.2

Latents: NIST SD27
Background: 27,258
rolled prints

Requires ROI,
singular points and
uses fixed ridge
frequency

Feng et al.
[10] Enhancement

Dictionary
of reference
orientation patches

Rank-1 identification accu-
racy of 26% by VeriFinger
SDK 6.2

Latents: NIST SD27
Background: 27,258
rolled prints

Requires ROI and
uses fixed ridge fre-
quency

Zhang et al.
[25]

Segmentation &
enhancement

Adaptive
directional total
variation model

Rank-1 identification accu-
racy of less than 2% by Ver-
iFinger SDK 6.6

Latents: NIST
SD27 (1,000ppi)
Background: 27,258
rolled prints

Relies on orienta-
tion field and orien-
tation coherence es-
timation

Proposed
algorithm

Segmentation &
enhancement

Image decomposi-
tion; ridge structure
coarse to fine dictio-
nary

Rank-1 identification accu-
racy of 61.24% and 70.16%
on NIST SD27 and WVU
databases, respectively, by
a COTS latent matcher

Latents: NIST
SD27 & WVU DB
Background: 31,997
rolled prints

Fully automatic; no
manual markup re-
quired

a The NIST SD27 contains 258 latent fingerprints and their rolled mates and the WVU DB contains 449 latent fingerprints and their
rolled mates (4,290 additional rolled prints are also provided). The background database includes 258 rolled fingerprint from NIST
SD27, 4,739 rolled fingerprints from WVU DB and 27,000 rolled fingerprints (including the 449 mated prints) from NIST SD14.

b Verifinger is a tenprint matcher.

part with piecewise-smooth characteristics containing
structured noise is discarded. To define ridge quality
and estimate orientation and frequency fields, a ridge
structure dictionary is proposed. A dictionary is a
set of words (or vectors) used to sparsely and lin-
early represent signals of the same dimension, namely
sparse coding. Dictionary and sparse coding have
been successfully applied to a number of signal pro-
cessing tasks, such as image denoising [28], [29], clas-
sification [30], [31] and face recognition [32], [33]. Feng
et al. [10] proposed a dictionary of orientation patches
for orientation field estimation in latent fingerprints.
However, their dictionary cannot be successfully used
for latent segmentation and frequency field extraction
since ridge information is ignored. In this paper, the
ridge structure dictionaries are learnt from a set of
high quality fingerprint patches from rolled finger-
prints and then used to recover the ridge structure
from noisy latent patches. The ridge quality of a
patch is defined as the structural similarity between
the original patch and its reconstruction. Orientation
and frequency fields of a patch are estimated from
its reconstruction and used to tune the Gabor filters
for latent enhancement. Fig. 2 shows an example
latent fingerprint where the proposed segmentation
and enhancement improves the latent identification
performance (retrieval rank) of a COTS latent matcher.

The main contributions of this paper are as follows:

1) Ridge structure dictionary is proposed for latent
segmentation and enhancement. The dictionary
is learnt from hight quality fingerprint patches.

2) The ridge quality of a patch is defined as the
structural similarity between the patch and its
reconstruction from the learnt ridge structure
dictionary. Orientation and frequency fields of
a patch are estimated from its reconstruction.

3) To balance robustness and accuracy, a coarse to
fine strategy is proposed which uses dictionaries
at two levels of resolution (64× 64 and 32× 32).

4) The proposed segmentation and enhancement
algorithms outperform published algorithms
and can also significantly boost the performance
of a state-of-the-art commercial latent matcher
on two latent database (NIST SD27 and WVU
DB).

The rest of the paper is organized as follows. The
details of the proposed algorithm are presented in
section 2. Experimental results are reported in section
3. Finally, conclusions and future research directions
are reported in section 4.
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Fig. 2: An example of latent segmentation and enhancement by the proposed algorithm. (a) A latent fingerprint
image (U286 from NIST SD27); (b) fully automatic segmentation of (a) by the proposed algorithm; (c)
enhancement of (b) by the proposed algorithm; (d) the true mate (rolled print) of (a) with the segmentation
boundary in (b) outlined on the mate. By feeding the original latent in (a), the segmented latent in (b) and
the enhanced latent in (c) into a commercial off-the-shelf (COTS) latent matcher (with a background database
of 31,997 reference prints), the mated print is retrieved at ranks 4,152, 26 and 2, respectively. The contrast of
images in (a) and (b) has been enhanced for better visual quality.

2 PROPOSED ALGORITHM

2.1 Algorithm Overview

The proposed algorithm consists of an off-line dictio-
nary learning stage and on-line stage for segmentation
and enhancement (see Fig. 3). In the off-line stage,
two types of dictionaries are learnt: i) a coarse-level
dictionary with patch size of 64 × 64 pixels which
is used for coarse estimation of ridge quality map,
orientation and frequency fields, and ii) 16 fine-level
dictionaries with patch size of 32 × 32 pixels which
are used for fine estimation of ridge quality map, and
orientation and frequency fields computation; these 16
fine level dictionaries correspond to 16 different ridge
orientations. The patch size in fine-level dictionaries
is chosen to be 32×32 pixels since it covers about two
ridges and valleys in 500 ppi fingerprints and is robust
to structured noise. The patch size in the coarse-level
dictionary (64×64 pixels) is twice the size of the fine-
level dictionary.

Given the dictionaries, on-line latent segmentation
and enhancement consists of the following steps:

1) Latent decomposition: Input latent is decom-
posed into cartoon and texture images via local
total variations [27]; the cartoon image is dis-
carded.

2) Coarse level estimation of quality map and ori-
entation and frequency fields: The texture im-
age is divided into overlapping patches of size
64 × 64 pixels (P c

L). Each patch has 64 × 48 or
48× 64 overlapping pixels with each of its four
connected neighboring blocks. For each patch
p ∈ P c

L, its sparse representation and recon-
structed patch p̂ using the coarse level dictionary
are obtained by orthogonal matching pursuit
[34]. The structural similarity [35] between p and
p̂ is defined as the coarse quality of the patch.
Since the p̂ generally has a clear ridge pattern,
the ridge orientation and frequency in patch p

can be replaced with the features in p̂. In regions
where patches overlap, the coarse quality, coarse
orientation and frequency fields are obtained by
the covering patches.

3) Fine level estimation of quality map and ori-
entation and frequency fields: The texture im-
age is divided into overlapping patches of size
32 × 32 pixels (P f

L ). Each patch has 32 × 16 or
16× 32 overlapping pixels with each of its four
connected neighboring blocks. For each patch
p ∈ P f

L , the coarse ridge orientation value is first
used to index the corresponding fine-level dic-
tionary. The fine estimation of ridge quality map,
orientation and frequency fields are computed as
coarse estimation in step 2).

4) Segmentation and enhancement: The coarse
quality map and fine quality map are combined
for latent segmentation. In the foreground of
texture image, Gabor filtering based on the ori-
entation and frequency fields obtained in 2) and
3) is applied for latent enhancement.

2.2 Dictionary Learning

Feng et al. [10] were the first to propose the use of
dictionary for fingerprint orientation field estimation.
However, their dictionary was based on orientation
patches and they ignored the ridge structure infor-
mation. This is the main reason their method in
[10] was not very successful for segmentation and
frequency field estimation. In this section, we present
the proposed ridge structure dictionary learning.

2.2.1 Training Set Selection

In order to construct reliable and robust dictionaries, a
large number of high quality fingerprint patches from
rolled image in NIST SD4 [36] are selected. The image
patches are selected as follows:
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Fig. 3: Overview of the proposed latent segmentation and enhancement algorithm. The off-line dictionary
learning and on-line latent segmentation and enhancement stages are separated by dashed lines.

1) High quality fingerprint selection: NIST Finger-
print Image Quality (NFIQ) [37] is used to select
500 fingerprints of high quality3 (i.e., NFIQ < 3)
in NIST SD4.

2) High quality patch selection: MINDTCT [38] (in
NIST Fingerprint Image Software (NFIS)) is used
to estimate the block-wise orientation field and
ridge quality map of the fingerprints selected in
1). The ridge quality map provides one of the 5
quality levels for each block (with 4 being the
highest quality and 0 being the lowest quality).
For the coarse-level dictionary, a set of image
patches, P c, of size 64 × 64 pixels are selected
by sliding a window over the fingerprint im-
age with a step size of 8 pixels; if the average
quality value of an image patch is larger than
a predefined threshold T (T is set to 3.75), the
patch is included in the training set. For the
orientation specific dictionaries, 16 sets of finger-
print patches P f

i , i = 1, · · · , 16, are constructed
according to ridge orientation. For P f

i , a 32× 32

3. NFIQ ranges from 1 to 5, with 1 indicating the highest quality
and 5 indicating the lowest quality fingerprint.

window is slided over the fingerprint image;
a patch is selected if it satisfies the following
two conditions: i) average quality value of the
patch is larger than T , and ii) average ridge
orientation of the patch is within the range[
(i− 1)× π

16 , i× π
16

)
.

3) Vector normalization: Each patch p in the train-
ing set is normalized by Eq. (1) and converted
to a vector by concatenating the rows.

p̃ = (p− µp)/σp, (1)

where µp is the mean intensity and σp is the
standard deviation of patch p.

Let P c = {pc
j}Nc

j=1 be the training set for the
coarse-level dictionary, where N c denotes the num-

ber of training patches in P c, and P f
i = {pf

i,j}
Nf

i
j=1,

i = 1, · · · , 16, be the training sets for the 16 fine-
level dictionaries, where Nf

i denotes the number of
training patches for the ith dictionary specified by
ridge orientation. To balance efficiency and accuracy,
we randomly select 80,000 patches from P c and 10,000
patches from each P f

i , respectively, for dictionary
learning.
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Fig. 4: A subset of elements in the coarse-level dictio-
nary (patch size: 64× 64 pixels). The total number of
dictionary elements is 1,024.

Fig. 5: A subset of elements in the 16 orientation
specific dictionaries (patch size: 32 × 32 pixels). The
ith row corresponds to the ith orientation specific dic-
tionary in the orientation range

[
(i− 1)× π

16 , i× π
16

)
,

i=1,...,16. The total number of elements in each orien-
tation specific dictionary is 64.

2.2.2 Dictionary Learning
Without loss of generality, for a training set P =
{pj}N

j=1, the goal of dictionary learning is to construct
a dictionary D of size NP ×ND that provides the best
sparse representation for each patch in P , where NP

is the dimensionality of the patches in P , and ND is
the number of elements in the dictionary D. A typical
objective function for dictionary learning is

min
D,Γ

||P −DΓ||2F s.t. ∀j, ||γj ||0 ≤ T0, (2)

where γj is the jth column of matrix Γ of size ND×N ,
||·||0 is the l0 norm that counts the number of nonzero

entries in the representation, T0 is a predetermined
number of nonzero entries and || · ||F denotes the
Frobenius norm. One of the effective algorithms for
dictionary learning is K-SVD [39], which minimizes
the objective function in Eq. (2) by iterating the fol-
lowing two stages.
• Sparse coding stage: Obtain the representation

coefficient vector γj for each patch pj in P by
solving the following optimization problem un-
der a fixed dictionary D:

min
γj

||pj−Dγj ||22 s.t. ||γj ||0 ≤ T0, j = 1, ..., N. (3)

• Dictionary update stage: This stage reduces the
objective function in Eq. (2) by updating one
column of the dictionary D at a time via singular
value decomposition (SVD) while fixing all other
columns of D.

The initial dictionary D is constructed using the dis-
crete cosine transform (DCT) basis. Each dictionary
element is normalized by Eq. (1) after learning.

A total of 17 different dictionaries (the coarse-level
dictionary Dc and 16 fine-level dictionaries Df

i , i =
1, · · · , 16) are constructed by taking P c and P f

i , i =
1, · · · , 16 as the training sets. The number of elements
N c

D in the coarse-level dictionary is set to 1,024, and
the total number of elements Nf

D in each fine-level
dictionary is set to 64. Fig. 4 shows a subset of
dictionary elements in the coarse-level dictionary Dc,
and Fig. 5 shows a subset of dictionary elements in
the 16 fine-level dictionaries.

2.3 Latent Image Decomposition

A latent image, f , is decomposed as a sum of two
components: f = u + v, where u represents the
cartoon (piecewise smooth) part of f and v represents
the oscillatory or texture part of f . Based on the
characteristic of a cartoon image that its total variation
does not decrease by low-pass filtering, Buades et al.
[27] proposed a fast nonlinear decomposition method
based on local total variation (LTV ). The local total
variation at a pixel x is defined as

LTVσ(f)(x) = Lσ ∗ |Of |(x), (4)

where Lσ is a σ-sized low-pass filter whose Fourier
transform is given by L̂σ(ξ) = 1/(1 + (2πσξ)4). The
relative reduction rate λσ(x) of LTV before and after
filtering the image with the low-pass filter measures
the local oscillatory behavior which is given by

λσ(x) =
LTVσ(f)(x)− LTVσ(Lσ ∗ f)(x)

LTVσ(f)(x)
. (5)

If λσ(x) is close to 1, it means the LTV decreases a
lot after low-pass filtering and pixel x belongs to the
texture part. On the other hand, if λσ(x) is close to 0,
there is little relative reduction of the LTV after the
low-pass filtering and pixel x belongs to the cartoon
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part which is piecewise-smooth. Thus, the cartoon
part u and the texture part v can be extracted by a
weighted sum of f and Lσ ∗ f according to λσ(x):

u(x) = w(λσ(x))((Lσ ∗ f)(x)− f(x)) + f(x), (6)
v(x) = f(x)− u(x), (7)

where w(y) is a piecewise linear increasing function,
defined as

w(y) =





0 y < a1,
(y − a1)/(a2 − a1) a1 ≤ y ≤ a2,
1 y > a2.

(8)

If w(λσ(x)) = 0 ( pixel x belongs to the cartoon part),
u(x) is the same as f(x) and v(x) is 0. If w(λσ(x)) = 1
(pixel x belongs to the texture part), u(x) is the same
as the pixel value in the low-pass filtered image Lσ ∗
f(x) and v(x) is the difference between the original
image f(x) and the low-pass filtered image Lσ ∗f(x).

Fig. 8(b) shows the texture component of three
different latent images shown in Fig. 8(a); most of
the structured noise in latents have been successfully
removed while retaining the friction ridge pattern.

2.4 Coarse Estimates of Ridge Quality, Orienta-
tion and Frequency

2.4.1 Sparse Coding

Each patch p ∈ P c
L is normalized by Eq. (1) and

then converted to a vector by row concatenation. The
sparse representation of p can be obtained by solving
the following optimization problem using orthogonal
matching pursuit [34]

min
α
||p−Dcα||22 s.t. ||α||0 ≤ T1, (9)

where α is a sparse coefficient vector in which at most
T1 entries are non-zeros and Dc is the coarse-level
dictionary. According to the non-zero entries in α, a
subset of elements Dc

s in the dictionary Dc is selected.
Let α′ be the corresponding non-zero coefficients of
Dc

s. Then p is projected onto the span of the elements
of Dc

s. The approximation can be calculated as

p̂ = Dc
sα
′, (10)

where α′ is given by

α′ = (Dc
s
T Dc

s)
−1Dc

s
T p. (11)

The residual vector can be calculated as

r(p) = p− p̂ = p−Dc
sα
′. (12)

2.4.2 Definition of Patch Quality

In general, the reconstruction error ||r(p)||2 is small
if p is a fingerprint patch. However, this error mea-
sure, calculated in a pixel-wise manner, ignores the
spatial property of fingerprint images [40], [41]. We

Fig. 6: Patch reconstruction results with different val-
ues of parameter T1. (a) Texture component of high
quality fingerprint patch (top), low quality fingerprint
patch (middle), and non-fingerprint patch (bottom),
(b), (c), (d) and (e) are the reconstruction results when
T1 = 1 , T1 = 2, T1 = 3 and T1 = 4, respectively.
Recall that T1 determines the number of dictionary
elements used to reconstruct the original image. The
SSIM indices between the given patch (column (a))
and the reconstructed patch with different value of
T1 are shown.

Fig. 7: Orientation fields of the patches corresponding
to Fig. 6.

have used the structural similarity index (SSIM) [35]
between two images I1 and I2 defined as

SSIM(I1, I2) =
(2µ1µ2 + Cl)(2σ12 + Cc)

(µ2
1 + µ2

2 + Cl)(σ2
1 + σ2

2 + Cc)
, (13)

where µ1 and σ1 are the mean intensity and stan-
dard deviation of image I1, µ2 and σ2 are the mean
intensity and standard deviation of image I2, σ12 is
the covariance between I1 and I2, and Cl and Cc are
parameters to reduce the instability in computation.

Fig. 6 compares the reconstruction results and SSIM
indices for two fingerprint patches (top and middle
rows) and one non-fingerprint patch (bottom row)
when T1 is varied from 1 to 4. We observe that
the high quality fingerprint patch has large SSIM
values between patch p and its reconstruction p̂, while
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the non-fingerprint patch results in very small SSIM
values. The quality Qp of the patch p is defined as

Qp = SSIM(p, p̂). (14)

2.4.3 Ridge Quality Map, Orientation field and Fre-
quency Field Estimation

The reconstructed patch p̂ is divided into non-
overlapping 16 × 16 blocks, as used in [12] and [10].
For each block, its orientation and frequency are ob-
tained based on [12], resulting in reconstructed patch
orientation field θp̂ (see Fig. 7) and frequency field fp̂.
The reconstructed orientation field θp̂ and frequency
fp̂ of patch p̂ are used as the estimates of orientation
field θp and frequency field fp of the patch p in
the latent image. For a region covered by multiple
patches, its quality, orientation and frequency are
defined as follows. The latent image is divided into
non-overlapping 16×16 blocks. For each block b in the
latent, let {qi, θi, fi} be the ridge quality, orientation
and frequency of the ith patch covering the block b.
The coarse estimates of ridge quality Qc

b, orientation
θc

b and frequency fc
b are given as:

Qc
b =

1
nb

nb∑

i=1

qi, (15)

θc
b =

1
2

tan−1

(
nb∑

i=1

qi sin 2θi,

nb∑

i=1

qi cos 2θi

)
,(16)

fc
b =

1∑ns

i=1 qi

ns∑

i=1

qifi, (17)

where nb is the number of patches covering the block
b.

2.4.4 Sparsity Control

The parameter T1 in Eq. (9) is used to control the
degree of sparsity in sparse coding. Figs. 6 and 7 show
that while large values of T1 lead to a better approx-
imation of the input patch, it introduces unwanted
noise. In particular, a single dictionary element is
enough to recover level 1 features (orientation and fre-
quency). For T1 = 1, the coefficient vector α′ becomes
a scalar and the computation of α′ is simplified to:

α′ =
1

Np − 1
Dc

s
T p, (18)

where Np is the number of pixels in patch p. Eq. (18)
gives an efficient solution since there is no need to
perform matrix inversion (see Eq. (11)). As the patch
p is normalized to have the mean of 0 and standard
deviation of 1, the SSIM index computation in Eq. (13)
can be simplified to

SSIM(p, p̂) =
2α′2 + Cc

1 + α′2 + Cc
. (19)

It should be noted that when T1 = 1, the re-
constructed patch is an element selected from the

dictionary Dc. Thus, the orientation and frequency
fields of the dictionary elements can be pre-calculated
in the off-line stage, which can greatly speed up the
orientation and frequency fields estimation. For these
reasons, T1 is set to 1. Fig. 8(c) shows some examples
of coarse quality maps under T1 = 1.

2.5 Fine Estimates of Ridge Quality, Orientation
and Frequency

The coarse-level dictionary while robust to local noise,
does not enable us to extract detailed ridge infor-
mation. Small patch size dictionaries enable us to
compute the fine quality map and calculate the fine
orientation and frequency fields:

1) All patches in P f
L are normalized by Eq. (1) with

mean of zero and standard deviation of one.
2) For each patch p ∈ P f

L , a dominant orientation θ
is obtained by averaging the coarse orientations
of the blocks covered by patch p. Then, the
corresponding orientation specific dictionary Df

k

is selected for patch p, where k = d 16×θ
π e and d·e

is the ceiling operator.
3) The reconstructed patch p̂ is obtained by solving

the optimization problem in Eq. (9) with dictio-
nary Df

k .
4) The quality of patch p is determined by the

structural similarity between p and p̂ (Eq. (19)).
5) The block wise orientation and frequency fields

of patch p are computed from p̂ by the method
in [12].

6) For each 16 × 16 block b in the latent, the fine
quality Qf

b , orientation θf
b and frequency ff

b are
obtained from the covering patches using Eqs.
(15), (16) and (17).

2.6 Segmentation and Enhancement

2.6.1 Segmentation

The final quality map Q is computed as the average
of coarse-level quality and fine-level quality by

Q =
1
2
(Qc + Qf ). (20)

The quality map Q is then normalized to the range
[0,1]. A global threshold TQ (determined from the
normalized Q by Otsu’s method [42]) is used to
binarize the normalized quality map. The blocks with
quality less than TQ are regarded as background
(i.e, 0), otherwise foreground (i.e., 1). To obtain the
final segmentation results, morphological operations
(dilation and opening) are then applied to remove
small foreground blocks as well as to fill holes inside
the foreground. Finally, the convex hull of the set
of foreground blocks is computed to obtain the final
segmentation result. Fig. 8(e) shows some examples of
segmentation results of latent images in NIST SD27.
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Fig. 8: Illustration of latent fingerprint segmentation. (a) Gray scale latent images, (b) extracted texture
component images, (c) coarse quality maps, (d) fine quality maps, (e) segmentation results. The top, middle
and bottom latent fingerprints in column (a) are of good, bad and ugly quality as defined in NIST SD27,
respectively. The contrast of the middle and bottom latent fingerprints has been enhanced for better visual
quality.

Fig. 9: Four latent images (templates) that can be input to a COTS matcher. (a) Original latent image (G084
from NIST SD 27), (b) latent in (a) segmented and enhanced by the proposed algorithm, (c) latent in (a)
segmented by the proposed segmentation algorithm, but enhanced by the algorithm in [10] and (d) latent
segmented and enhanced by the ADTV model [25], (e) the true mate (rolled print). The retrieved ranks of
the mated rolled print by COTS2 matcher for (a), (b), (c) and (d) are 5536, 1, 66 and 12462, respectively. The
contrast of latent image in (a) has been enhanced for better visual quality.

2.6.2 Enhancement

In the foreground region, the latent texture image ob-
tained from the decomposition is enhanced by Gabor
filtering [12]. The orientation and frequency param-
eters of the filter are tuned based on the fine-level
orientation field (θf ) and the average frequency of
coarse-level frequency field and fine-level frequency
field ( ff +fc

2 ); the standard deviation of the Gaussian
envelope in the Gabor filter is set to 4.

3 EXPERIMENTAL RESULTS

3.1 Databases

We use two latent databases for performance eval-
uation: NIST SD27 [43] and the West Virginia Uni-
versity latent database4 (WVU DB) [44]. The NIST
SD27 contains 258 latent fingerprints with their mated
rolled fingerprints. The WVU DB contains 449 latent
fingerprints with their mated rolled fingerprints and
an additional 4,290 rolled fingerprints. The algorithm

4. To request WVU latent fingerprint database, contact Dr. Jeremy
Dawson (Email: Jeremy.Dawson@mail.wvu.edu)
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was implemented in MATLAB and C/C++ and run
on a machine with Dual-Core 2.66GHz, 4GB RAM
and Windows 7 operating system. The average com-
putation time for segmentation and enhancement per
latent is about 2.6 seconds for NIST SD27 and 1.6
seconds for WVU DB.

The ultimate goal of segmentation and enhance-
ment of latent images is to improve the latent match-
ing performance. The matching performance is eval-
uated using three commercial off-the-shelf (COTS)
matchers (referred to as COTS1, COTS2 and COTS3);
COTS1 and COTS2 are tenprint matchers and COTS3
is a latent matcher. One of the COTS tenprint matcher
is VeriFinger SDK 6.3 [45], which has been widely
used as a benchmark [10] [25]. We report the match-
ing performance with tenprint matchers and latent
matcher separately. Tenprint matchers are used to
compare the proposed algorithm with other segmen-
tation and enhancement algorithms reported in the lit-
erature (apparently a latent matcher was not available
to these researchers). A state-of-the-art latent matcher
is used to determine whether the proposed algorithm
is able to boost its performance.

3.2 Matching Performance with Tenprint Matcher

In this section, we determine whether the perfor-
mance of two COTS tenprint matchers can be im-
proved by using the proposed segmentation and en-
hancement algorithm. We also compared the pro-
posed algorithm with two other algorithms in the
literature: i) dictionary of reference orientation patches
proposed by Feng et al. [10] and ii) adaptive direc-
tional total-variation proposed by Zhang et al. [25].
Since the algorithm in [10] is only for latent enhance-
ment and requires ROI mask as input, we take the
ROI mask obtained from the proposed segmentation
as input to [10] for a fair comparison. The following
matching scenarios are considered for each latent in
NIST SD27 (see Fig. 9):

1) Baseline: Input to the COTS matchers is the
original gray scale latent image.

2) Proposed algorithm: Input to the COTS matchers
is the segmented and enhanced latent image by
the proposed algorithm.

3) Match score fusion: The match scores with and
without the proposed segmentation and en-
hancement are fused by weighted sum. The
weights are empirically set as 0.7 and 0.3, re-
spectively.

4) Enhancement in [10]: Input to the COTS match-
ers is the enhanced latent image by [10] with
the proposed algorithm’s segmentation mask as
input.

5) ADTV model in [25]: Input to the COTS match-
ers is the segmented and enhanced image by
[25].

Fig. 11: Latent enhancement results. (a) Original latent
image (G032 from NIST SD 27), (b) enhanced latent by
the proposed algorithm and (c) enhancement by the
algorithm in [10], (d) and (e) are the skeletons of (b)
and (c), respectively. The retrieved ranks of the mated
rolled print by the COTS2 matcher for (a), (b) and (c)
are 13,718, 1 and 10,106, respectively. The contrast of
latent image in (a) has been enhanced for better visual
quality.

Since the latents in NIST SD27 used in [25] are
1000 ppi compared to 500 ppi images used in our
experiments, we use the segmentation and enhance-
ment results provided by the authors [25] for com-
parison. Since [25] does not contain results for WVU
DB, only four matching results (excluding the ADTV
model) are compared for WVU DB. The Cumulative
Match Characteristic (CMC) curves of these scenarios
on NIST SD27 and WVU DB are shown in Fig. 10.
Compared to the baseline, the rank-1 identification
rate for COTS1 matcher improved by 14.34% on NIST
SD27 and by 4.45% on WVU DB by incorporating la-
tent segmentation and enhancement by the proposed
algorithm. The rank-1 identification rate for COTS2
matcher improved by 14.73% on NIST SD27 and by
16.26% on WVU DB. The proposed algorithm also
outperforms the algorithms in [10] and [25] for both
tenprint matchers. As shown in Fig. 9, the orienta-
tion field for the ADTV model [25], extracted by the
gradient-based approach, is not robust to structured
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Fig. 10: CMC curves for latent matching under different matching scenarios by COTS1 matcher on (a) NIST
SD27 and (b) WVU DB and by COTS2 matcher on (c) NIST SD27 and (d) WVU DB.

noise. The algorithm in [10] is not able to account
for the variation in ridge frequency in our algorithm
that is commonly encountered in poor quality latents.
Fig. 11 shows an example where the automatically ex-
tracted ridge frequency works better than fixed ridge
frequency used in [10]. After fusing the COTS1 match
scores using the baseline and the proposed algorithm,
the rank-1 identification performance can be further
improved (from 31.01% to 34.50% on NIST SD27 and
from 42.54% to 50.33% on WVU DB). However, this
fusion does not help the COTS2 matcher because there
is a large gap in the performance between the baseline
and our algorithm.

3.3 Performance with Latent Matcher

For each latent, we input two images to the COTS3
latent matcher, i.e. original latent image (baseline)
and segmented and enhanced latent image (by the
proposed algorithm), as shown in Figs. 2 (a) and
(c), respectively. To evaluate if the proposed segmen-
tation and enhancement can boost the performance
of a state-of-the-art latent matcher, the match scores
from the two input images (original latent and the

enhanced and segmented latent by the proposed al-
gorithm) are fused by a weighted sum method (the
weights for original latent image and segmented and
enhanced are empirically set as 0.7 and 0.3, respec-
tively). The resulting CMC curves for the COTS3
latent matcher on NIST SD27 and WVU DB are
shown in Fig. 12. Although the performance with
the segmented and enhanced latent is lower than
by just that with the original latent image, after fu-
sion, the rank-1 identification rate of COTS3 latent
matcher increases from 72.48% to 75.58% for NIST
SD27 and from 72.16% to 77.51% for WVU DB. One
of the main objectives of this paper is to develop
a strategy for latent segmentation and enhancement
which could lead to a novel template of the latent.
This template could be used by any COTS matcher in
addition to the propriety templates that the matchers
generate internally for a latent. In fact, a fusion of
diverse search templates from different segmentation
and enhancement algorithms is a common technique
to boost the latent matching performance. Hara [46]
shows some examples of such a fusion in the NIST
latent testing workshop. Fig. 13 shows queries which
are correctly retrieved at rank 1 by the COTS3 latent
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Fig. 12: CMC curves for latent matching with COTS3 matcher, a state of the art latent matcher, under different
matching scenarios on (a) NIST SD27 and (b) WVU DB.

Fig. 13: Examples of latent images which are correctly
identified at rank 1 by the COTS3 latent matcher after
match score fusion. (a), (b) show original latents (left
column) and the segmented and enhanced latents by
the proposed algorithm (right column). (a) and (b) are
latents from NIST SD27 and WVU DB, respectively.
The mated rolled fingerprints of original latents of
(a), (b) are retrieved at ranks 5 and 31,997, respec-
tively. The contrast of the latent fingerprint in (b) has
enhanced for better visual quality.

matcher after match score fusion with the proposed
algorithm.

3.4 Confidence Value

Some latents that are of extremely poor quality (see
Fig. 14) cannot be segmented and enhanced correctly.

Therefore, it is necessary to provide a confidence
value for latent segmentation and enhancement. If the
confidence value is high, it means the segmented and
enhanced latent image is suitable for lights-out opera-
tion without any human intervention. The confidence
value of latent segmentation and enhancement (C) is
defined as

C =
∑

(x,y)∈F

Q(x, y)/|F | (21)

where F is the segmented foreground and Q(x, y)
is the quality at point (x, y) defined in Eq. (20).
To validate the usability of the proposed confidence
value, we analyzed the latent identification accuracy
at various rejection rates (rejected latents will be man-
ually processed) based on the confidence values. At
a rejection rate of 20%, the rank-1 identification rate
accuracy increases by 7.43% and 7.23%, respectively,
for the NIST SD27 and WVU DB using the COTS3
latent matcher. Apparently, both these databases con-
tain some inherently challenging latent images, so the
error-reject tradeoff is not as effective.

4 CONCLUSIONS AND FUTURE WORK

Although state of the art AFIS have already achieved
impressive accuracy in tenprint search (rolled prints
or slaps), latent matching or search is still a challeng-
ing problem due to presence of complex background
noise and poor quality of friction ridge structure in
many latents. We have proposed an automatic la-
tent segmentation and enhancement algorithm based
on image decomposition and coarse to fine ridge
structure dictionaries. Experimental results on two
different latent fingerprint databases, NIST SD27 and
WVU DB, in conjunction with three different COTS
matchers show that the proposed algorithm is able
to improve the performance of two COTS tenprint
matchers and can even boost the performance of
a state-of-the-art latent matcher by weighted match
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Fig. 14: Examples of poor quality latents. (a) and (c)
are original latent images from NIST SD27 and WVU
DB, respectively. (b) and (d) are their segmented and
enhanced latent images by the proposed algorithm.
The contrast of latent image in (c) has been enhanced
for better visual quality.

score fusion. However, the proposed algorithm still
does not work well on very poor quality latent finger-
print images. Our algorithm can be further improved
along the following aspects:

1) A robust patch quality definition, especially for
dry fingerprint images, where ridges are broken.

2) A better definition of confidence measure for the
segmentation and enhancement results.

3) Improve the computational efficiency of the al-
gorithm.
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