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Abstract—Latent fingerprints are one of the most crucial
sources of evidence in forensic investigations. As such, devel-
opment of automatic latent fingerprint recognition systems to
quickly and accurately identify the suspects is one of the most
pressing problems facing fingerprint researchers. One of the first
steps in manual latent processing is for a fingerprint examiner
to perform a triage by assigning one of the following three
values to a query latent: Value for Individualization (VID), Value
for Exclusion Only (VEO) or No Value (NV). However, latent
value determination by examiners is known to be subjective,
resulting in large intra-examiner and inter-examiner variations.
Furthermore, in spite of the guidelines available, the underlying
bases that examiners implicitly use for value determination are
unknown. In this paper, we propose a crowdsourcing based
framework for understanding the underlying bases of value
assignment by fingerprint examiners, and use it to learn a
predictor for quantitative latent value assignment. Experimental
results are reported using four latent fingerprint databases,
two from forensic casework (NIST SD27 and MSP) and two
collected in laboratory settings (WVU and IIITD), and a state-
of-the-art latent AFIS. The main conclusions of our study are
as follows: (i) crowdsourced latent value is more robust than
prevailing value determination (VID, VEO and NV) and LFIQ for
predicting AFIS performance, (ii) two bases can explain expert
value assignments which can be interpreted in terms of latent
features, and (iii) our value predictor can rank a collection of
latents from most informative to least informative.

Index Terms—Latent value determination, latent matching,
latent examiners, crowdsourcing, matrix completion, multidimen-
sional scaling.

I. INTRODUCTION

LATENT fingerprints are one of the most crucial sources of
evidence in forensic investigations. As such, development

of automatic latent fingerprint recognition systems to quickly
and accurately identify the suspects is one of the most press-
ing problems facing fingerprint researchers [2], [3]. Previous
publications [4], [5] and NIST evaluations [6], [7] have shown
that it is a challenging problem requiring new approaches from
machine learning and computer vision.

One of the first steps in the widely practiced Analysis,
Comparison, Evaluation and Verification (ACE-V) method-
ology [8] for latent fingerprint recognition is latent value
determination (Fig. 1). During the Analysis stage, a fingerprint

T. Chugh, K. Cao, J. Zhou and A. K. Jain are with the Department of
Computer Science and Engineering, Michigan State University, East Lansing,
MI, 48824. E-mail: {chughtar, kaicao, zhou, jain}@cse.msu.edu
E. Tabassi is with the National Institute of Standards and Technology, 100
Bureau Dr., Gaithersburg, MD, 20899. E-mail: elham.tabassi@nist.gov
*Corresponding author
A preliminary version of this paper appeared in the proceedings of the 9th

IAPR International Conference on Biometrics (ICB), 2016 [1]

Individualization
Exclusion

Inconclusive

Fingerprint	 Examiner

Value	
Determination

Feature	
MarkUp

AFIS

Candidate	List	

C1

C2 Ck

C3..

..

Decision

Of	Value	
(VID,	VEO)

No	Value	
(NV)

Retain/Discard

EvaluateVerification	by	
Second	Examiner

Crowd	Value	
Determination

Fig. 1: ACE-V methodology. The proposed latent fingerprint
value prediction based on expert crowdsourcing is shown in
red block.

examiner performs a triage by assigning one of the following
three values to a query latent: Value for Individualization
(VID), Value for Exclusion Only (VEO) or No Value (NV)
(Fig. 2). Latents deemed to be “of value”, which include
both VID and VEO types, are then used for comparison to
a reference fingerprint database to identify the source of the
latent; “no value” or NV latents are simply documented in
case files to save examiner’s effort in feature markup and
comparison [9]. An incorrect value assignment may result in
a missed opportunity to find the source of the latent (e.g.
when “of value” latents are determined as “no value”) or
in unproductive use of examiner’s effort in feature markup
and verification (e.g. when “no value” latents are determined
as “of value”). Since state-of-the-art Automated Fingerprint
Identification Systems (AFIS) can process most VID latents1

in a fully automatic or “lights out” mode with high accuracy,
reliable latent value determination is a crucial step.

Latent value determination by examiners is known to be
subjective, and large intra-examiner and inter-examiner varia-
tions have been reported in [12], [13]. Furthermore, with the
growing caseload faced by forensic agencies, there is a need to
develop methods for automatic and objective value assignment
for latents. To get a sense of the caseload, during November
2016, FBI’s IAFIS conducted 21, 893 latent searches with

1Rank-1 identification rate of 85% is obtained for latents marked as VID in
a dataset comprising of NIST SD27 and WVU latents by a state-of-the-art
AFIS [10].
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Fig. 2: Latents from NIST SD27 with different values. (a),
(b), and (c) were, respectively, determined to be VID, VEO,
and NV by examiners in [11]. The corresponding predicted
values assigned by the proposed approach are 4.35, 2.34, and
1.26 respectively, where 1 indicates the lowest value and 5
indicates the highest value.

manual markups, and 3, 482 latent searches without manual
markups [14]. Automatic latent value assignment rank latents,
e.g. found at a crime scene, in terms of their value, for an
efficient use of examiners’ time and effort.

According to SWGFAST [16], latent value assessments by
examiners are based on the quality of features (clarity of
the observed features), the quantity of features (e.g., no. of
minutiae and friction ridge area), the specificity of features,
as well as the relationship between features in a latent. These
guidelines are summarized as quality and quantity of the
information present in latent prints in [9], [17], [18]. Note that
there is a succinct difference between the quality of a latent
and its value. Image quality in general [19] is defined as the
perceived image degradation based on qualitative (e.g., good,
bad, or ugly) or quantitative (e.g., Signal to Noise Ratio or
SNR) assessments. In the context of fingerprint images, quality
is assessed in terms of the discernibility and reliability of the
ridge structure. For example, NIST Fingerprint Image Quality
(NFIQ) [20] defines fingerprint image quality as a predictor
of AFIS performance. Value of a fingerprint image, on the
other hand, incorporates both the quality and the quantity of
features. In the case of tenprints (both rolled and slap), the
terms quality and value are used interchangeably since they
usually have sufficiently large and clear friction ridge areas
and consequently, high quality implies high value. However,
this is not always true for latent prints. Fig. 3 illustrates this
difference between latent quality and latent value based on the
inputs from expert crowd.

In spite of the guidelines available for latent value deter-
mination [9], the underlying bases2 that examiners implicitly
use for value determination are unknown. In a study on the
consensus of latent examiners’ value determination [12], [13],
Ulery et al. reported that the repeatability (intra-examiner
variability) of value determination was 84.6% after a gap of
approximately 7 months, while reproducibility (inter-examiner
similarity) was only 75.2%. In another study, Ulery et al. [18]
modeled the relationship between value determination and fea-

2In Mathematics, bases refer to a set of linearly independent spanning vectors,
i.e., every vector in the vector space is a linear combination of the bases
set [21]. Similarly, in this research, bases refer to the underlying dimensions
which fingerprint experts implicitly use for latent value determination.
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Fig. 3: Difference between latent quality and latent value for
four latents from NIST SD27 database. (a) High quality, high
quantity latent, (b) low quality, low quantity latent, (c) high
quality, low quantity latent, and (d) low quality, high quantity
latent as determined by the expert crowd. The predicted value
using the proposed approach is also shown for each latent.
The predicted values are on a linear scale, in the range [1 - 5]
with 1 indicating the lowest value and 5 indicating the highest
value.

ture annotation by examiners and identified low reproducibility
of feature markup. Ulery et. al’s models did not identify the
cause of variations or the actual bases that the examiners adopt
for value determination. These bases are needed to learn a
predictor for quantitative value determination. The examiner
subjectivity is also manifested in minutiae markup [15], [22].
Fig. 4 from [15] shows the variability in minutiae markup by
six different examiners of the same latent from NIST SD27.

Yoon et al. [23] defined Latent Fingerprint Image Quality
(LFIQ) in terms of the average ridge clarity and the total
number of minutiae, thereby incorporating both quality and
quantity of features. This measure was further extended in [10]
by incorporating additional features. A major limitation of [23]
and [10] is that they require manually annotated minutiae.
Studies on latent value in [24]–[26] also have limitations
because they either did not use features explicitly extracted for
latents or did not use a latent AFIS for evaluation. We believe
that examining the relationship between examiners’ value
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Fig. 4: Variability in minutiae markup, (a) - (f), of the same
latent from NIST SD27 by six different examiners. Some
examiners also marked Region Of Interest (ROI) in addition
to the minutiae. Image from [15].

determination (target value) with latent features is necessary to
develop a predictor for quantitative value assignment. Another
limitation shared by earlier studies is that the target latent
value used during training itself may not be reliable because
it was established either by a single examiner or by only a
few examiners.

We propose a crowdsourcing3 based framework (Fig. 5)
to understand the underlying bases of value assignment by
fingerprint experts, and use it to learn a predictor for value
assignment. It is well known that the “wisdom of crowd”
leads to better decision making [27], [28] as shown in a
number of applications [15], [29], [30]. We developed a
crowdsourcing tool, called FingerprintMash, to collect inputs
from an expert crowd4 (Fig. 6). The input consists of quality
labels for individual latents and quantity labels for pairwise
comparison of latents. We employed Multidimensional Scaling
(MDS) [31], a well known ordination and visualization tool,
to identify the bases that explain the inter-examiner variations.
The relationship between automatically extracted latent fea-
tures [1] and underlying bases identified by MDS is established
using Lasso [32], resulting in a predictor for quantitative latent
value assignment.

The key contributions of this study are as follows:
1) Design a crowdsourcing tool, FingerprintMash, to collect

quality labels from fingerprint experts for individual
latents and quantity labels for pairwise comparisons of
latents.

2) Identify the underlying bases that fingerprint experts
use for value assignment via MDS and relate them to
automatically extracted latent features using Lasso.

3https://en.wikipedia.org/wiki/Crowdsourcing
4The expert crowd comprises of 13 latent fingerprint examiners and 18
researchers working in the field of latent fingerprints.

3) Learn a prediction model to automatically assign quanti-
tative values, which can be used to rank a collection of
query latents. Furthermore, the predicted latent value is
shown to have high correlation with the performance of
a state-of-the-art latent AFIS5.

The major differences between this paper and our prelimi-
nary study [1] are as follows: (i) Learning latent value predic-
tor based on target values from a crowd of fingerprint experts
as opposed to just one or few experts, (ii) predicted values now
are quantitative and multi-valued compared to binary values
(VID vs. Not-VID), (iii) identifying the underlying bases to
explain value assignment in terms of automatically extracted
19-dimensional latent feature vector, and (iv) experimental
evaluation reported on 4 different latent databases, two from
forensic casework (NIST SD27 and MSP) and two collected
in laboratory settings (WVU and IIITD MOLF) compared to
2 latent databases (NIST SD27 and WVU) in [1].

II. PROPOSED FRAMEWORK

The proposed framework involves expert crowdsourcing
of latent value assignments via FingerprintMash6, inferring
missing values of latents not presented to the crowd using
matrix completion, identifying underlying bases for expert
value assignments using MDS and Lasso, and learning a
prediction function to automatically assign values to query
latents (Fig. 5). For clarity, the notations used in the paper
are summarized in Table I.

A. Crowdsourcing

We requested a pool of fingerprint experts7 to assign labels
to a set of randomly selected 100 latent pairs from a database
of 516 latents. These 516 latents (500 ppi) are obtained
from two operational latent databases: 258 latents each from
NIST SD27 [33] and Michigan State Police (MSP) database8,
which come with their mated rolled prints (Fig. 7). Using the
FingerprintMash interface, experts provided the following for
each pair of latent images:
• a quality label for each latent on a 5-level scale of low

to high, where level-1 represents the worst quality and
level-5 represents the best quality, and

• the relative quantity of information, i.e. whether the left
or the right latent fingerprint contains much more, slightly
more or similar quantity of information.

For quality labels, we use a 5-level labelling for each latent
in order to be consistent with NFIQ [20]. But, for quantity
of information, the pairwise comparison approach is preferred
because two experts who agree on the relative preferences of
two latents, may assign them different labels, when labelled
independently [34]–[36]. To validate the reliability of expert
responses, every fifth comparison that is presented contains a
randomly selected pair from the set of already compared pairs,
providing us a validation set of 20 latent pairs per expert.

5One of the top-3 performing latent AFIS in NIST ELFT evaluation [7].
6Available at http://www.fingerprintmash.org
7We sent e-mails to a large pool of fingerprint experts; 31 experts responded.
8MSP latent database is not available in the public domain.
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Fig. 5: Overview of the proposed crowdsourcing-based learning approach for latent value assignment.

The positions (left or right) of the latents are also swapped to
avoid any bias in expert response. The pairs of latent images
presented to the experts neither contained the quality labels
nor their source.

With 31 experts in our study, we obtained a total of
6, 200 independent quality labels and 3, 100 quantity labels
for pairwise comparisons of latents9,10. Since it is not feasible
to expect each expert to label all possible pairs of 516
latent images, two different matrix completion techniques, one
for individual latent labels (Section II-D) and the other for
pairwise comparisons (Section II-E), were used to infer the
missing labels. It has been shown that only O(r logm) labels
per expert are required to accurately recover the ranking list
of m items (latents), where r � m is the rank of the unknown
rating matrix [36] and is determined by the number of bases
based on which fingerprint experts assign latent value. In our
study involving m = 516 latents and maximum possible rank
of r ≤ 31, we require an average of 85 comparisons per
expert to recover the ranking list. Given that the number of
comparisons provided by each expert in our study is 100, we

9This study to-date has utilized as many, if not more, average number of
expert annotators (12) per latent. Of course, larger the no. of experts, better
the analysis [27]. However, getting a large number of expert annotators for
crowdsourcing is not easy.

10Crowdsourced expert responses on latents from NIST SD27 database
are available at http://biometrics.cse.msu.edu/Publications/Databases/
NISTSD27 ExpertResponses.zip

have sufficient crowd data for matrix completion.

B. Crowd Reliability

One of the important issues in crowdsourcing is to deter-
mine the reliability of experts in their annotations [28], [37],
[38]. We define the reliability of an expert by consistency
between their responses on the 20 repeated latent pairs (40
individual latents) in the validation set. An expert with sig-
nificantly larger inconsistency in his responses compared to
others is deemed unreliable. For analysis, the five level quality
labeling [Low - High] is mapped to a numerical scale [1 - 5],
interpreted as (1) very poor, (2) poor, (3) neutral, (4) good,
and (5) very good. Let {NR1

ij}40
j=1 and {NR2

ij}40
j=1 denote

the latent quality labels for the 40 repeated latents labelled by
the ith expert at the first and second occurrence, respectively,
where NR1

ij , NR
2
ij ∈ {1, 2, 3, 4, 5} denote one of the five

latent quality labels. The expert inconsistency (NVi) for the
ith expert in terms of quality labels is then defined as:

NVi =

√√√√ 1

40

40∑
j=1

[cost(NR1
ij , NR

2
ij)]

2 (1)

where cost(p, q) is defined as the cost of the swap in the
quality labels (p ↔ q) assigned by an expert to the same
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Fig. 6: Interface of the expert crowdsourcing tool, called FingerprintMash. Each expert assigns a quality label [Low - High] to
each latent and provides a pairwise comparison label in terms of quantity of features or information content for the latent pair
displayed on the screen. A total of 100 latent pairs, chosen randomly from our database of 516 latents, are presented to each
expert.

latent:

cost(p, q) =



0 : no swap
1 : swaps (1↔ 2), (2↔ 3),

(3↔ 4), and (4↔ 5)
2 : swaps (1↔ 3) and (3↔ 5)
3 : swaps (2↔ 4)
4 : swaps (1↔ 4) and (2↔ 5)
5 : swap (1↔ 5)

(2)

A higher cost of 3 is assigned to the swap (2 ↔ 4),
compared to the cost of 2 assigned to the swaps (1 ↔ 3)
and (3 ↔ 5), because the former swap represents a switch
in the expert’s labels from poor to good quality for the same
latent. Fig. 8 presents the intra-expert inconsistency of quality
labels for all the 31 experts in our crowdsourcing task. Expert
13 shows significantly larger inconsistency compared to others
(the average cost is 1.0).

Similarly, the expert inconsistency (CVi) for the ith expert
in terms of quantity labels (pairwise comparison values) is
defined as:

CVi =

√√√√ 1

20

20∑
j=1

[cost(CR1
ij , CR

2
ij)]

2 (3)

where {CR1
ij}20

j=1 and {CR2
ij}20

j=1 denote the pairwise com-
parisons for the 20 repeated latents pairs labelled by the ith

TABLE I: Notations used in this paper.

Notation Definition
m Number of latent images
n Number of fingerprint experts
Li ith latent, i = 1, 2, ...,m
Ek kth expert, i = 1, 2, ..., n

Q ∈ Rm×n Sparse quality matrix collected from expert
crowd

Q̂ ∈ Rm×n Complete quality matrix after matrix completion

C
Set of triplets that encode all the pairwise com-
parisons

Ĉ ∈ Rm×n Complete quantity matrix after matrix comple-
tion

Lj�Ek Li
Latent Lj is deemed to contain more quantity
over latent Li by expert Ek

Lj'Ek Li
Latent Lj is deemed to have similar quantity as
latent Li by expert Ek

Dv
Dissimilarity matrix between 516 latents based
on inferred latent value matrix

X ∈ Rm×20 Normalized latent feature matrix consisting of
19 features and 1 constant term for m latents

Yi ∈ Rm ith dimension obtained via MDS
V̂ ∈ Rm×n Complete latent value matrix after fusion
v̂ ∈ Rm Target latent value vector (median of rows of V̂ )
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(a)

(b)

Fig. 7: Two example latents from (a) NIST SD27 and (b) MSP
latent databases, each consisting a total of 258 latents.
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Fig. 8: Intra-expert inconsistencies in quality ratings (Eq. (1)
and pairwise comparisons (Eq. (3)).

expert at the first and second occurrence, respectively, and
CR1

ij , CR
2
ij ∈ [1 - 5] denote one of the five comparison

options, where 1 (5) represents the left (right) latent has much
more quantity of information present than the right (left) latent,
respectively. Fig. 8 shows four experts (2, 13, 14 and 16)
exhibit large intra-expert inconsistency in the quantity labels
compared to others (the average cost is 0.84).

(a) (b)

(c) (d)

Fig. 9: Inter-expert variations in quality labels. All the experts
assigned (a) the lowest quality (i.e. 1), and (b) the highest
quality (i.e. 5). On the other hand, latents in (c) and (d)
received both low and high quality labels from the experts.

Overall, the six experts (2, 8, 13, 14, 16 and 22) show higher
inconsistency in their quality and quantity labels compared
to others. A hypothesis test (p-value approach) on com-
bined intra-expert inconsistencies indicated that only expert
13 exhibited a significantly larger inconsistency (p-value <
0.01), and therefore deemed unreliable. After discarding the
responses from expert 13, the expert labels [14 - 31] are
mapped to [13 - 30] for further analysis for a total of 30
experts.

C. Inter-Expert Variations

On average, 12 experts assigned independent quality labels
and 6 experts assigned pairwise comparisons of quantity, to
each latent and each pair of latents, respectively. Fig. 9 (a)
and (b) show two example latents with zero variation in
quality labels as all experts to whom this latent was presented,
assigned (a) the lowest quality i.e. 1, and (b) the highest
quality i.e. 5. On the other hand, we observe large variations in
quality labels for latents in Fig. 9 (c) and (d) with inter-expert
variations of 1.61 and 1.78, respectively. Fig. 10 shows two
examples of latent pairs, where latent pair in Fig. 10 (a) has
zero variation in pairwise comparisons as all experts to whom
this pair was presented, assigned “left latent has much more
quantity”. On the other hand, the latent pair in (b) was labeled
by 4 experts as [2, 3, 4, 4], where [2] indicates “left latent
has slightly more quantity”, [3] indicates “both latents have
similar quantity”, and [4] indicates “right latent has slightly
more quantity”, with an inter-expert variation of 0.92.
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(a)

(b)
Fig. 10: Inter-expert variations in pairwise comparison labels.
Latent pair in (a) was presented to 3 experts and all of them
assigned the label “left latent has much more quantity”. Latent
pair in (b) was labeled by 4 experts as [2, 3, 4, 4], where [2]
indicates “left latent has slightly more quantity”, [3] indicates
“both latents have similar quantity”, and [4] indicates “right
latent has slightly more quantity”.

D. Matrix Completion for Quality Labels

The crowdsourced data for latent quality can be represented
by a sparse matrix Q ∈ Rm×n, where m = 516 is the total
number of latents in our database and n = 30 is the number
of fingerprint experts who provided reliable quality ratings.
The observed rating Qi,j > 0 (i = 1, 2, ...,m; j = 1, 2, ..., n)
represents the quality for the ith latent assigned by the jth

expert. In cases where the ith latent appears more than once
for the jth expert, Qi,j is computed as the average of the
ratings for that latent. Note that only up to 4, 800 (30×2×80)∗

out of a possible total of 15, 480 (30 × 516) elements in Q
are non-zero. Given the sparse quality matrix Q, the task at
hand is to infer the complete quality matrix Q̂ using matrix
completion [39]. Let Ω be the set of available quality ratings
qij from the sparse matrix Q and PΩ(Q) be the orthogonal
projector onto the subspace of Ω, which is equal to qij if
(ij)

th quality rating ∈ Ω, zero otherwise. Mathematically, our
goal is to find a low-rank matrix Q̂ such that the observed
ratings (i.e., indices in Ω) are as close to the inferred ratings
as possible. The problem is formulated as minimization of the
function: ||PΩ(Q− Q̂)||2F . Since any matrix Q̂ ∈ Rm×n of a
rank up to K can be represented as a product of two matrices

∗Up to 80 unique pairs of latents per expert excluding validation set
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Fig. 11: 2-dimensional scatterplot of quality and quantity
(after matrix completion) of the 516 latents. The marker color
encodes the latent value in the range [1 − 5], derived using
Eq. 6.

with form Q̂ = UV , where U ∈ Rm×K and V ∈ RK×n, the
objective function for inferring the latent quality matrix Q̂ can
be formulated as a non-convex optimization problem:

min
U∈Rm×K ,V ∈RK×n

1

2
||PΩ(Q− UV )||2F , (4)

where K controls the rank of Q̂. Popular minimization
approaches include nuclear norm minimization [40] and non-
linear Gauss-Seidel scheme [41]. We employed the latter for
its efficiency to solve non-convex models (Eq. 4), even for a
large matrix such as Q.

E. Matrix Completion for Quantity Labels

Since the matrix completion algorithms that operate on
pairwise comparisons are designed to handle only three ordinal
values (<,=, >), we merge the “much more” and “slightly
more” labels to have a total of three labels instead of five.

Let (Li �Ek
Lj) denote that latent Li contains more quan-

tity over latent Lj assigned by expert Ek and let (Li 'Ek
Lj)

denote Li has similar quantity as Lj . We encode each pairwise
comparison (Li �Ek

Lj) by a triplet (Ek, Li, Lj), (Li 'Ek

Lj) by two triplets (Ek, Li, Lj) and (Ek, Lj , Li), and denote
the set of triplets that encode all the pairwise comparisons
provided by n experts as C = {(Ek, Li, Lj)}. Our goal is to
infer the quantity labels for each individual latent rated by each
expert, from the set of pairwise comparisons C by finding a
low-rank matrix Ĉ ∈ Rm×n. This is achieved by minimizing
the following objective function:

min
Ĉ∈Rm×n

L(Ĉ) = Λ||Ĉ||tr +
∑

(i,j,k)∈C

l(Ĉi,k − Ĉj,k), (5)

where Λ > 0 controls the tradeoff between minimizing the
rank of Ĉ and reducing the inconsistency with respect to
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the observed pairwise comparisons in C. Note that ||Ĉ||tr
is the trace norm of Ĉ which approximates the rank of Ĉ,
and l(Ĉi,k − Ĉj,k) is a loss function which measures the
inconsistency in inferred comparison between Ĉi,k and Ĉj,k,
and the rated comparison (Li �Ek

Lj). We adopt the approach
proposed in [36] to solve Eq. (5) using the hinge loss function.

F. Defining Latent Value

After matrix completion, each expert’s latent quality and
quantity assignment is represented by the corresponding
columns of completed latent quality (Q̂) and quantity (Ĉ)
matrices, respectively. Fig. 11 shows a 2-dimensional scat-
terplot of quality and quantity (after matrix completion) of
the 516 latents in our database. Given that the latent quality
and quantity are correlated (Pearson correlation of 0.71 in
our experiments), we conducted a grid search to find optimal
weights for a linear combination of quality and quantity to
define latent value (V̂ ). The simple average of quality and
quantity (with equal weights), defined in Eq. (5), for latent
value performed the best in terms of predicting the AFIS
performance (See Section III-A for details).

V̂ =
Q̂+ Ĉ

2
(6)

To understand the underlying bases of latent value assign-
ment, it is crucial to understand the similarity or dissimilarity
among latents with respect to value assignments. Let ν̂i (i =
1, 2, . . . , 516), the ith row of V̂ , denote the 30-dimensional
value vector for ith latent (Li). The difference between two
latents (e.g., Li and Lj) can be measured by the Euclidean
distance between their corresponding value vectors ν̂i and ν̂j .
Fig. 12 represents the 516 × 516 latent value dissimilarity
matrix (Dv) based on expert ratings, with latents sorted in
descending order by the median of rows of V̂ . We would like
to explain this inter-latent variation in terms of a small number
of bases, preferably two or three bases for ease in interpretation
and visualization.

G. Bases for Explaining Expert Ratings

We capture the bases for the inter-latent variations pro-
vided by the 30 experts using Multidimensional Scaling11

(MDS) [31]. MDS outputs a d-dimensional embedding of
the 516 latents such that the difference between the latent
value dissimilarity matrix Dv and the inter-point distance
matrix based on the embedding, known as the stress value,
is minimized. The dimensionality, d, of the embedding is
typically determined based on the relationship between the
stress value and d. It is natural that as d increases, the stress
value decreases. See Table II. Given that the stress value is
close to zero beyond d = 8, it confirms the expected low-rank
characteristic of the completed value matrix (V̂ ). We consider
the top-8 MDS dimensions to learn the underlying bases.

11We utilize the metric scaling implementation of MDS http://www.
mathworks.com/help/stats/mdscale.html.
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Fig. 12: Heatmap of 516 × 516 matrix showing dissimilarity
between latents, sorted in descending order by the median
latent value from expert crowd. Best viewed in color.

TABLE II: Multidimensional Scaling (MDS) stress value vs.
the number of dimensions. As the number of dimensions
increase, the stress value decreases [31].

Dimension (d)
Stress 1 2 3 4 5 6 7 8 9 10
Value 0.26 0.13 0.08 0.05 0.03 0.02 0.01 0.002 0 0

H. Interpreting Bases in terms of Latent Features

In order to interpret MDS bases, we need to explain the
bases in terms of latent features. We automatically extracted
a set of nf = 19 features including number of minutiae,
ridge clarity, ridge flow, number of core and delta, and minutia
reliability from a latent [1]. These latent features are typically
used by forensic examiners as well as in designing latent
AFIS [4], [5], [8]. See Table III for this list of nf latent
features and Fig. 13 for an illustration of some of these
features. Let Xi ∈ R(nf+1) be the min-max normalized [42]
feature vector extracted from latent Li, including a dummy
variable 1 used to absorb the bias (intercept) of the regression
model [43], m be the number of latents (m = 516 here) and
yk ∈ Rm denote the kth dimension of the MDS embedding.
We explore associations between the normalized feature matrix
X and individual MDS dimensions yk using Lasso [32], which
selects a subset of features from X that are most relevant
to interpret individual MDS dimensions [44]. Formally, the
weight vector for the nf + 1 features, βk, for yk is obtained
by minimizing the following objective function,

min
βk∈Rnf+1

1

m
||yk −XTβk||22 + λ||βk||1, (7)

where λ controls the sparseness of vector βk. The optimal
value of λ = 0.001 is learned using five-fold cross validation
for parameter tuning [45]. The MDS dimension yk can be
expressed as a linear combination of nf + 1 latent features xi
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(a) (b)

High

Low

(c) (d)

Fig. 13: Automatically extracted latent features. (a) Input latent
with manually marked region of interest (ROI), (b) ridge flow
overlaid on the cropped latent, and automatically extracted (c)
ridge quality map and (d) minutiae (white circles) and core
points (green circles).

TABLE III: List of 19 features automatically extracted from
a latent.

Feature no. Description
x1 Number of minutiae in the latent

x2 − x8 Sum of reliability of minutiae that have reliabil-
ity value ≥ t, t=0, 0.1, ..., 0.6

x9
Average area of the triangles in Delaunay trian-
gulation of minutiae

x10 Area of the convex hull of minutiae set

x11 − x17 Sum of ridge quality of blocks that have quality
value ≥ t, t=0, 0.1, ..., 0.6

x18 Number of core and delta

x19
Standard deviation of the ridge flow (orientation
map) in the latent foreground

as follows:

yk = βk1 · x1 + βk2 · x2 + ...+ βk19 · x19 + βk20 (8)

where βki is the feature weight for xi and x20 = 1.

We perform a five-fold cross validation to learn βk, and
observe that only two MDS dimensions in the 8-dimensional
embedding receive non-zero weights for the latent features
(Table IV). Rest of the MDS dimensions receive non-zero
weights only for the constant term. This indicates that a
two-dimensional embedding of the inter-latent similarity can
adequately explain the difference among expert ratings. Fig. 14
illustrates the two-dimensional embedding of 516 latents using
MDS. The major constituents of the first MDS dimension in

Y
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Y
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Value Range [1 - 2] 
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Value Range (3 - 4]
Value Range (4 - 5]

Fig. 14: 2-Dimensional embedding of 516 latents using MDS.
For visualization, the latent value is thresholded into four value
bins: [1 - 2], (2 - 3], (3 - 4], and (4 - 5].

terms of latent features are: number of minutiae (x1), minutia
reliability (x2, x3, x4, x5), local ridge quality (x11, x12), and
number of core and delta (x18). For the second MDS dimen-
sion, friction ridge area (x9, x10) and std. dev. of the ridge
flow (x19) are assigned high weights. Latent features x2 to x8

are all minutiae reliability features but at different thresholds.
As the threshold is increased, the number of detected minutiae
correspondingly decreases. For instance, 362 out of 516 latents
have zero minutiae detected above the reliability threshold
of t = 0.4. This explains why zero weights are assigned
to features x6 to x8. As the two identified MDS dimensions
are uncorrelated with Pearson correlation ρ = 0.08, they can
be interpreted as two independent bases used by fingerprint
experts in latent value assignment.

I. Learning Latent Value Predictor

Recall that the main goal of understanding the bases for
expert value assignments is to utilize them to learn a predictor
for query latent value. Suppose that yk ∈ Rm (k = 1, ..., d) is
the kth basis of MDS space and v̂ ∈ Rm is the target value
vector whose ith element (v̂i) is the median of the ith row (i =
1, ..., 516) of completed value matrix V̂ . The median target
value is preferred over the mean value, as it is more robust
against the outliers. Lasso is used to model the relationship
between the MDS bases and the expert assigned latent value
(v̂). Formally, this learning problem can be stated as:

min
γ∈Rd

1

m
||v̂ − Y γ||22 + ρ||γ||1, (9)

where Y ∈ Rm×d is the matrix representation of yk (k =
1, ..., d), γ ∈ Rd is the weight vector, d = 2, and ρ is the
regularization parameter for the regression. Table V presents
the average weights and their standard deviations, learnt by
minimizing the objective function in Eq. (9) using five-fold
cross validation.
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TABLE IV: Average values of feature weights (βk) learnt using five fold cross-validation to interpret the MDS dimensions.
Only two dimensions, yk, (k = 1, 2), received non-zero weights for the 19 latent features. The corresponding standard
deviations based on five fold cross validation are also reported. The 19 features {x1, x2, ..., x19} are defined in Table III.
Non-zero weights are shown in bold; Weights lower than 0.05 are considered zero because they are relatively insignificant in
interpreting the MDS dimensions.

Weight Vector x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 1

Avg. (β1) 0.68 0.28 0.31 0.22 0.16 0 0 0 0 0 0.16 0.19 0.02 0 0 0 0 0.40 0.19 0.17

s.d. (β1) 0.08 0.04 0.04 0.03 0.01 0 0 0 0 0 0.02 0.02 0.01 0 0 0 0 0.03 0.02 0.03

Avg. (β2) 0 0 0 0 0 0 0 0 0.69 0.26 0 0 0 0 0 0 0 0.13 0.52 0.43

s.d. (β2) 0 0 0 0 0 0 0 0 0.07 0.04 0 0 0 0 0 0 0 0.04 0.06 0.04

Source:																			 MSP
Rank	Retrieval:	 1
Crowdsourced	Value:		4.87
Predicted	Value:											4.96

(a)

(b)

Source:																			 MSP
Rank	Retrieval:	 1
Crowdsourced	Value:		4.78
Predicted	Value:		 4.62

Source:																			 MSP
Rank	Retrieval:	 1
Crowdsourced	Value:		4.32
Predicted	Value:		 4.23

Source:																	NIST	SD27
Rank	Retrieval:	 1
Crowdsourced	Value:		4.30
Predicted	Value:		 4.19

Source:																	NIST	SD27
Rank	Retrieval:	 1
Crowdsourced	Value:		4.16
Predicted	Value:		 4.02

Source:																	NIST	SD27
Rank	Retrieval:	 14,806
Crowdsourced	Value:		2.04
Predicted	Value:		 1.37

Source:																	 MSP
Rank	Retrieval:	 11
Crowdsourced	Value:		1.28
Predicted	Value:		 1.25

Source:																	NIST	SD27
Rank	Retrieval:	 22,442
Crowdsourced	Value:		1.14
Predicted	Value:		 1.19

Source:																	NIST	SD27
Rank	Retrieval:	 21,662
Crowdsourced	Value:		1.25
Predicted	Value:		 1.08

Source:																	 MSP
Rank	Retrieval:	 50,980
Crowdsourced	Value:		1.16
Predicted	Value:		 1.01

Fig. 15: The (a) top-5 and (b) bottom-5 latents from MSP and NIST SD27 databases based on their predicted value. For each
latent, we also report the rank at which it is retrieved using a state-of-the-art latent AFIS (size of reference gallery = 250K
rolled prints).

Given a query latent, its normalized feature vector Xq

(Table III) is extracted. The projection of Xq on the kth basis
is computed by ŷk = XT

q βk (k = 1, 2). The value (Vpred)
assigned to the query latent is then given by

Vpred = Ŷ T γ (10)

where Ŷ = [ŷ1, ŷ2]T and the value of weight vectors β and γ
are obtained from Tables IV and V.

In summary, the proposed latent value prediction function
can be rewritten as a weighted linear combination of latent

features as follows:
Vpred = 1.22 x1 + 0.50 x2 + 0.55 x3 + 0.40 x4 + 0.29 x5

+ 1.14 x9 + 0.43 x10 + 0.29 x11 + 0.34 x12

+ 0.92 x18 + 1.19 x19 + 1
(11)

Note that the coefficient for xi is computed as
∑
j γj ·wij , if

the ith feature is selected for jth dimension. For example, the
coefficient for x1 is computed as (1.22 = 1.79 × 0.68) and
similarly for other coefficients using weights from Tables IV
and V. The offline latent value predictor learning and online
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TABLE V: Average and s.d. of the weight vector values for the
two-dimensional MDS embedding shown in Fig. 14 using five
fold cross-validation. These weights are used for predicting the
value of latents in the test set.

γ1 γ2

Avg. value of weight vector (γ) 1.79 1.64

s.d. (γ) 0.10 0.04

latent value prediction for a given query latent are summarized
in Algorithms 1 and 2, respectively.

Algorithm 1 Offline Learning of Value Predictor

1: procedure FIVE-FOLD CROSS VALIDATION
2: input
3: Q: Individual latent quality labels
4: C: Pairwise comparisons of latent quantity
5: X: Normalized latent features
6: output
7: β: Weight vector for latent features
8: γ: Weight vector for derived MDS bases
9: begin:

10: Q̂ = MatrixCompletion(Q) Eq. (4)
11: Ĉ = MatrixCompletion(C) Eq. (5)
12: V̂ = (Q̂+ Ĉ)/2
13: [y1, y2, ..., yd] = MDS(V̂ )
14: loop: (k = 1, 2, ..., d)
15: βk = Lasso(yk, X)
16: end loop
17: β = [β1, β2, ..., βd]
18: γ = Lasso(V̂ , β)
19: end

Algorithm 2 Online Query Latent Value Predicton

1: procedure
2: input
3: β: Weight vector for latent features
4: γ: Weight vector for MDS bases
5: Xq: Normalized features extracted from query latent
6: output
7: Vpred: Predicted latent value
8: begin:
9: loop: (k = 1, 2, ..., d)

10: ŷk = XT
q · βk

11: end loop
12: Ŷ = [ŷ1, ŷ2, ..., ŷd]

T

13: Vpred = Ŷ T · γ
14: end

The average mean square error between the predicted latent
value and the crowdsourced latent value of the five folds is
0.19 with a standard deviation of 0.04. We also evaluated the
role of MDS for determining the bases and their interpretation.
A direct linear regression (without using MDS) between the
19 latent features and the target latent value achieves a slightly

lower average MSE of 0.17 with a standard deviation of 0.04.
This indicates that the interpretation of bases in terms of latent
features does not result in any significant loss of information
with the benefit of explaining latent value assignments in terms
of two bases. Fig. 15 presents the top-5 and bottom-5 ranked
latents based on the predicted latent values for one of the five
folds. Note that the AFIS performance depends not only on the
value of the query latent, but also on the quality and quantity of
information present in the mated rolled print. Fig. 16 presents
examples of latents with high predicted value but poor AFIS
performance, which can be attributed to poor quality and low
quantity of information in their true mates.

To evaluate the effect of set of training latent fingerprints
on the interpretation of MDS dimensions in terms of latent
features, we apply the method proposed in Section II-H on
multiple random subsets of the expert responses (random
subsets of 412 latents from a total of 516 latents). A five-
fold procedure is adopted and the estimated average feature
weights (β∗1 and β∗2 ) along with their standard deviation are
reported in Table VI. The same feature subsets (among the
given 19 latent features) are identified corresponding to the
top-2 MDS dimensions in every fold. Moreover, the feature
weight vectors, i.e. β∗1 and β∗2 , are similar to the feature
weight vectors observed for the complete training dataset of
516 latents, i.e. β1 and β2 (compare Tables IV and VI).

Rank	Retrieval	:		18,789
Predicted	Value:			 3.34

Rank	Retrieval	:		19,456
Predicted	Value:				 2.95

Fig. 16: Example latents from NIST SD27 with high predicted
value but poor AFIS performance. The corresponding regions
in the latent and its true mate are marked in red; core points
are marked in white.
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TABLE VI: Average values and the std. dev. of feature weights (β∗k) learnt to interpret the MDS dimensions using a five-fold
random subsets of 412 latents (80% of 516 latents). The 19 features {x1, x2, ..., x19} are defined in Table III. Non-zero weights
are shown in bold; weights lower than 0.05 are truncated to zero because they are relatively insignificant in interpreting the
MDS dimensions.

Weight Vector x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 1

Avg. (β∗
1 ) 0.55 0.35 0.40 0.26 0.10 0 0 0 0 0 0.13 0.15 0.07 0 0 0 0 0.35 0.22 0.40

s.d. (β∗
1 ) 0.10 0.07 0.08 0.06 0.03 0 0 0 0 0 0.03 0.04 0.02 0 0 0 0 0.06 0.04 0.08

Avg. (β∗
2 ) 0.08 0 0 0 0 0 0 0 0.65 0.19 0 0 0 0 0 0 0 0.08 0.47 0.55

s.d. (β∗
2 ) 0.04 0 0 0 0 0 0 0 0.15 0.08 0 0 0 0 0 0 0 0.03 0.09 0.11

III. EXPERIMENTS ON LATENT VALUE PREDICTION

We perform two experiments, in order to evaluate (i) the
efficacy of latent value from expert crowd as the target value,
and (ii) the performance of the proposed latent value predictor
on three independent latent databases (MSP400, WVU and
IIITD MOLF).

A. Evaluating Target Latent Value from Expert Crowd

We first compare the latent value from expert crowd (V̂ )
with Latent Fingerprint Image Quality (LFIQ) [10] on NIST
SD27 and MSP258 latent databases. Both the latent value from
expert crowd and LFIQ scores are continuous values, where
the former is bounded in the range of [1 - 5] and the latter
are unbounded non-negative values. Following the comparison
protocol from [10], the 516 latents are first sorted based on
both the median latent value from expert crowd, as well as
the LFIQ scores. The sorted latents are then binned into 100
overlapping bins (value index) such that each bin contains 100
latents, using a sliding window for binning with a fixed step
size of 4.16. For each of the bins, we compare the number
of latents identified at Rank-1 against a reference database of
250, 000 rolled prints, including the true mates of 516 latents,
by a state-of-the-art latent AFIS12. Fig. 17 presents the Rank-1
identification rate of latents with respect to each of the 100
value indices. For each of the value index bins, the percentage
of latents whose mates are retrieved at rank-1 is used as an
evaluation criterion. A high identification rate is expected for
latents with high value index, and low identification rate for
latents with low value index, as illustrated by the “ideal” curve
(Fig. 17). The ideal curve represents the Rank-1 identification
rates across each of the value indices based on the rank of the
true mates on the candidate list, i.e., if the latents are sorted in
the descending order by the rank retrieval of their true mates.
The latent value by expert crowd is performing better than
LFIQ in terms of predicting the AFIS performance, as the
fused value has a higher correlation (0.98) with ideal curve
compared to LFIQ (0.92).

Next we compare the latent value from expert crowd (V̂ )
with value determination by examiners (VID, VEO, and
NV) [11]. As value determinations by examiners are available
only for NIST SD27 database, we do not use MSP258 database
for this comparison. The numbers of VID, VEO, and NV
latents in NIST SD27, reported in [11], are 210, 41, and 7,

12One of the top-3 performing latent AFIS in NIST ELFT evaluation [7].
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Fig. 17: Rank-1 Identification Rate of a state-of-the-art latent
AFIS with respect to different value indices: (i) ideal case
where the latents are sorted in the descending order by the
rank retrieval of their true mates, (ii) Latent Fingerprint Image
Quality (LFIQ) [10], (iii) Quality labels (Q̂) from the expert
crowd, (iv) Quantity labels (Ĉ) from the expert crowd, and (v)
Latent Value (V̂ ) from Expert Crowd (Eq. 6).

respectively. Out of 258 latents from NIST SD27, 166 latents
are retrieved at Rank-1 using the state-of-the-art latent AFIS.
Since the latent value from expert crowd is a continuous value
in the range [1−5] and the value determination by examiners is
categorical (VID, VEO and NV), we first sort the 258 latents in
descending order of the median inferred latent value (v̂). The
first 210 latents are considered as VID, the next 41 as VEO
and the last 7 as NV latents. This protocol is adopted for a fair
comparison between the latent value from expert crowd and
the value determination by examiners. Table VII compares the
number of latents retrieved at rank-1 using value determination
by examiners [11] and the inferred latent value from expert
crowd (V̂ ), with the same exemplar gallery of 250, 000 rolled
prints. Value determination by expert crowd performs better
than value determination by examiners in terms of predicting
the AFIS performance. A larger number of VID latents (161)
are identified at Rank-1 based on V̂ as compared to the number
of VID latents (155) identified at Rank-1 based on value
determination by examiners.
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Rank	Retrieval:								1
Predicted	Value:	4.99

MSP400	Latent	Database WVU	Latent	Database IIITD	MOLF	Latent	Database

Rank	Retrieval:								1
Predicted	Value:	4.81

Rank	Retrieval:		6,636
Predicted	Value:		1.07

Rank	Retrieval:		59,886
Predicted	Value:				1.02

Rank	Retrieval:								1
Predicted	Value:	4.92

Rank	Retrieval:								1
Predicted	Value:	4.87

Rank	Retrieval:		27,327
Predicted	Value:				1.01

Rank	Retrieval:		40,042
Predicted	Value:									1

Rank	Retrieval:		74,839
Predicted	Value:									1

Rank	Retrieval:		65,233
Predicted	Value:									1

Rank	Retrieval:								1
Predicted	Value:	4.11

Rank	Retrieval:								1
Predicted	Value:	4.04

(a)

(b)

Fig. 18: The (a) top-2 and (b) bottom-2 latents based on their predicted values from (i) an independent set of 400 latents from
MSP, (ii) WVU Latent Database, and (iii) IIITD MOLF Latent Database. For each latent, we also report the rank at which it
is retrieved using a state-of-the-art latent AFIS (size of reference gallery = 250K rolled prints).

Another possible source of target value can be value deter-
mination by AFIS [1], but we do not utilize this approach for
the following two reasons: (i) the latent value predictor should
be independent of AFIS, and (ii) the latent value determination
should only be based on query latent and not its mate in the
reference print database.

TABLE VII: Number of latents retrieved at Rank-1, using
a state-of-the-art latent AFIS, for NIST SD27 latents that
were determined as VID (210), VEO (41) and NV (7) by
examiners [11]. For value determination by the expert crowd,
the median inferred latent value (v̂) is thresholded as VID
> 2.16 and NV < 1.66. The range for the median latent value
is [1− 5].

VID VEO NV

Value Determination by Examiners [11] 155/210 11/41 0/7

Value Determination by Expert Crowd (V̂ ) 161/210 5/41 0/7

B. Correlation between Predicted Latent Value and AFIS
Performance

We evaluate the performance of the proposed latent value
predictor on three independent latent databases, including
WVU latent database [46] containing 449 latents, IIITD
MOLF latent database [47] containing 4, 400 latents, and an
independent set of 400 latents (not used in crowdsourcing)
from MSP latent database. While WVU and IIITD MOLF

latent databases were collected in a laboratory setting, the
MSP latent database contains latents collected during crime
scene investigations. With a background gallery of 250, 000
rolled prints, AFIS comparison scores (with the true mate),
value from [1], LFIQ value [10] and value from the proposed
predictor are computed for these three latent databases. Instead
of the binary valued output (VID and not-VID), we utilize
the output by the SVM+BR model in [1], a signed distance
between the test latent and the hyperplane in feature space,
as the predicted value. Table VIII presents the correlation
between predicted latent value by [1], by LFIQ, and by the
proposed model with the performance of a state-of-the-art
AFIS for three independent latent databases. A comparison
between the correlation values suggests that the proposed
latent value predictor is better than LFIQ and value by [1]
in predicting the AFIS performance. Fig. 18 presents the top-
2 and bottom-2 ranked latents based on the latent value from
the proposed predictor for each of the three databases. The
proposed method was implemented in MATLAB and runs
on a server with 12 cores @ 2.40 GHz, 256 GB RAM and
Linux operating system. Using 24 threads (MATLAB function:
parpool), the average processing time per latent is 1.27s (see
Table VIII for comparison).

IV. CONCLUSIONS

Latent value assignment is a crucial step in the widely
used ACE-V methodology practiced by examiners in latent
fingerprint processing. However, the prevailing approaches
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for latent value assignment have the following two main
limitations: (i) latent values (VID, VEO and NV) assigned
by examiners are subjective with low reproducibility, and (ii)
directly modeling the relationship between latent features and
value determination does not explain inter-examiner variations.

TABLE VIII: Correlation of predicted latent value by [1],
LFIQ, and the proposed method with the performance of a
state-of-the-art AFIS for three independent latent databases.
The average processing time (in seconds) required per latent
by each of the three methods is also presented.

Latent Database Preliminary
Work* [1]

LFIQ [10] Proposed
Method

MSP (400 latents) 0.65 0.49 0.70
WVU [46] (449 latents) N/A 0.44 0.67
IIITD MOLF [47] (4400 latents) 0.43 0.40 0.51
Avg. processing time required
per latent (in sec.) 1.27 0.71 1.27

* Since the value determination labels (VID and Not-VID) are not available for
MSP258 latent database, we utilize NIST SD27 and WVU latent datasets for training
the SVM+BR model in [1], and MSP400 and IIITD MOLF latent datasets for testing.

We have proposed a fully automated method to assign
quantitative values to latent fingerprints. The main contri-
butions of our approach are: (i) designed and implemented
a crowdsourcing-based framework to collect and understand
expert latent value assignment from the perspectives of la-
tent quality and quantity (information content), (ii) utilized
Multidimensional Scaling (MDS) to identify the underlying
bases for expert latent value assignment, (iii) established the
relationship between automatically extracted latent features
and MDS bases using Lasso, and (iv) learned a predictor based
on the underlying bases to assign value to a query latent.

Our experiments involved latent fingerprints from two foren-
sic databases (NIST SD27 and MSP) and two laboratory col-
lected databases (WVU and IIITD MOLF), and 31 fingerprint
experts for crowdsourcing. The main conclusions of our study
are: (i) the crowdsourced latent value is more robust than
prevailing value determination (VID, VEO and NV) in terms
of predicting AFIS performance, and (ii) two MDS bases
are adequate to explain expert value assignments and can
be interpreted in terms of our automatically extracted latent
features, and (iii) a collection of latents can be ranked in
terms of the predicted value from most informative to least
informative.

Our suggestions for future work on latent value prediction
include (i) extracting more robust latent features, especially
minutiae points, for latent value prediction, and (ii) improving
the current prediction model by incorporating feature rarity.
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