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Abstract

Optical coherent tomography (OCT) fingerprint technol-
ogy provides rich depth information, including internal fin-
gerprint (papillary junction) and sweat (eccrine) glands,
in addition to imaging any fake layers (presentation at-
tacks) placed over finger skin. Unlike 2D surface fingerprint
scans, additional depth information provided by the cross-
sectional OCT depth profile scans are purported to thwart
fingerprint presentation attacks. We develop and evaluate a
presentation attack detector (PAD) based on deep convolu-
tional neural network (CNN). Input data to CNN are local
patches extracted from the cross-sectional OCT depth pro-
file scans captured using THORLabs Telesto series spectral-
domain fingerprint reader. The proposed approach achieves
a TDR of 99.73% @ FDR of 0.2% on a database of 3, 413
bonafide and 357 PA OCT scans, fabricated using 8 differ-
ent PA materials. By employing a visualization technique,
known as CNN-Fixations, we are able to identify the regions
in the OCT scan patches that are crucial for fingerprint PAD
detection.

1. Introduction
Fingerprint recognition based authentication systems

have become ubiquitous with its footprint in a plethora of
different applications such as mobile payments [3], access
control [55], international border crossing [1] and national
ID [4]. While the primary purpose of a fingerprint recogni-
tion system is to ensure a reliable and accurate user authen-
tication, the security of the recognition system itself can be
jeopardized by presentation attacks1 [37, 46].

Most of the fingerprint recognition systems based on tra-
ditional readers (e.g., FTIR and capacitive technology) rely
upon the friction ridge information on the finger surface

1The ISO standard IEC 30107-1:2016(E) [28] defines presentation attacks
as the “presentation to the biometric data capture subsystem with the goal
of interfering with the operation of the biometric system”.
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Figure 1. Different layers of a finger (stratum corneum, epider-
mis, papillary junction, and dermis) are distinctly visible in a OCT
finger scan, along with helical shaped eccrine sweat glands in (a)
3-D finger OCT volume and (b) 2-D finger OCT depth profile.
Note that (a) and (b) are OCT scans of different fingers. Image (a)
is taken from [16], and (b) is captured using THORLabs Telesto
series (TEL1325LV2) SD-OCT scanner [2].

(i.e. stratum corneum). This makes them highly prone
to be fooled by presenting fabricated objects (presentation
attack instruments or PAIs) with accurate imitation of an-
other individual’s bonafide2 fingerprint ridge-valley struc-
tures [39]. Commonly available and inexpensive materials,
such as play-doh, gelatin, wood glue, etc., have been uti-

2In the literature, the term live fingerprint has been primarily used to refer
a bonafide fingerprint juxtaposed to spoof fingerprints. However, in the
context of all forms of presentation attacks, bonafide fingerprint is a more
appropriate term as some PAs such as fingerprint alterations also exhibit
characteristics of liveness.



Table 1. Existing studies on OCT-based fingerprint presentation attack detection.

Study Approach OCT Technology Database Comments

Cheng et al.,
2006 [11]

Averaged B-scan slices to generate 1D depth profile;
performed auto-correlation analysis; B-scan is 2.2mm in

depth and 2.4mm laterally

Imalux Corp.
Time-domain OCT;

capture time: 3s

8 bonafide (8 fingers of
one subject) and 10-20

impressions per PA, four
PA materials

Manual inspection of
auto-correlation

response

Cheng et al.,
2007 [12]

Extended [11] by combining 100 B-Scans to create 3D
representation; anisotropic resolution (4762 dpi, 254 dpi)

Imalux Corp.
Time-domain OCT;
capture time: 300s

for 100 scans

One bonafide finger, one
PA

Visual analysis of 3D
representation

Bosen et al.,
2010 [9]

Used fingerprint COTS for matching 3D OCT scans;
scanned volume: 14mm x 14mm x 3mm; discussed

detection of eccrine glands for PAD

THORLabs
Swept-source OCT

(OCS1300SS);
capture time: 20s for

3D volume

153 impressions from 51
fingers for identification

experiment; one PA
material.

Visual analysis for PAD;
identification

performance: FRR = 5%
@ FAR = 0.01%

Liu et al.,
2010 [34]

Mapped subsurface eccrine glands with sweat pores on
finger surface; exhibited repeatable matching of

fingerprints based on sweat pores; discussed absence of
sweat pores for fingerprint PAD

Custom
Spectral-domain

OCT; capture time:
4min for 3D volume

Nine bonafide
impressions from three

fingers, two PA
materials

Visual analysis of
eccrine glands for PAD

Nasiri-
Avanaki et al.,
2011 [44]

Used a dynamic focus en-Face OCT to detect any layer
placed over finger skin; discussed Doppler OCT to detect
blood flow and sweat production for liveness detection

Custom en-Face
OCT; capture time is

not reported.

One bonafide finger, one
PA

Visual analysis of one
bonafide finger and one

sellotape PA

Liu et al.,
2013 [33]

Auto-correlation analysis between adjacent B-Scans to
determine blood flow in micro-vascular pattern

Swept-source OCT;
capture time: 20s

One bonafide with and
w/o inhibited blood flow

Exhibited repeatable
signs of vitality

Meissner et
al., 2013 [40]

Detected number of helical eccrine gland ducts to
distinguish bonafide vs PA, scanned volume: 4.5mm x

4mm x 2mm

Swept-source OCT;
capture time is not

reported.

Bonafide: 7, 458 images,
cadavers: 330 images,

PA: 2, 970 images

Manual PAD: 100%;
automated PAD:

bonafide: 93% and PA:
74% success rate

Darlow et al.,
2016 [18]

Detected double bright peaks in depth profile for thin
PAs and autocorrelation analysis for thick PAs; 2

different resolutions; scanned volume: 13mm x 13mm x
3mm (500dpi) and 15mm x 15mm x 3mm (867 dpi)

THORLabs
Swept-source OCT

(OCS1300SS);
capture time: 20s for

3D volume

Bonafide: 540 scans
from 15 subjects, PA: 28
scans; one PA material +

sellotape

PAD accuracy: 100%

Darlow et al.,
2016 [17]

Measured ridge frequency consistency of the internal
fingerprint in non-overlapping blocks;

THORLabs
Swept-source OCT

(OCS1300SS)

Bonafide: 20 scans, PA
20 scans; one PA

material

PAD accuracy: 100%

Liu et al.,
2019 [32]

Analyzed order and magnitude of bright peaks in 1-D
depth signals to detect PAs with different thickness;

scanned volume: 15mm x 15mm x 1.8mm

Custom
Spectral-domain

OCT

Bonafide: 30 scans from
15 subjects, PA: 60

scans; four PA materials

Contact-based (glass
platen) OCT scanner;
PAD accuracy: 100%

Proposed
Approach

Trained a deep CNN model using overlapping patches
extracted from detected finger depth profile in B-Scans;

B-scan is 1.8mm in depth and 14mm laterally

THORLabs
Spectral-domain

OCT (TEL1325LV2);
capture time: < 1s

Bonafide: 3,413 scans
from 415 subjects, PA:

357 scans, eight PA
materials

Five-fold
cross-validation; TDR =
99.73% @ FDR = 0.2%

lized to fabricate fingerprint PAIs, capable of circumvent-
ing a fingerprint recognition system security with a reported
success rate of more than 70% [8, 15]. Such deception may
permit unauthorized access to an impostor.

Given the increasing possibilities to realize presentation
attacks (PAs), there is now an urgent requirement for robust
PAD as a first line of defense to ensure the security of a fin-
gerprint recognition system. In response to this, a series of
fingerprint Liveness Detection (LivDet) competitions [23]
have been held since 2009 to advance state-of-the-art and
benchmark the proposed PAD solutions, with the latest

competition held in 2019 [47]. Generally, PAs can be de-
tected by either: (i) software-based approaches, i.e. extract
features from the captured fingerprint image [43, 35, 37],
or (ii) hardware-based approaches, i.e. using sensor(s) to
gather evidence of the liveness of the subject [30, 51, 26].

Software-based solutions typically work with the
grayscale surface fingerprint image (or a sequence of
images) captured by a typical contact-based FTIR or ca-
pacitive fingerprint reader. The software-based approaches
have explored (i) hand-crafted features, such as anatom-
ical [38], physiological [36], and texture-based [22, 24],
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Figure 2. Direct view images with red arrows presenting the
scanned line and the corresponding cross-sectional B-scan for a
(a) bonafide and a (b) pigmented ecoflex presentation attack.

and (ii) learned features via CNN [45, 49, 14, 21]. In
the case of hardware-based approaches, special types of
sensors are proposed to detect the characteristics of vitality,
such as blood flow [30], skin distortion [5], odor [7], skin
color using multi-view reader [19], sub-surface fingerprint
imaging using multispectral reader [57, 51], and imaging
internal finger structure using optical coherence tomogra-
phy (OCT) [26].

Optical coherence tomography (OCT) [27] technology
allows non-invasive, high-resolution, cross-sectional imag-
ing of internal tissue microstructures by measuring their op-
tical reflections. Optical analogue to Ultrasound [59], it
utilizes low-coherence interferometry of near-infrared light
(900nm−1325nm) and is widely used in biomedical appli-
cations, such as ophthalmology [50], oncology [25], derma-
tology [58] as well as applications in art conservation [31]
and fingerprint presentation attack detection [41]. In an
OCT scanner, a beam of light is split into a sample arm,
i.e. a unit containing the object of interest, and a reference
arm, i.e. a unit containing a mirror to reflect back light with-
out any alteration. If the reflected light from the two arms
are within coherence distance, it gives rise to an interfer-
ence pattern representing the depth profile at a single point,
also known as A-scan. Laterally combining a series of A-
scans along a line can provide a cross-sectional scan, also
known as B-scan (see Figs. 1 (b) and 2). Stacking multiple
B-scans together can provide a 3D volumetric representa-
tion of the scanned object, or the object of our interest i.e.
internal structure of a finger (see Figure 1 (a)).

The human skin is a layered tissue with the outermost
layer known as epidermis and the external-facing sublayer

of epidermis, where the friction ridge structure exists, is
known as stratum corneum. The layer below epidermis
is known as dermis, and the junction between epidermis
and dermis layers is known as papillary junction. The de-
velopment of friction ridge patterns on papillary junction,
which starts as early as in 10-12 weeks of gestation, re-
sults into the formation of surface fingerprint on stratum
corneum [6]. The surface friction ridge pattern scanned
by traditional (optical and capacitive) fingerprint readers are
merely an instance or a projection of the, so to say, a mas-
ter print existing on the papillary junction. There also exist
helically shaped ducts in epidermis layer connecting the ec-
crine (sweat) glands in dermis to the sweat pores on surface.
See Figure 1.

Since OCT enables imaging the 3D volumetric morphol-
ogy of the skin tissue, including the subsurface fingerprint
and other internal structures, it has great potential in de-
tecting fingerprint presentation attacks. Existing finger-
print PAD studies in the literature have explored various
OCT technologies such as time-domain, fourier-domain,
and spectral domain, and developed hand crafted features
to detect correlation between the skin layers, blood flow,
eccrine glands, compute consistency in ridge frequency.
These studies are summarized in Table 1. In this study, we
utilize local patches (150 × 150) extracted from the auto-
matically segmented finger depth profile from input B-scan
images to train a deep convolutional neural network.
The main contributions of this paper are:

1. Proposed a deep convolutional neural network based
PAD approach trained on local patches containing fin-
ger depth profile from cross-sectional B-Scans.

2. Evaluated the proposed approach on a database of
3,413 bonafide and 357 PA OCT B-scans fabricated
using 8 different PA materials and achieved a TDR of
99.73% @ FDR of 0.2% for PAD.

3. Identified the regions in the OCT scan patches that are
crucial for fingerprint PAD detection by employing a
visualization technique, known as CNN-Fixations.

2. Proposed Approach
The proposed PAD approach includes two stages, an of-

fline training stage and an online testing stage. The of-
fline training stage involves (i) preprocessing the OCT im-
ages (noise removal and image enhancement), (ii) detect-
ing region-of-interest (i.e. finger depth profile), (iii) extract-
ing local patches from the region-of-interest (ROI), (iv) and
training CNN models on the extracted local patches. During
the online testing stage, the final spoof detection decision
is made based on the average of spoofness scores output
from the CNN model for each of the extracted patches. An
overview of the proposed approach is presented in Figure 3.
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Figure 3. An overview of the proposed fingerprint presentation attack detection approach utilizing local patches extracted from the seg-
mented depth profiles from OCT B-scans.

2.1. Preprocessing

Optical Coherent Tomography (OCT) 2D scans are
grayscale images with height = 1024 pixels and width =
1900 pixels (see Figs. 4 and 5). These images contain gaus-
sian noise which makes the extraction of region-of-interest
(finger depth profile) by simple thresholding prone to er-
rors. We employ Non-Local Means denoising [10] that re-
moves noise by replacing the intensity of a pixel with an av-
erage intensity of the similar pixels that may not be present
close to each other (non-local) in the image. An optimized
opencv python implementation3 of Non-Local Means de-
noising, cv2.fastNlMeansDenoising(), is used with filter-
Strength = 20, templateWindowSize = 7, and searchWin-
dowSize = 21. After de-noising, a morphological operation
of image dilation [20], with the kernel size of 5 × 5, is ap-
plied to enhance the image.

2.2. Otsu’s Binarization

The characteristic differences between a bonafide and a
presentation attack OCT image are primarily discernible in
the finger depth profile region as shown in Figure 4. The
pixel intensity histograms for the grayscale 2D OCT images
are bimodal, with the first peak (high intensity values) refer-
ring to the finger depth profile region, while the second peak
(low intensity values) referring to the background region.
In order to segment out the finger depth profile, we apply
Otsu’s thresholding [48] which finds an adaptive threshold,
in the middle of the two peaks, to successfully binarize the
input OCT images as shown in Figure 3.

3https://opencv-python-tutroals.readthedocs.io/
en/latest/py_tutorials/py_photo/py_non_local_
means/py_non_local_means.html

Bonafide Finger 2D OCT Depth Profile

Presentation Attack 2D OCT Depth Profile

Figure 4. Depth profile of a bonafide finger manifests a layered
tissue anatomy quite distinguishable from the depth profile of a
presentation attack without any specific structure.
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Figure 5. Examples of bonafide and presentation attack samples from the OCT fingerprint database utilized in this study.

2.3. Local Patch Extraction

The binarized image generated after Otsu’s binarization
is raster scanned, with a stride of 30 pixels (in both x and
y-axis), to identify the possible candidates for patch extrac-
tion. At each scanned pixel, a window of size 9 × 9 is
evaluated and if more than 25% of the pixels (20 out of
81 pixels) in the window have non-zero values, the pixel
is marked as a candidate for extracting a local patch. This
rule is applied to guarantee sufficient depth information in
the extracted patches. After the patch candidates are se-
lected, a maximum of 60 local patches of size 150 × 150
are extracted from the original image around the patch can-
didates. If there are more than 60 candidates, the topmost
candidates from each column (i.e. the points closest to the
surface fingerprint) are selected first, before moving to the
next row. With the image width of 1900 pixels and a stride
of 30 pixels, a maximum of 60 patches are sufficient to pro-
vide at least one pass of stratum corneum. The patches are
extracted such that the candidate is located at (50, 75) in
the 150×150 patch. This ensures that the extracted patches
cover stratum corneum, epidermis, and papillary junction
regions as shown in Figure 3.

2.4. Convolution Neural Networks

With the success of AlexNet [29] in ILSVRC-2012 [52],
different deep CNN architectures have been proposed in lit-
erature, such as VGG, GoogleNet (Inception), Inception v2-
v4, MobileNet, and ResNet. In this study, we utilize the

Table 2. Summary of the OCT database used in this study.
Fingerprint Presentation Attack Material #Images

Ballistic Gelatin 34

Clear Ecoflex 7

Tan Ecoflex 49

Yellow Pigmented Silicone 57

Flesh Pigmented Ecoflex 36

Nusil R-2631 Conductive Silicone 128

Flesh Pigmented PDMS 42

Elmer’s Glue 1

Bandaid 3

Total PAs 357
Total Bonafide 3,413

Inception-v3 [56] architecture which has exhibited state-of-
the-art performance in patch-based fingerprint presentation
attack detection [13, 14]. Our experimental results show
that training the models from scratch, using local patches,
performs better than fine-tuning a pre-trained network on
image patches from other domains (e.g. FTIR fingerprint
images).

We utilized the TF-Slim library4 implementation of the
Inception-v3 architecture. The last layer of the architec-
tures, a 1000-unit softmax layer (originally designed to

4https://github.com/tensorflow/models/tree/
master/research/slim
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classify a query image into one of the the 1, 000 classes of
ImageNet dataset) was replaced with a 2-unit softmax layer
for the two-class problem, i.e. Bonafide vs. PA. The out-
put from the softmax layer is in the range [0, 1], defined as
Spoofness Score. The larger the spoofness score, the higher
the likelihood that the input patch belongs to the PA class.
For an input test image, the spoofness scores corresponding
to each of the local patches, extracted from the input image,
are averaged to give a Global Spoofness Score. The opti-
mizer used to train the network was RMSProp, with a batch
size of 32, and an adaptive learning rate with exponential
decay, starting at 0.01 and ending at 0.0001. Data augmen-
tation techniques, such as random cropping, brightness ad-
justment, horizontal and vertical flipping, are employed to
ensure the trained model is robust to the possible variations
in fingerprint images.

Figure 6. Setup of a THORLabs Telesto series Spectral-domain
OCT scanner (TEL1325LV2). Image taken from [2].

3. Experimental Results
3.1. Presentation Attack OCT Database

A database of 3, 413 bonafide and 357 presentation
attack (PA) 2D OCT scans is utilized in this study.
These scans are captured using THORLabs Telesto series
(TEL1325LV2) Spectral-domain OCT scanner [2] (see Fig-
ure 6). Table 2 lists the eight PA materials and the corre-
sponding number of scans for each material type. Figure 5
presents few samples of bonafide and PA scans from this
database. This dataset is collected at John Hopkins Univer-
sity Applied Physics Lab5 as part of a large-scale evalua-
tion under IARPA ODIN Project [46] on Presentation At-
tack Detection.

3.2. Results

The proposed approach is evaluated using five-fold
cross-validation. Table 3 presents the training and test-

5https://www.jhuapl.edu/

Table 3. Summary of the five-fold cross-validation and the perfor-
mance achieved using Inception-v3 model.

Fold
# Images (Bonafide / PA)

TDR (%) @ FDR = 0.2%
Training Testing

I (2,730 / 281) (683 / 76) 100.00

II (2,730 / 283) (683 / 74) 98.63

III (2730 / 288) (683 / 71) 100.00

IV (2731 / 289) (682 / 70) 100.00

V (2731 / 288) (682 / 71) 100.00

Average 99.73 (s.d. = 0.55)

Figure 7. ROC curves for the five-fold cross-validation experi-
ments. The red curve represents the average performance with
grayed region reflecting the confidence interval of one standard
deviation.

ing set details for each fold6, along with the achieved PA
True Detection Rate (%) @ False Detection Rate = 0.2%.
The selection of this metric is based on the requirements of
IARPA ODIN program [46] and represents the percentage
of PAs able to breach the biometric system security when
the reject rate of legitimate users ≤ 0.2%. Note that the
proposed approach achieves an avg. TDR = 99.73% (s.d. =
0.55) @ FDR = 0.2% for the five folds. Figure 7 presents
the ROC curves for each of the five folds. In fold-II, only
one bonafide scan was misclassified as PA due to incorrect
segmentation.

3.3. On understanding the learnings of CNN

CNNs have revolutionized computer vision and machine
learning research achieving unprecedented performance in
many tasks. But these are usually treated as “black boxes”
shedding little light on their internal workings and without
answering how they achieve high performance. One way

6Note that all PA types are uniformly distributed among the five folds with-
out repetition, therefore Elmer’s Glue and Bandaid which have less than
five samples are missing from some folds.
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Input CNN-Fixations Heat Map Input CNN-Fixations Heat Map

Bonafide Samples PA Samples

High density of fixations at Papillary Junction

High density of fixations on Stratum Corneum (surface fingerprint)

Figure 8. Patches (150 × 150) from bonafide and PA OCT B-scans input to the model are presented. The detected CNN-Fixations and a
heat map presenting the density of CNN-Fixations are also shown. A high density of fixations are observed along the stratum corneum
(surface fingerprint) and at papillary junction in both bonafide and PA patches.

to gain insights into what CNNs learn is through visual ex-
ploration, i.e. to identify the image regions that are respon-
sible for the final predictions. Towards this, visualization
techniques [54, 53, 42] have been proposed to supplement
the class labels predicted by CNN, in our case bonafide or
PA, with the discriminated image regions (or saliency maps)
exhibiting class-specific patterns learned by CNN architec-
tures. The visualization technique proposed in [42] exploits
the learned feature dependencies between consecutive lay-
ers of a CNN to identify the discriminative pixels, called
CNN-Fixations, in the input image that are responsible for
the predicted label. We utilize this visualization technique
to understand the representation learning of our CNN mod-
els and identify the crucial regions in OCT images respon-
sible for final predictions. Figs. 8 presents CNN-Fixations
and the corresponding density heatmaps for two bonafide
and two PA image patches that are correctly classified. We
observe that there is a high density of fixations along stra-
tum corneum and at papillary junction, suggesting that these
are definitely crucial regions in distinguishing bonafide vs
PA OCT patches. Note that the only misclassified sample
in Fold-II was due to incorrect segmentation, otherwise it
would be useful to observe the CNN-Fixations that led to
an incorrect prediction.

4. Conclusions

The penetrative power of optical coherent tomography
(OCT) to image the internal tissue structure of human skin
in a non-invasive manner presents a great potential to in-
vestigate robustness against fingerprint presentation attacks.
We propose and demonstrate a learning-based approach
to differentiate between bonafide (live) and eight different
types of presentation attacks (spoofs). The proposed ap-
proach utilizes local patches automatically extracted from
the finger depth profile in 2D OCT B-scans to train an
Inception-v3 network model. Our experimental results
achieve a TDR of 99.73% @ FDR of 0.2% on a database of
3, 413 bonafide and 357 PA scans. The crucial regions in the
input images for PAD learned by the CNN models, namely
stratum corneum and papillary junction, are identified us-
ing a visualization technique. In future, we will evaluate
the generalization ability of the proposed approach against
novel materials that are not seen by the model during train-
ing.
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