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Abstract

The individuality of fingerprints is being leveraged for a
plethora of day-to-day applications, ranging from unlock-
ing a smartphone to international border security. While
the primary purpose of a fingerprint recognition system
is to ensure a reliable and accurate user authentication,
the security of the recognition system itself can be jeopar-
dized by spoof attacks. This study addresses the problem of
developing accurate and generalizable algorithms for de-
tecting fingerprint spoof attacks. We propose a deep con-
volutional neural network based approach utilizing local
patches extracted around fingerprint minutiae. Experimen-
tal results on three public-domain LivDet datasets (2011,
2013, and 2015) show that the proposed approach provides
state of the art accuracies in fingerprint spoof detection for
intra-sensor, cross-material, cross-sensor, as well as cross-
dataset testing scenarios. For example, the proposed ap-
proach achieves a 69% reduction in average classification
error for spoof detection under both known material and
cross-material scenarios on LivDet 2015 datasets.

1. Introduction

With the ubiquitous deployment of fingerprint recogni-
tion systems in many day-to-day applications, such as finan-
cial transactions, international border security, unlocking a
smartphone, etc., the vulnerability of the system security
to presentation attacks is of growing concern [1, 2]. The
ISO standard /EC 30107-1:2016(E) [3] defines presenta-
tion attacks as the “presentation to the biometric data cap-
ture subsystem with the goal of interfering with the opera-
tion of the biometric system”. These attacks can be realized
through a number of methods including, but not limited to,
use of (i) gummy fingers [4], i.e. fabricated finger-like ob-
jects with accurate imitation of another individual’s finger-
print ridge-valley structures, (ii) 2D or 3D printed finger-
print targets [5, 6, 7], (iii) altered fingerprints [8], i.e. in-
tentionally tampered or damaged real fingerprint patterns to
avoid identification, and (iv) cadaver fingers [9] (see Fig. 1).
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Figure 1: Fingerprint presentation attacks can be realized using
(a) gummy fingers [4, 11], (b) 2D or 3D printed fingerprint tar-
gets [5, 6, 7], (c) altered fingers [8], or (d) cadaver fingers [9].

Among these, fingerprint spoof attacks (i.e. gummy fin-
gers and printed targets) are the most common form of pre-
sentation attacks, with a multitude of fabrication processes
ranging from basic molding and casting to utilizing sophis-
ticated 2D and 3D printing techniques [4, 5, 6, 7]. Com-
monly available materials, such as gelatin, silicone, play-
doh, etc., have been utilized to generate fingerprint spoofs
(see Fig. 2), capable of circumventing a fingerprint recog-
nition system security with a reported success rate of more
than 70% [10]. For instance, in 2013, a Brazilian doctor
was arrested for using spoof fingers made of silicone to
fool the biometric attendance system at a hospital in Sao
Paulo'. Cao and Jain [5] demonstrated a simple hack to by-
pass the biometric security of two smartphones by scanning
and printing fingerprints using silver conductive ink on a
special AgIC (silver ink circuit) paper.

Fingerprint spoof detection methods are urgently needed

1http: //www.bbc.com/news/world-latin-america-21756709



(a) Live fingerprint

(b) Spoof fingerprints

Figure 2: Visual comparison between (a) a live Fingerprint, and (b) the corresponding spoofs (of the same live finger) made with different
materials. Images are taken from LivDet-2011 dataset (Biometrika sensor) [11].

to thwart such attacks on fingerprint authentication systems,
thereby increasing user confidence in such systems. The
various anti-spoofing approaches proposed in the literature
can be broadly classified into hardware-based and software-
based solutions [1, 9, 12]. The hardware-based solutions
typically require the fingerprint reader to be augmented with
additional sensor(s) to detect the characteristics of vitality,
such as blood flow [13], skin distortion [14], odor [15] and
so on. There are also special types of fingerprint sensors,
such as Lumidigm’s multispectral scanner [16], that cap-
ture sub-dermal ridge pattern in the finger. Software-based
solutions, on the other hand, extract features from the pre-
sented fingerprint image (or a sequence of frames) acquired
by the fingerprint sensors, without incurring any additional
hardware cost, to differentiate between live and spoof fin-
gers. The software-based solutions published in the lit-
erature typically utilize one of the following approaches:
(i) anatomical features (e.g. pore locations and their dis-
tribution [17]), (ii) physiological features (e.g. perspira-
tion [18]), or (iii) texture-based features (e.g. Local Phase
Quantization (LPQ) [19], Binarized Statistical Image Fea-
tures (BSIF) [20], and Weber Local Descriptor [21]). Grag-
niello et al. [22] proposed a 2D local contrast-phase descrip-
tor (LCPD), utilizing both spatial and frequency domain in-
formation. In contrast to the custom-tailored anti-spoof fea-
tures, Menotti et al. [23] and Nogueira et al. [24] have pro-
posed convolutional neural network (CNN) based solutions
whose performances were shown to surpass many published
spoof detection algorithms.

One of the limitations of many of the published anti-
spoof methods is their inability to generalize across spoof
materials. Studies in [24, 25, 26] have shown that when a
spoof detector is evaluated on spoofs fabricated using mate-
rials that were not seen during training, there can be up to a
three-fold increase in the spoof detection error rates. To
generalize an algorithm’s effectiveness across fabrication
materials, called cross-material performance, some studies
have approached spoof detection as an open-set problem?.

2Qpen-set problems address the possibility of unknown classes during test-

Rattani et al. [26] applied the Weibull-calibrated SVM (W-
SVM), a variant of SVM based on properties of statistical
extreme value theory, to detect spoofs made of new mate-
rials. Ding and Ross [27] trained an ensemble of multi-
ple One-Class SVMs using textural features extracted from
only live fingerprint images.

A series of fingerprint Liveness Detection (LivDet) com-
petitions have been held since 2009 to advance state-of-
the-art and benchmark the proposed anti-spoofing solu-
tions [28]. The best performer in LivDet 2015 [12],
Nogueira et al. [24], utilized transfer learning, where pre-
trained deep CNNs originally designed for object recogni-
tion were fine-tuned on fingerprint images to differentiate
between live and spoof fingerprints. In their approach, the
networks were trained on whole fingerprint images resized
to 227 x 227 pixels for VGG [29] and 224 x 224 pixels for
AlexNet [30] as required by these networks. However, there
are three disadvantages of using this approach. First, finger-
print images from some sensors, such as Crossmatch L Scan
Guardian (640 x 480), have a large blank area (> 50%) sur-
rounding the friction ridge region. Directly resizing these
images, from 640 x 480 to 227 x 227, eventually results
in the friction ridge area occupying less than 10% of the
original image size. Secondly, resizing a rectangular image,
say w X h, to a square image, say p X p, leads to different
amounts of information retained in the two spatial image
dimensions. Lastly, since different sensors capture images
of varying size, such sensor specific characteristics learned
by the networks can adversely affect the cross-sensor per-
formance.

The randomness involved in the spoof fabrication pro-
cess itself, can generate some artifacts, such as missing fric-
tion ridge regions, cracks, etc. The primary consequence of
such noise is the creation of spurious minutiae in the fin-
gerprint (see Fig. 3). The local regions around these spu-
rious minutiae can provide salient cues to differentiate a
spoof fingerprint from live fingerprint. We utilize this ob-
servation to train a two-class CNN using local patches ex-

ing, compared to closed-set problems where all possible classes (spoof
materials) that will be encountered are known during training.
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Figure 3: Examples of two fingerprint images (a) and (b) from
live fingers and corresponding spoof fingers, with the artifacts in-
troduced in the spoofs highlighted in red. The minutiae based lo-
cal patches extracted around the artifacts are also presented. The
images are taken from LivDet 2015 - Biometrika Sensor and the
spoof material used is RTV.

tracted around minutiae, as opposed to the whole finger-
print image, to design a fingerprint spoof detector. We show
that this approach is more robust to novel fabrication ma-
terials and cross-sensor scenarios than earlier approaches
that utilize the whole image [24]. The proposed approach,
utilizing p x p local patches (p = 96), (i) addresses the
drawbacks of using the whole fingerprint image to train the
CNN, (ii) provides large amount of data (an average of 48
patches/fingerprint image) to train the CNN, and (iii) cap-
tures salient information from local regions, required to dif-
ferentiate between spoof and live fingerprints. The output
of the CNN is a probability score in the range [0 — 1], de-
fined as Spoofness Score; higher the spoofness score, more
likely the patch is extracted from a spoof fingerprint. For a
given image, the spoofness scores corresponding to the lo-
cal patches are averaged to give the global spoofness score
for the whole image. Furthermore, a fusion of CNN mod-
els trained on multi-scale patches, centered on minutiae,
is shown to further boost the spoof detection performance.
The main contributions of this study are as follows:

e Utilized fingerprint domain-knowledge to design a ro-
bust fingerprint spoof detector, where local patches
centered around fingerprint minutiae are used for train-
ing a CNN model.

o Utilized multi-scale local patches to improve the spoof
detection performance. The proposed approach is
shown to be robust to the different image sizes output
by different sensors.

e Experimental results on LivDet 2011, LivDet 2013,
and LivDet 2015 datasets show that the proposed
minutiae-based fingerprint spoof detector outper-
forms the best results published on these three
datasets. For example, in LivDet 2015, our algo-
rithm achieves 98.61% average accuracy compared to
95.51% achieved by the LivDet 2015 winner [12].

2. Proposed Spoof Detection Approach

The proposed approach includes two stages, an offline
training stage and an online testing stage. The offline train-
ing stage involves (i) detecting fingerprint minutiae, (ii) ex-
tracting local patches centered on minutiae locations, and
(iii) training CNN models on the local patches. During
the testing stage, the final spoof detection decision is made
based on the average of spoofness scores output from the
CNN model. An overview of the proposed approach is pre-
sented in Fig. 4.

2.1. Minutiae Detection

The minutiae were extracted using the algorithm in [31].
The different LivDet datasets used in this study comprise
of fingerprint images captured at varying resolutions, rang-
ing from 500 dpi to 1000 dpi. Since the minutiae detector
in [31] was designed for 500 dpi images, all fingerprint im-
ages are resized to ensure a standard resolution of 500 dpi.
The average number of minutiae detected for the LivDet
datasets were 46 per live image (s.d. = 6.2) and 50 per spoof
image (s.d. = 6.9).

2.2. Local Patch Extraction

Given a fingerprint image I and a set of k£ detected minu-
tiae points M = {mq,ma, ..., my}, a corresponding set of
k local patches L = {ly,la,...,l;}, each of size [p x p]
where (p = 96), are extracted. Each local patch (I;) is cen-
tered at the corresponding minutia point (m;). In case the
detected minutiae is close to the image boundary, i.e. some
region of the local patch lies outside the image region, then
the patch region is shifted inwards such that it is completely
embedded within the fingerprint region, ensuring the size
of each patch to be [p x p]. Figs. 4 and 5 present examples
of real and spoof fingerprint images and the corresponding
local patches centered around minutiae points. All the local
patches are resized® to 299 x 299 pixels as required by the
Inception-v3 model.

2.3. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a cascade
of multiple layers consisting of linear and non-linear pro-

3TensorFlow’s resize utility with bilinear interpolation was used;
available at https://www.tensorflow.org/api_docs/python/tf/
image/resize_images
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Figure 4: An overview of the proposed approach for fingerprint spoof detection using convolutional neural networks trained on local

patches based on minutiae locations.
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Figure 5: Local patches extracted around the fingerprint minutiae
for (a) real fingerprint, and (b) spoof fingerprint (gelatin). The
spoofness score for each patch is in the range [0 — 1]; higher the
score, more likely the patch is extracted from a spoof fingerprint.

cessing units. These layers, when stacked together, can
learn a complex multi-level representation of the input data
corresponding to different levels of abstraction. Since the
success of AlexNet [30] in ILSVRC-2012 [32], different
deep CNN architectures have been proposed in literature,
such as VGG, GoogleNet (Inception), Inception v2-v4, and
ResNets. Nogueira et al. [24] utilized a pre-trained VGG
architecture [29] to achieve the best performance in LivDet
2015 [12]. In this study, we utilize the Inception-v3 ar-
chitecture [33] because it offers the following advantages:
(i) Inception-v3 achieved a reduction of 40% top-5 error
rate over VGG on the ILSVRC 2012 classification bench-
mark, (ii) the number of model parameters to be trained

in Inception-v3 is significantly smaller than the number of
model parameters in VGG, and (iii) it allows a larger input
image size of 299 x 299 pixels, compared to 227 x 227
pixels for VGG.

We utilized the TF-Slim library* implementation of the
Inception-v3 architecture. The last layer of the architecture,
a 1000-unit softmax layer (originally designed to predict
the 1,000 classes of ImageNet dataset) was replaced with
a 2-unit softmax layer for the two-class problem, i.e. Live
vs. Spoof. The optimizer used to train the network was
RMSProp, with a batch size of 32, and an adaptive learn-
ing rate with exponential decay, starting at 0.01 and end-
ing at 0.0001. Data augmentation techniques, such as ran-
dom cropping, brightness adjustment, horizontal and ver-
tical flipping, are employed to ensure the trained model is
robust to the possible variations in fingerprint images.

2.4. Spoofness Score

The output from the softmax layer of the trained
Inception-v3 model is in the range [0 — 1], defined as Spoof-
ness Score. The larger the Spoofness Score, the higher the
likelihood that the input local patch belongs to the Spoof
class (see Fig. 5). For an input test image I, the spoofness
scores sfE (1,2,..k} corresponding to the & minutiae-based
local patches, extracted from the input image, are averaged
to give a global Spoofness Score S?. An adaptive threshold
that minimizes the average classification error on training
dataset is utilized as the classification threshold. An image
with a Spoofness Score below the threshold is classified as

4https ://github.com/tensorflow/models/tree/master/slim



Table 1: Summary of the Liveness Detection (LivDet) datasets utilized in this study.

Dataset LivDet 2011 [11] LivDet 2013 [34] LivDet 2015 [12]
Sensor Biometrika ItalData Digital Sagem Biometrika ItalData GreenBit Biometrika Digital Crossmatch
Persona Persona
Model FX2000 ET10 4000B MS0300 FX2000 ET10 DactyScan26 | HiScan-PRO | U.are.U 5160 | L Scan Guardian
Image Size 315 x 372 | 640 x 480 | 355 x 391 | 352 x 384 315 x 372 | 640 x 480 500 x 500 1000 x 1000 252 x 324 640 x 480
Resolution (dpi) 500 500 500 500 569 500 500 1000 500 500
##;;I/“‘T‘fos 1000/ 1000 | 1000/1000 | 1000/1000 | 1000/1000 || 1000/1000 | 1000/1000 | 1000/1000 | 1000/1000 | 1000/1000 1510/1500
#TSY';‘;I‘:f/I;‘:S‘f” 1000/ 1000 | 1000/1000 | 1000/1000 | 1000/1000 || 1000/1000 | 1000/1000 | 1000/1500 | 1000/1500 | 1000/1500 1473/1448
Cooperative* Yes Yes Yes Yes No No Yes Yes Yes Yes
Spoof Materials Ecoflex, Gelatine, Latex, Gelatine, Latex, Play Ecoflex, Gelatine, Latex, Ecoflex, Gelatine, Latex, Wood Glue, Body Double,
Silgum, Wood Glue Doh, Silicone, Wood Glue Modasil, Wood Glue Liquid Ecoflex, RTV Ecoflex, Play Doh,
OOMOO, Gelatin

*In the cooperative method, a subject willingly provides a negative impression of the fingerprint as a mold, while in the non-cooperative method, the
fingerprint mold is created by using the latent fingerprint lifted off a surface touched by the subject.

Table 2: Performance (Average Classification Error [%]) comparison of software-based spoof detection studies, most of them compiled

from [24, 35].

Study Approach LivDet 2011 LivDet 2013* LivDet 2015
Ghiani et al. [19] Local Phase Quantization (LPQ) 11.1 3.0 N/A
Gragniello et al. [21] Weber Local Descriptor (WLD) 7.9 N/A N/A
Ghiani et al. [20] Binarized Statistical Image Features (BSIF) 72 2.1 N/A
Gragniello et al. [22] Local Contrast-Phase Descriptor (LCPD) 5.7 1.3 N/A
Nogueira et al. [24] Transfer Learning + CNN-VGG + Whole Images 4.5 1.1 4.5
Proposed Approach CNN-Inception v3 + Minutiae-based local patches 2.6 0.5 14

*LivDet 2013 includes results for Biometrika and Italdata sensors.

live, otherwise as spoof. The adaptive threshold performed
slightly better than selecting a pre-defined threshold of 0.5.

3. Experimental Results
3.1. Datasets

In order to evaluate performance of the proposed ap-
proach, we utilized LivDet 2011 [11] and LivDet 2015 [12]
datasets. Each of these datasets contain over 16,000
fingerprint images, acquired from four different sensors,
with equal numbers of live and spoof fingerprints that are
equally split between training and testing sets. However,
all the spoof fingerprints are fabricated using the coop-
erative method i.e. with user cooperation. To analyze
the performance of the proposed approach on spoofs fab-
ricated using non-cooperative method, fingerprint images
from Biometrika and Italdata sensors from LivDet 2013
dataset [34] are also used. In LivDet 2015, the testing set in-
cluded spoofs fabricated using new materials, that were not
known in training set. These new materials included lig-
uid ecoflex and RTV for Biometrika, Digital Persona, and
Green Bit sensors, and OOMOO and gelatin for Crossmatch
sensor. Table 1 presents a summary of the datasets used in
this study, and Table 2 presents a performance comparison
between software-based spoof detection solutions utilizing
these datasets.

3.2. Performance Evaluation Metrics

The performance of the proposed approach is evaluated
following the metrics used in LivDet [28].

e Ferrlive: Percentage of misclassified live fingerprints.

e Ferrfake’: Percentage of misclassified spoof finger-
prints.

The average classification error (AC'E) is defined as:

Ferrli’ue + Fer'rfake
2

ACE = ey

Additionally, we also report the Ferrfake @ Ferrlive =
1% for each of the experiments as reported by [28]. This
value represents the percentage of spoofs able to breach the
biometric system security when the rate of legitimate users
that are rejected is no more than 1%.

3.3. Results

The proposed approach is evaluated under the following
four scenarios of fingerprint spoof detection, which reflect
an algorithm’s robustness against new spoof materials, use
of different sensors and/or different environments.

SWhen all the spoof fabrication materials are known during the training,
this metric is referred to as Ferr fake_known, and in case all the spoof
fabrication materials to be encountered during testing are not known dur-
ing training, this metric is referred to as Ferr fake_unknown.



Table 3: Performance comparison between the proposed approach (bottom) and state-of-the-art (top) reported on LivDet 2015 dataset [12].
Separate networks are trained on the training images captured by each of the four sensors. Ferrfake known and Ferrfake unknown corre-
spond to Known Spoof Materials and Cross-Material scenarios, respectively.

= LivDet 2015 Ferrlive (%) Ferrfake® (%) Ferrfake Ferrfake ACE (%) Ferrfake (%) @
= known (%) unknown* (%) Ferrlive= 1% [28]
E GreenBit 3.50 5.33 4.30 7.40 4.60 17.90

2 | Biometrika 8.50 3.73 2.70 5.80 5.64 15.20

< | Digital Persona 8.10 5.07 4.60 6.00 6.28 19.10

.;g Crossmatch 0.93 2.90 2.12 4.02 1.90 2.66

@ | Average 478 427 3.48 5.72 4.49 13.24

- LivDet 2015 Ferrlive (%) Ferrfake® (%) Ferrfake Ferrfake ACE (%) Ferrfake (%) @
§ known (%) unknown* (%) Ferrlive = 1%
% | GreenBit 1.20 2.53 2.80 2.00 2.00 3.07

2 [ Biometrika 2.20 1.47 1.80 0.80 1.76 3.80

g Digital Persona 1.80 0.60 0.60 0.60 1.08 1.47

g Crossmatch 0.00 1.66 2.82 0.00 0.81 0.28

&~ | Average 1.16 1.56 1.97 0.81 1.39 2.17

1 Ferrfake includes spoofs fabricated using both known and previously unseen materials. It is an average of Ferrfake-known and Ferrfake-unknown,
weighted by the number of samples in each category.

*The unknown spoof materials in LivDet 2015 test dataset include Liquid Ecoflex and RTV for Green Bit, Biometrika, and Digital Persona sensors, and
OOMOO and Gelatin for Crossmatch sensor.

Table 4: Performance comparison between the proposed ap-
proach and state-of-the-art results reported on LivDet 2011 and
LivDet 2013 datasets for intra-sensor, known materials scenario,
in terms of Average Classification Error (ACE), and Ferrfake @
Ferrlive = 1%.

Dataset State-of-the-Art Proposed Approach
LivDet 2013 ACE (%) ACE (%) Ferrfake @
Ferrlive = 1%
Biometrika 1.10 [20] 0.60 0.10
ItalData 0.40 [24] 0.40 0.30
Average 0.75 0.50 0.20
(a) Correctly classified live fingerprint  (b) Correctly classified spoof fingerprint LivDet 2011
Biometrika 4.90 [22] 2.60 6.30
Digital Persona 2.00 [35] 2.70 5.50
ItalData 8.00 [24] 3.25 8.00
Sagem 1.70 [24] 1.80 18.92
Average 4.15 2.59 9.68

ported in [24]. The large amount of available data, in
the form of local fingerprint patches, is sufficient to train
the deep architecture of Inception-v3 model without over-
fitting. Also, a score level fusion of the proposed Inception-
v3 model trained on local patches, with an independent

(c) Incorrectly classified live fingerprint (d) Incorrectly classified spoof fingerprint

Figure 6: Example fingerprints for Biometrika sensor from LivDet

2015 dataset, correctly and incorrectly classified by our proposed
approach.

3.3.1 Intra-Sensor, Known Spoof Materials

In this setting, all the training and testing images are cap-
tured using the same sensor, and all spoof fabrication ma-
terials utilized in the test set are known a priori. Our
experimental results show that training the Inception-v3
model from scratch, using minutiae-based local patches,
performs better than utilizing a pre-trained network, as re-

Inception-v3 model trained on whole fingerprint images
does not offer any advantage in terms of performance im-
provement. It was reported in [28] that most of the algo-
rithms submitted to LivDet 2015 did not perform well on
Digital Persona sensor due to the small image size. Our
approach based on local patches does not suffer from this
limitation. Tables 3 and 4 present the performance compar-
ison between the proposed approach and the state-of-the-art
results for the LivDet datasets utilized in this study. Inde-
pendent Inception-v3 networks are trained for each evalu-
ation. Note that in LivDet 2015 (Table 3), this scenario is



Table 5: Performance comparison between the proposed approach and state-of-the-art results [24] reported on LivDet 2011 and LivDet

2013 datasets for cross-material experiments, in terms of Average Classification Error (ACE), and Ferrfake @ Ferrlive = 1%.

Dataset Spoof Materials Nogueira et al. [24] Proposed Approach

Materials - Training Materials - Testing ACE (%) ACE (%) Ferrfake @ Ferrlive= 1%
Biometrika 2011 | EcoFlex, Gelatine, Latex | Silgum, WoodGlue 10.1 4.4 6.5
Biometrika 2013 | Modasil, WoodGlue EcoFlex, Gelatine, Latex 4.9 3.1 4.2
ItalData 2011 EcoFlex, Gelatine, Latex | Silgum, WoodGlue, Other 22.1 5.7 7.8
ItalData 2013 Modasil, WoodGlue EcoFlex, Gelatine, Latex 6.3 0.8 0.9
Average 10.9 3.5 4.9

represented by the Ferrfake known. For LivDet 2011 and
2013 datasets (Table 4), all spoof materials in the test set
were known during training. Fig. 6 presents example fin-
gerprint images for Biometrika sensor from LivDet 2015
dataset that were correctly and incorrectly classified by the
proposed approach.

In order to evaluate the significance of utilizing minu-
tiae locations for extracting local patches, we trained in-
dependent Inception-v3 models on a similar number of lo-
cal patches, extracted in a raster scan mode from LivDet
2015 datasets. It was observed that the models trained
on minutiae-centered local patches achieved a significantly
higher reduction (69%) in average classification error, com-
pared to the reduction (17%) achieved by the models trained
on raster scan local patches.

We also evaluate the impact of local patch size on
the performance of the proposed approach, by compar-
ing the performance of three CNN models trained on
minutiae-centered local patches of size [p x p|] where
p = {64,96,128}, extracted from the fingerprint images
captured by Biometrika sensor for LivDet 2011 dataset.
Among these three models, the one trained on local patches
of size [96 x 96] performed the best. However, a score-level
fusion, using average-rule, of the three models reduced the
average classification error (ACE) from 2.6% to 2.2%, and
Ferrfake from 6.3% to 5.5% @ Ferrlive = 1%. Similar per-
formance gains were observed for other sensors, but there
is a trade off between the performance gain and the compu-
tational requirements for spoof detector.

3.3.2 Intra-Sensor, Cross-Material

In this setting, the same sensor is used to capture all train-
ing and testing images, but the spoof images in the testing
set are fabricated using new materials that were not seen
during training. For the first set of cross-material experi-
ments, we utilize the LivDet 2015 dataset which contains
two new spoof materials in the testing set for each sensor,
i.e. Liquid Ecoflex and RTV for Green Bit, Biometrika,
and Digital Persona sensors, and OOMOO and Gelatin
for Crossmatch sensor. The performance of the proposed
approach on cross-material experiments for LivDet 2015
dataset is presented in Table 3 (column Ferr fake_ unknown)

and is compared with the state-of-the-art performance re-
ported in [12]. A significant reduction in the error rate is
achieved by the proposed method. For better generaliz-
ability, a second set of cross-material experiments are per-
formed on LivDet 2011 and LivDet 2013 datasets, follow-
ing the protocol adopted by the winner of LivDet 2015 [24].
Table 5 presents the achieved error rates on these experi-
ments, along with the spoof fabrication materials used in
training and testing sets.

3.3.3 Cross-Sensor Evaluation

In this evaluation, the training and the testing images are
obtained from two different sensors but from the same
database. This setting reflects the algorithm’s strength in
learning the common characteristics used to distinguish
live and spoof fingerprints across fingerprint acquisition de-
vices. For instance, using LivDet 2011 dataset, images
from Biometrika sensor are used for training, and the im-
ages from ItalData sensor are used for testing. We follow
the protocol for selection of training and testing sets for
cross-sensor and cross-dataset experiments as adopted by
Nogueira et al. [24]. Table 6 compares the average classifi-
cation error and Ferrfake @ Ferrlive = 1% for the proposed
approach with the results obtained by [24] on cross-sensor
experiments.

Table 6: Performance comparison between the proposed approach
and state-of-the-art results [24] reported on LivDet 2011 and
LivDet 2013 datasets for cross-sensor experiments, in terms of Av-
erage Classification Error (ACE), and Ferrfake @ Ferrlive = 1%.

Training Dataset, | Nogueira Proposed Approach
Testing Dataset et al. [24]

ACE (%) ACE (%) Ferrfake (%) @

Ferrlive = 1%

Biometrika 2011, 37.2 29.5 76.4
ITtalData 2011
ItalData 2011, 31.0 24.9 72.4
Biometrika 2011
Biometrika 2013, 8.8 6.7 41.6
ItalData 2013
ItalData 2013, 2.3 5.1 74.5
Biometrika 2013
Average 19.8 16.6 66.2




Table 7: Performance comparison between the proposed approach
and state-of-the-art results [24] reported on LivDet 2011 and
LivDet 2013 datasets for cross-dataset experiments, in terms of
Average Classification Error (ACE) and Ferrfake @ Ferrlive = 1%.

Training Dataset, | Nogueira Proposed Approach
Testing Dataset et al. [24]

ACE (%) ACE (%) | Ferrfake (%) @

Ferrlive = 1%

Biometrika 2011, 15.5 7.9 90.6
Biometrika 2013
Biometrika 2013, 46.8 34.4 90.1
Biometrika 2011
ITtalData 2011, 14.6 33 4.3
ItalData 2013
ItalData 2013, 46.0 29.9 924
TtalData 2011
Average 30.7 18.9 69.4

3.3.4 Cross-Dataset Evaluation

In this scenario, the training and the testing images are
obtained using the same sensor, but from two different
databases. For instance, training images are acquired using
Biometrika sensor from LivDet 2011 dataset and the testing
images are acquired using Biometrika sensor from LivDet
2013. This set of experiments captures the algorithm’s in-
variance to the changes in environment for data collection.
Table 7 presents the average classification error and Fer-
rfake @ Ferrlive = 1%. Results in Table 7 show that the
proposed local patch based approach achieves a reduction of
38% in the average classification error from 30.7% in [24]
to 18.9% in our approach. However, the average Ferrfake @
Ferrlive = 1% that we report is 66.2% and 69.4% for cross-
sensor and cross-dataset scenarios respectively, indicating
the challenges, especially in applications where a high level
of spoof detection accuracy is needed.

3.3.5 Processing Times

The Inception-v3 CNN model takes around 4-6 hours
to converge using a single Nvidia GTX Titan GPU uti-
lizing approximately 96,000 local patches for a train-
ing set with 2,000 fingerprint images (2,000 images X
48 patches/fingerprint image). The average classification
time for a single input image, including minutiae detection,
local patch extraction, inference of Spoofness Scores for lo-
cal patches, and producing the final decision, on a single
Nvidia GTX Titan GPU is 800m:s.

4. Conclusions

A robust and accurate method for fingerprint spoof de-
tection is critical to ensure the reliability and security of
the fingerprint authentication systems. In this study, we
have utilized fingerprint domain knowledge by extracting
local patches centered on minutiae locations in the input

fingerprint image for training an Inception-v3 CNN model.
The local patch based approach provides salient cues to
differentiate spoof fingerprints from live fingerprints. The
proposed approach is able to achieve a significant reduc-
tion in the error rates for intra-sensor (55%), cross-material
(78%), cross-sensor (17%) as well as cross-dataset scenar-
i0s (38%) compared to state-of-the-art on public domain
LivDet databases.
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