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Abstract—The performance of a fingerprint recognition system
hinges on the errors introduced in each of its modules: image ac-
quisition, preprocessing, feature extraction, and matching. One of
the most critical and fundamental steps in fingerprint recognition
is robust and accurate minutiae extraction. Hence we conduct a
repeatable and controlled evaluation of one open-source and three
commercial-off-the-shelf (COTS) minutiae extractors in terms of
their performance in minutiae detection and localization. We
also evaluate their robustness against controlled levels of image
degradations introduced in the fingerprint images. Experiments
were conducted on (i) a total of 3, 458 fingerprint images
from five public-domain databases, and (ii) 40, 000 synthetically
generated fingerprint images. The contributions of this study
include: (i) a benchmark for minutiae extractors and minutiae
interoperability, and (ii) robustness of minutiae extractors against
image degradations.

Index Terms—fingerprint recognition, minutiae extraction, ro-
bustness to noise, interoperability

I. INTRODUCTION

A fingerprint recognition system typically comprises of
four major modules: image acquisition, preprocessing, feature
extraction, and matching (See Fig. 1). The errors introduced in
each of these four modules, from image acquisition to match-
ing cumulatively impact the overall system recognition perfor-
mance. For instance, the low fidelity4 of a fingerprint signal
acquired by a sensor can introduce errors in preprocessing,
induce poor feature extraction, and ultimately deteriorate the
matching performance. Therefore, it is important to perform
a comprehensive evaluation of each module independently to
improve the overall performance of the fingerprint recognition
system.

Fingerprint sensor certification standards (e.g. PIV-
071006 [1] and Appendix F [2]) mandate independent
evaluation of fingerprint sensors. Hence vendors are required
to demonstrate that their sensors can acquire a high-fidelity
image with low-noise characteristics. Existing studies have
evaluated the performance of sensors in terms of their
resilience to external environmental factors (temperature
and humidity), intrinsic subject-dependent factors (skin
humidity and pressure) [3], operational quality [4], their
interoperability [5], and finger liveness detection [6]. Arora

This research was supported by grant no. 60NANB11D155 from the NIST
Measurement Science program.

*At the time this research was conducted, Sunpreet was affiliated with the
Dept. of Computer Science and Engineering, Michigan State University.

4Fidelity refers to the degree of exactness with which friction ridge patterns
on a finger are reproduced by the sensor

et. al [7] have designed and fabricated 3D fingerprint
targets and whole hand targets for repeatable evaluation and
calibration of fingerprint sensors.

On the contrary, studies pertaining to fingerprint preprocess-
ing, feature extraction, and matching, evaluate these modules
in entirety as a black-box with the goal to improve the overall
matching performance. National Institute of Standards and
Technology (NIST) conducts fingerprint vendor technology
evaluations (FpVTE) to benchmark the capabilities of finger-
print recognition systems in terms of identification accuracy
and computational requirements [8], [9]. The 2014 FpVTE [9]
reports that the best performing system achieved a FNIR of
1.9% for single index finger, and 0.09% using all ten-fingers, at
a FPIR of 0.1%. Fingerprint verification competitions5 (FVC
2000-2006) also evaluate systems from an end-to-end perspec-
tive. Although these third-party evaluations are useful, they
do not evaluate individual modules. For instance, in the case
of a false match or a non-match, it is uncertain whether the
error is caused due to poor image quality, minutiae extraction
errors, or inability of the matcher to handle distortion. An
independent evaluation of the individual modules will enable
us to understand the error sources and design an interoperable
system.

It is generally known that minutiae extraction is critical to
fingerprint recognition accuracy. Minutiae-based representa-
tion is the most widely used approach, essentially due to its
(i) interpretability, (ii) high matching performance, (iii) stor-
age efficiency, (iv) applicability to match fingerprints/latents
in forensic casework, and (v) evidential value (i.e. expert
testimony based on mated minutiae is admissible in the
courts of law) [10]. The FVC-onGoing [11], in addition to
benchmarking performance at the system level, also provides
benchmarks for (i) fingerprint orientation extraction, and (ii)
matching standard minutiae-based templates [ISO/IEC 19794-
2 (2005)]. However, accuracy and robustness evaluation of
minutiae extracted using different minutiae extractors are
needed in order to benchmark their performance and minutiae
interoperability.

Minutiae interoperability tests (e.g. MINEX III [12]) evalu-
ate the compliance between minutiae-based template genera-
tors and matchers from different vendors. Kayaoglu et al. [13]
compared the matching performance based on automatically
extracted minutiae and manually labelled minutiae. However,

5https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx
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Fig. 1: Framework of a typical fingerprint recognition system. While existing studies evaluate the recognition system from an
end-to-end perspective, we provide a benchmark for minutiae extraction module. Errors introduced at different steps of the
system, i.e. fingerprint acquisition (e1), preprocessing (e2), minutiae extraction (e3), and matching (e4), cumulatively impact
the overall performance.
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Fig. 2: Challenges in automated fingerprint processing. Five different impressions of the same finger (from FVC2004 DB1A).
These illustrate (a) reference fingerprint, (b) large non-linear distortion (compare the triangle in (b) to triangle in the reference
fingerprint (a)), (c) smudged areas due to wet fingerprint, (d) and (e) broken ridge structure due to dry and noisy fingerprints.

these tests did not evaluate the underlying factors limiting
the minutiae interoperability, i.e. variations in the minutiae
detection and localization ability. Moreover, the images input
to minutiae extractors may contain distortion and motion blur
due to variance in pressure applied on the sensor platen, and
may have poor contrast due to dry/wet fingers (See Fig. 2).
To address these challenges, this study conducts:
• A repeatable and controlled evaluation of minutiae ex-

traction in terms of their detection and localization per-
formance, for one open-source and three commercial
minutiae extractors.

• A rigorous assessment of robustness of minutiae extrac-
tors in the presence of controlled levels of noise and
motion blur to understand their limitations.

II. EVALUATION PROTOCOL

A. Databases
The fingerprint images used in this evaluation study are

grouped into two sets.

• Dataset-A contains 3, 458 real fingerprint images
compiled from five public domain databases:
FVC 2002 (DB1A and DB3A), FVC 2004 (DB1A
and DB3A) and NIST SD27 rolled prints database6.
Each FVC database contains 800 fingerprint images (100
unique subjects, 8 acquisitions/subject), with ground
truth minutiae marked by human subjects [13]. NIST
SD27 [16] contains 258 rolled prints with ground truth
minutiae marked by at least two certified forensic
examiners.

• Dataset-B contains 40, 000 synthetic fingerprints (includ-
ing 5, 000 unique masterprints, and 35, 000 fingerprints
degraded with controlled levels of noise and motion blur)
generated using Novetta’s biosynthetic software [17].
It contains four levels of noise (including anatomical
deformations, dryness, ridge noise) and three levels of
motion blur.

6NIST SD27 is no longer publicly available.
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Fig. 3: Examples of fingerprint images from the six databases used in this evaluation study.

Database (# Fingerprints,
# Subjects)

Ground Truth Image Capture Image Size
(h× w)

Avg. NFIQ2
value (s.d.)

Dataset-A
FVC2002 DB1A [14] (800, 100)

Manually Marked

Optical sensor 374× 388 64 (15)
FVC2002 DB3A [14] (800, 100) Capacitive sensor 300× 300 26 (13)
FVC2004 DB1A [15] (800, 100) Optical sensor 480× 640 59 (17)
FVC2004 DB3A [15] (800, 100) Minutiae Thermal sweep sensor 480× 300 47 (16)
NIST SD27 (rolled prints) [16] (258, 258) Digitized ink and paper 768× 800 42 (10)

Dataset-B
Synthetic masterprints [17] (5,000, 5,000) N/A Synthetically generated 480× 512 71 (6)
Noisy prints [17] (20,000, 5,000) Minutiae extracted Synthetically generated 480× 512 40 (23)
Motion blurred prints (15,000, 5,000) from master prints Synthetically generated 480× 512 44 (26)

TABLE I: A summary of fingerprint databases used in this evaluation study.

Figure 3 presents example fingerprint images from each of
these databases. The two sets of fingerprint databases used
in this study are summarized in Table I. The average NIST
Fingerprint Image Quality 2.0 (NFIQ 2.0) [18], which lies in
the range [0, 100] where 0 indicates the worst quality, and 100
refers to the best quality, is also presented for each database.

B. Evaluating Minutiae Detection and Localization

An ideal fingerprint minutiae extractor is expected to exhibit
high precision in minutiae detection and localization, and
minimize spurious and missing minutiae. We evaluate the per-
formance of one open-source minutiae extractor mindtct [19],
and three minutiae extractors (COTS - A, B, and C) by com-
paring the extracted minutiae with the ground truth obtained
from human subjects for Dataset-A. The performance of a
fingerprint minutiae extractor depends heavily on the quality
of input fingerprint images. Considering the large variations
in the NFIQ 2.0 values, we segregate the fingerprint images
from Dataset-A into five quality bins [0, 20], [21, 40], [41, 60],
[61, 80], and [81, 100] based on the NFIQ 2.0 values. Figure 4
presents examples of fingerprint images corresponding to each
of the 5 quality bins. For a fair evaluation, performance
comparison between minutiae extractors is done only for fin-
gerprint images within each quality bin. We do not utilize the

synthetic fingerprint images (Dataset-B) for this evaluation, as
the synthesis process itself introduces some spurious minutiae.

1) Minutiae Detection: Given a fingerprint image, let Fd =
{f1d , f2d , ..., fNd } be the set of N minutiae detected by a
minutiae extractor, and Fg = {f1g , f2g , ..., fMg } be the set
of M ground truth minutiae marked by human subjects. A
detected minutia fd, and a ground truth minutia fg are said to
be paired, if fd lies within a distance threshold δ around fg .
As the average ridge width for a 500 ppi fingerprint image is
known to be approximately 9 pixels [20], we fix the threshold
to 10 pixels. If there is more than one detected minutia within
the threshold, the one closest to the ground truth minutia is
paired with it. In case of a tie, the pairing decision is made
in favor of the minutia with smaller orientation difference. If
a minutia has to be inserted in the set Fd, in order to pair
it with a minutia in the set Fg , it is considered as a missing
minutia. Similarly, if a minutiae in the detected set Fd, cannot
be paired with any minutia in ground truth set Fg , it is deemed
to be a spurious minutia. We utilize the Goodness Index (GI)
metric of Ratha et al. [21] to evaluate the minutiae detection
performance.

GI =

∑L
i=1Qi[Pi −Di − Ii]∑L

i=1QiMi

(1)
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Fig. 4: Examples of fingerprint images from Dataset-A corresponding to the 5 quality bins based on NFIQ 2.0 values, where
[0, 20] represents the worst quality bin and [81, 100] indicates the best quality bin.
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Fig. 5: Four different levels of noise added to the master fingerprint (reference fingerprint).
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Fig. 6: Three different levels of motion blur added to the master fingerprint (reference fingerprint).

where L = no. of 16×16 non-overlapping patches in the input
image, Qi = quality of the ith patch (good = 4, medium =
2, poor = 1), Pi = no. of paired minutiae in the ith patch,
Di = no. of spurious minutiae in the ith patch, Di ≤ 2 ·Mi,
Ii = no. of missing minutiae in the ith patch, and Mi = no.
of ground truth minutiae in the ith patch, Mi > 0. In order to
restrict the negative impact of outlier patches, the number of
spurious minutiae (Di) in a patch is restricted to a maximum
value of 2 ·Mi.

The quality index proposed by Chen et al. [22] is utilized.
We do not consider patches with zero minutiae (near image
boundary). The maximum value of GI is +1, which is obtained
when Di = Ii = 0 and Pi = Mi, i.e. all detected minutiae
are paired and no. of detected and ground truth minutiae is

the same. The minimum value of GI is −3, which is obtained
when Pi = 0, Di = 2 ×Mi, and Ii = Mi, i.e. no detected
minutiae could be paired and the no. of spurious minutiae
takes its maximum possible value of 2 ·Mi. Larger the value
of Goodness Index, better the performance of a minutiae
extractor. In addition to Goodness Index (GI), we also report
the average percentages of paired (Pi/Mi), spurious (Di/Mi),
and missing (Ii/Mi) minutiae.

2) Minutiae Localization: For a given minutiae extractor,
let f̂d = {f̂1d , f̂2d , ..., f̂Pd }, f̂d ⊆ Fd, be a set of P detected
minutiae points, paired with a subset of known ground truth
minutiae points f̂g ⊆ Fg . The positional error (ep) for the
paired minutiae set (f̂g, f̂d) is computed using the Root Mean
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Manually	Marked	Minutiae

COTS	- A
Goodness	Index					:		0.90
Avg.	Pos.	Error	(𝑒"):		4.41
Avg.	Ori.	Error	(𝑒#)	:		0.07

COTS	- B
Goodness	Index					:		0.77
Avg.	Pos.	Error	(𝑒"):		4.68
Avg.	Ori.	Error	(𝑒#)	:		0.05

COTS	- C
Goodness	Index					:		0.70
Avg.	Pos.	Error	(𝑒"):		3.48
Avg.	Ori.	Error	(𝑒#)	:		0.06

mindtct (open-source)
Goodness	Index					:		0.47
Avg.	Pos.	Error	(𝑒"):		2.65
Avg.	Ori.	Error	(𝑒#)	:		0.13

Fig. 7: Example fingerprint from FVC2002 DB1A dataset with overlaid manually marked minutiae and minutiae extracted by
four minutiae extractors ( mindtct, and COTS A, B, and C). Goodness Index (GI) is unit less, while Avg. Positional Error (ep)
and Avg. Orientation Error (eθ) are measured in pixels and radians, respectively.

Square Deviation (RMSD) [23] given by:

ep(f̂g, f̂d) =

√∑P
i=1[(x

i
g − xid)2 + (yig − yid)2]

P
(2)

where, (xid, y
i
d) and (xig, y

i
g) represent the locations of the

detected minutia and the ground truth minutia, respectively.
Similarly, the orientation error (eθ) between the set of paired
minutiae (f̂g, f̂d) is computed using:

eθ(f̂g, f̂d) =

√∑P
i=1 φ(θ

i
g, θ

i
d)

2

P
(3)

where

φ(θ1, θ2) =

{
θ1 − θ2 if −π ≤ θ1 − θ2 < π

2π + θ1 − θ2 if θ1 − θ2 < −π
−2π + θ1 − θ2 if θ1 − θ2 ≥ π

C. Evaluating Robustness of Minutiae Extractors

The primary reason of errors in minutiae detection is the
presence of artifacts due to variations in finger placement on
the sensor platen, noise, finger moisture, fingerprint alterations,
etc. A common evaluation technique, known as stress testing,
is used to test a system beyond normal operating conditions,
often to a breaking point. We evaluate the robustness of
one open-source minutiae extractor mindtct [19], and three
commercial minutiae extractors in the presence of controlled
levels of noise, finger dryness, and motion blur, to understand
the stable operational conditions. We utilize the synthetic
fingerprint images from Dataset-B for this evaluation.

1) Robustness against Noise: Fingerprint images acquired
by the fingerprint readers may possess noise due to physical
factors such as anatomical deformations in the friction ridge
skin (scars, holes, scratches, etc.), finger moisture, and/or
environmental contamination. These noise sources induce sig-
nificant variation in minutiae extraction, even within multiple
acquisitions of the same finger. To quantify the impact of noise
on minutiae extractors, synthetic prints with controlled levels
of noise are generated from synthetic master fingerprints. The

noise model in Novetta’s biosynthetic software [17] is utilized
to add (i) anatomical deformations (scars, holes, and pressure
variations), (ii) ridge noise (Perlin noise), and (iii) finger
dryness. Fig. 5 presents different levels of noise added to a
master fingerprint (used as the reference).

2) Robustness against Motion Blur: Movements of the
hand during fingerprint acquisition may lead to introduction
of motion blur in the acquired image. We simulate three levels
of motion blur in the synthetic master fingerprints by applying
motion lens filter function in both horizontal and vertical
direction [24]. The MATLAB functions fspecial(′motion′, k)
and fspecial(′motion′, k, 90), with three different values of
k ∈ {5, 7, and 9} corresponding to increasing degrees of
motion blur, are applied. Fig. 6 presents a synthetic master
print and corresponding three different levels of motion blur.

III. EXPERIMENTAL RESULTS

Goodness index, average positional error (ep), and average
orientation error (eθ) are computed by comparing the output
from one open-source minutiae extractor, mindtct, and three
COTS minutiae extractors with the manually marked minutiae
for Dataset-A, and minutiae extracted on the master print
(without any image degradations) for Dataset-B.

A. Minutiae Detection and Localization

Fig. 7 presents an example fingerprint from FVC2002
DB1A dataset with overlaid manually marked minutiae and the
extracted minutiae from one open-source minutiae extractor,
mindtct, and three COTS minutiae extractors. The values for
the three performance metrics, Goodness Index, Positional
Error, and Orientation Error are also reported for each minutiae
extractor output. Tab. II presents a summary of the perfor-
mance comparison between the four minutiae extractors in
terms of minutiae detection and localization accuracies for
Dataset-A. In comparison to other minutiae extractors, COTS-
B consistently achieves a higher value of Goodness Index
across all quality levels. Performance of COTS-A is observed
to be highly dependent on fingerprint quality, as it achieves the
lowest Goodness Index for low quality images (NFIQ 2.0 =



NFIQ 2.0 Quality Bins Minutiae
Extractor

[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]

# Fingerprints 419 803 1, 051 1, 053 132

Goodness Index
mindtct −0.64 (0.77) −0.45 (0.70) −0.33 (0.59) 0.11 (0.38) 0.36 (0.25)

COTS-A −0.74 (0.69) −0.14 (0.71) 0.00 (0.67) 0.47 (0.26) 0.60 (0.16)

Avg. (s.d.) COTS-B −0.03 (0.63) 0.22 (0.44) 0.33 (0.30) 0.48 (0.22) 0.57 (0.17)

COTS-C −0.04 (0.70) 0.12 (0.51) 0.21 (0.35) 0.40 (0.21) 0.48 (0.19)

Positional Error (ep) (in pixels)
mindtct 3.95 (0.80) 3.78 (0.69) 3.60 (0.73) 3.22 (0.56) 3.10 (0.46)

COTS-A 4.87 (0.66) 4.64 (0.61) 4.37 (0.64) 4.27 (0.60) 4.22 (0.59)

Avg. (s.d.) COTS-B 4.53 (0.83) 4.24 (0.72) 4.02 (0.73) 4.00 (0.61) 3.89 (0.54)

COTS-C 4.10 (0.86) 4.21 (0.82) 4.23 (0.78) 3.83 (0.70) 3.59 (0.57)

Avg. Orientation Error (eθ) (in rad.)
mindtct 0.27 (0.23) 0.20 (0.12) 0.18 (0.09) 0.15 (0.06) 0.14 (0.04)

COTS-A 0.16 (0.12) 0.13 (0.07) 0.12 (0.06) 0.11 (0.04) 0.10 (0.03)

Avg. (s.d.) COTS-B 0.13 (0.13) 0.10 (0.06) 0.10 (0.05) 0.10 (0.04) 0.09 (0.03)

COTS-C 0.14 (0.12) 0.11 (0.07) 0.10 (0.05) 0.10 (0.04) 0.09 (0.02)

TABLE II: Performance comparison of four minutiae extractors (mindtct, and COTS A, B, and C) in terms of minutiae
detection and localization accuracies. This evaluation utilizes fingerprint images (Dataset-A) from five public domain datasets,
available with manually marked ground truth minutiae. Minutiae detection is measured in terms of Goodness Index (GI), a
unit less measure in the range [-3, 1]. A large value of GI suggests high number of detected minutiae are paired with ground
truth minutiae and low number of spurious or/and missing minutiae.

NFIQ 2.0 Quality Bins Minutiae
Extractor

[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]

# Fingerprints 419 803 1, 051 1, 053 132

Paired Minutiae / Ground Truth
mindtct 0.77 (0.12) 0.81 (0.11) 0.82 (0.09) 0.84 (0.08) 0.86 (0.07)

COTS-A 0.77 (0.14) 0.79 (0.16) 0.78 (0.17) 0.85 (0.07) 0.86 (0.06)

(Pi / Mi) COTS-B 0.71 (0.15) 0.76 (0.12) 0.79 (0.10) 0.82 (0.08) 0.84 (0.07)

Avg. (s.d.) COTS-C 0.74 (0.14) 0.74 (0.11) 0.75 (0.09) 0.77 (0.08) 0.78 (0.09)

Spurious Minutiae / Ground Truth
mindtct 1.19 (0.63) 1.06 (0.60) 0.97 (0.53) 0.57 (0.34) 0.36 (0.21)

COTS-A 1.29 (0.60) 0.72 (0.52) 0.56 (0.44) 0.22 (0.20) 0.12 (0.09)

(Di / Mi) COTS-B 0.44 (0.45) 0.30 (0.31) 0.25 (0.21) 0.15 (0.13) 0.10 (0.08)

Avg. (s.d.) COTS-C 0.52 (0.55) 0.36 (0.39) 0.30 (0.28) 0.13 (0.12) 0.09 (0.08)

Missing Minutiae / Ground Truth
mindtct 0.23 (0.12) 0.19 (0.11) 0.18 (0.09) 0.16 (0.08) 0.14 (0.07)

COTS-A 0.23 (0.14) 0.21 (0.16) 0.22 (0.17) 0.15 (0.07) 0.14 (0.06)

(Ii / Mi) COTS-B 0.29 (0.15) 0.24 (0.12) 0.21 (0.10) 0.18 (0.08) 0.16 (0.07)

Avg. (s.d.) COTS-C 0.26 (0.14) 0.26 (0.11) 0.25 (0.09) 0.23 (0.08) 0.22 (0.09)

TABLE III: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C) in terms of average
percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for fingerprint images of different quality
(Dataset-A).

[0, 20]), and highest Goodness Index for high quality images
(NFIQ 2.0 = [81,100]). The open-source minutiae extractor,
mindtct, achieves low Goodness Index compared to COTS
minutiae extractors across all quality values, however, it also
achieves lowest positional errors suggesting high positional
accuracy for the paired minutiae. In general, a NFIQ 2.0
quality value lower than 20 leads to a negative Goodness Index
and higher localization errors with larger variances. It can
be observed that as the quality level increases, the Goodness
Index values also increase, indicating higher number of paired
minutiae and lower number of spurious and/or missing minu-
tiae. Tab. III presents the performance comparison of the four
minutiae extractors in terms of average percentages of paired
(Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae.
It can be observed that the open-source minutiae extractor
produces a much higher percentage of spurious minutiae, but
a much lower percentage of missing minutiae, compared to

other COTS minutiae extractors.

B. Robustness against Image Degradations

Tab. IV summarizes the performance comparison between
the four minutiae extractors on robustness against different
levels of image noise for Dataset-B. It can be observed that
as the noise level increases, the Goodness Index decreases,
and the avg. positional error and the avg. orientation error
increases. In comparison to other minutiae extractors, COTS-
A achieves a much higher Goodness Index, and low positional
and orientation errors even in the presence of higher levels
of image noise. All the minutiae extractors exhibit similar
avg. positional errors, but a much higher variance is observed
in the case of COTS-C. Tab. V presents the performance
comparison between the four minutiae extractors in terms of
average percentages of paired (Pi/Mi), spurious (Di/Mi), and
missing (Ii/Mi) minutiae for images with different levels of



Noise Levels Minutiae
Extractor

Level 1 Level 2 Level 3 Level 4

Goodness Index
mindtct 0.36 (0.27) 0.09 (0.32) −0.43 (0.33) −0.80 (0.25)

COTS-A 0.80 (0.12) 0.72 (0.14) 0.52 (0.21) 0.15 (0.37)

Avg. (s.d.) COTS-B 0.53 (0.19) 0.43 (0.21) 0.19 (0.23) −0.15 (0.30)

COTS-C 0.72 (0.19) 0.53 (0.28) −0.08 (0.44) −0.60 (0.35)

Positional Error (ep) (in pixels)
mindtct 2.27 (0.59) 2.87 (0.72) 3.86 (0.72) 4.55 (1.05)

COTS-A 2.07 (0.55) 2.54 (0.61) 3.43 (0.67) 4.17 (0.73)

Avg. (s.d.) COTS-B 2.11 (0.63) 2.75 (0.74) 3.80 (0.69) 4.54 (0.72)

COTS-C 2.24 (0.64) 2.85 (0.79) 3.84 (0.91) 4.82 (2.02)

Avg. Orientation Error (eθ) (in rad.)
mindtct 0.06 (0.04) 0.09 (0.07) 0.19 (0.14) 0.36 (0.30)

COTS-A 0.03 (0.02) 0.04 (0.03) 0.06 (0.05) 0.13 (0.12)

Avg. (s.d.) COTS-B 0.04 (0.02) 0.05 (0.03) 0.07 (0.06) 0.13 (0.12)

COTS-C 0.03 (0.02) 0.04 (0.03) 0.07 (0.07) 0.14 (0.25)

TABLE IV: Robustness evaluation of four minutiae extractors (mindtct, and COTS A, B, and C) against different levels of
noise (Dataset-B).

Noise Levels Minutiae
Extractor

Level 1 Level 2 Level 3 Level 4

Paired Minutiae / Ground Truth
mindtct 0.75 (0.12) 0.63 (0.11) 0.42 (0.09) 0.24 (0.08)

COTS-A 0.92 (0.14) 0.88 (0.16) 0.81 (0.17) 0.70 (0.07)

(Pi / Mi) COTS-B 0.78 (0.15) 0.74 (0.12) 0.64 (0.10) 0.51 (0.08)

Avg. (s.d.) COTS-C 0.89 (0.14) 0.80 (0.11) 0.52 (0.09) 0.24 (0.08)

Spurious Minutiae / Ground Truth
mindtct 0.14 (0.06) 0.18 (0.09) 0.27 (0.13) 0.28 (0.12)

COTS-A 0.04 (0.04) 0.05 (0.04) 0.10 (0.08) 0.24 (0.18)

(Di / Mi) COTS-B 0.03 (0.03) 0.04 (0.04) 0.09 (0.07) 0.17 (0.10)

Avg. (s.d.) COTS-C 0.05 (0.05) 0.08 (0.06) 0.11 (0.08) 0.08 (0.08)

Missing Minutiae / Ground Truth
mindtct 0.25 (0.12) 0.37 (0.14) 0.58 (0.13) 0.76 (0.12)

COTS-A 0.08 (0.06) 0.12 (0.07) 0.19 (0.08) 0.30 (0.12)

(Ii / Mi) COTS-B 0.22 (0.09) 0.26 (0.09) 0.36 (0.10) 0.49 (0.12)

Avg. (s.d.) COTS-C 0.11 (0.09) 0.20 (0.13) 0.48 (0.22) 0.76 (0.19)

TABLE V: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C) in terms of average
percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for fingerprint images with different levels of
noise (Dataset-B).

noise. It can be observed that COTS-A achieved a very high
percentage of paired minutiae and much lower percentage
of missing minutiae, resulting in a high Goodness Index. In
terms of spurious minutiae, mindtct is observed to consistently
perform poorly across all noise levels compared to the COTS
minutiae extractors, producing much higher percentage of
spurious minutiae.

The performance comparison of the four minutiae extractors
in terms of minutiae detection and localization accuracies
for images degraded with different levels of motion blur is
presented in Tab. VI. It is observed that COTS-A achieves high
Goodness Index value compared to other minutiae extractors
with low avg. positional and orientation errors. In general,
higher level of motion blur results in large negative values of
Goodness Index for all minutiae extractors. Tab. VII presents
the performance comparison in terms of average percentages
of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi)
minutiae for images with different levels of motion blur. With
increase in the motion blur levels, a much higher percentage of
missed minutiae is observed compared to paired and spurious
minutiae.

IV. CONCLUSIONS

Minutiae extraction is one of the most critical component
of an automatic fingerprint identification systems. We have
presented a controlled and repeatable evaluation of one open-
source and three COTS minutiae extractors. Our experiments
involve five public domain databases with manually marked
minutiae to determine minutiae detection and localization
accuracies. A large synthetically generated database with con-
trolled levels of image degradations allowed us to quantify
the affects of noise and motion blur, on minutiae extraction
performance. The open-source minutiae extractor (mindtct) is
observed to produce lowest positional errors in public domain
databases. However, it also generates a higher percentage of
spurious minutiae compared to COTS minutiae extractors,
deteriorating its overall performance. COTS-A exhibits signif-
icantly high robustness against different levels of image noise
and motion blur.
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