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Biometric recognition, or biometrics, refers to the authentication of an individual based on her or his
biometric traits. Among the various biometric traits (e.g., face, iris, fingerprint, voice), fingerprint-based
authentication has the longest history, and it has been successfully adopted in both forensic and civilian
applications. Advances in fingerprint capture technology have resulted in new large-scale civilian appli-
cations (e.g., US–VISIT program); however, these systems still encounter difficulties due to various noise
factors present in operating environments. The purpose of this article is to give an overview of fingerprint-
based recognition and discuss research opportunities for making these systems perform more effectively.
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1. INTRODUCTION

Biometric recognition, or biometrics, refers to the automatic
authentication of a person based on his or her physiological
or behavioral characteristics (Jain, Bolle, and Pankanti 1999a;
Maltoni, Maio, Jain, and Prabhakar 2003). Biometric recogni-
tion offers many advantages over traditional personal identifi-
cation number or password and token-based (e.g., ID cards)
approaches; for example, a biometric trait cannot be easily
transferred, forgotten, or lost; the rightful owner of the biomet-
ric template can be easily identified; and it is difficult to du-
plicate a biometric trait. Some well-known examples of traits
used in biometric recognition are fingerprint, iris, face, signa-
ture, voice, hand geometry, retina, and ear (Fig. 1). A number
of commercial recognition systems based on these traits have
been deployed and are currently in use. Biometric technology
has now become a viable and more reliable alternative to tradi-
tional authentication systems in many government applications
(e.g., US–VISIT program and the proposed e-biometric pass-
port, which is capable of storing biometric information of the
owner in a chip inside the passport). With increasing applica-
tions involving human–computer interactions, there is a grow-
ing need for fast authentication techniques that are reliable and
secure. Biometric recognition is well positioned to meet the in-
creasing demand for secure and robust systems.

Several requirements need to be met by a particular biometric
trait to be considered for use in an authentication system. These
requirements are (a) universality, that each individual should
possess the trait; (b) distinctiveness, that the trait for two dif-
ferent persons should be sufficiently different to distinguish be-
tween them; (c) permanence, that the trait characteristics should
not change, or change minimally, over time; and (d) collectabil-
ity, that the trait can be measured quantitatively. However, for
practical biometric systems, some other considerations are im-
portant, namely (a) whether the performance and authentication
rates of the system are at acceptable levels, measured in terms
of speed, recognition accuracy and robustness, in different op-
erational environments; (b) whether the biometric trait will be
widely accepted by the public for use in their daily lives; and
(c) whether the system based on the trait can be easily attacked
or spoofed. The main requirements of a practical biometric sys-
tem are that it have acceptable recognition performance rates,

recognition speed, and cost. In addition, it should protect the
user from privacy intrusions and be robust with respect to vari-
ous spoofing attacks.

Among all of the biometric traits used for authentication,
fingerprint-based recognition has the longest history (almost
100 years) and has been successfully adopted not only in foren-
sic applications, but also in an increasing number of civilian
applications (e.g., the US–VISIT program). The reason be-
hind this success is because fingerprints generally meet the re-
quirements of a biometric trait discussed in the previous para-
graph. Table 1 compares commonly used biometric traits in
terms of these requirements. Due to the wide appeal of fin-
gerprints, fingerprint-based authentication systems continue to
dominate the biometrics market, accounting for almost 52% of
current authentication systems based on biometric traits (Mal-
toni et al. 2003). The rapid evolution of mobile commerce (m-
commerce) and banking (m-banking) services in recent years
has placed new emphasis on user ID technology and created
widespread deployment of biometrics in this field. Several mo-
bile manufacturers have incorporated fingerprint, voice, and
face biometrics into high-end mobile phones (Fig. 2). New
and miniaturized fingerprint sensors capable of being embed-
ded in a mobile phone have been developed to meet the de-
mands of m-commerce and m-banking applications. In contrast
to traditional two-dimensional array sensors, these new one-
dimensional line scan sensors require that the finger be swiped
to acquire a fingerprint impression for recognition.

A biometric system is essentially a pattern recognition sys-
tem that recognizes an individual by comparing the input bio-
metric trait with a set of traits stored in a database (i.e., tem-
plates). The templates are obtained during the enrollment stage,
where these traits along with an ID are collected from users and
stored in a database. An important issue in designing a biomet-
ric system is to ascertain how recognition will be performed.
The two modes of recognition are verification and identifica-
tion. In a verification system, recognition is performed by com-
paring the input biometric characteristics with the characteris-
tics of a claimed identity (1 to 1 match) stored in the database.
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Figure 1. Some examples of biometric traits (Jain et al. 1999a): (a) fingerprint, (b) iris scan, (c) face scan, (d) signature, (e) voice, (f) hand
geometry, (g) retina, and (h) ear.

Thus a verification system either accepts or rejects the claimed
identity depending on whether or not the biometric character-
istics of the input and that of the claimed identity are similar
to one another. In the identification mode, however, a claimed
identity is not available. The system recognizes an individual by
performing an exhaustive search (1 to M matches) in the entire
database of M stored templates. Thus in the identification mode,
the system establishes an identity without the subject having to
provide one. Figure 3 shows the important processing tasks in-
volved in the enrollment, verification, and identification stages
of a fingerprint-based authentication system.

For a system operating in the verification mode, we are in-
terested in accepting inputs (i.e., queries) that are “close” or
“similar” to the template of the claimed identity and rejecting
those that are “far” or “dissimilar.” Based on the input Q and a
claimed identity Ic, we are interested in testing the hypothesis

H0 : It = Ic versus H1 : It �= Ic, (1)

where It is the true identity of the user. In (1), H0 (resp. H1) is
the null (alternative) hypothesis that the user is genuine (impos-
tor). Based on the claimed identity Ic, a template T is retrieved
from the database. Subsequently, the testing in (1) is performed
by a matcher that computes a similarity measure, S(Q,T), based
on Q and T ; large (resp. small) values of S indicate that T and

Table 1. Comparison of selected biometric technologies adapted
from Maltoni et al. (2003)

Biometric trait UVSL DSTC PRMN CLTB PRFM ACPT CRVN

DNA H H H L H L L
Face H L M H L H H
Fingerprint M H H M H M M
Hand geometry M M M H M M M
Iris H H H M H L L
Signature L L L H L H H
Voice M L L M L H H

NOTE: H, M, and L denote high, medium, and low. UVSL, universality; DSTC, dis-
tinctiveness; PRMN, permanence; CLTB, collectability; PRFM, performance; ACPT, ac-
ceptability; CRVN, circumvention. As shown, fingerprint has medium universality, high
distinctiveness, high permanence, medium collectability, high performance, medium ac-
ceptability, and medium circumvention.

Q are close to (far from) each other. A threshold, λ, is specified
so that all similarity values lower (resp. greater) than λ lead to
the rejection (acceptance) of H0. Thus decisions of whether to
accept or reject H0 in the verification mode are prone to two
types of errors: the false reject rate (FRR), which is the proba-
bility of rejecting H0 when in fact the user is genuine, and the
false accept rate (FAR), which is the probability of accepting
H0 when in fact the user is an impostor. The genuine accept
rate (GAR), given by 1 − FRR, is the probability that the user
is accepted given that he or she is genuine. Both the FRR (and
hence GAR) and the FAR are functions of the threshold value λ

[see Fig. 4(a)]. The receiver operating curve (ROC) is a graph
that expresses the relationship between the FAR versus GAR
when λ varies, that is,

ROC(λ) = (FAR(λ),GAR(λ)), (2)

and is commonly used to report the performance of a biometric
authentication system [Figs. 4(a) and 4(b)]. Note that the ROC
curve is a nondecreasing function of FAR with ROC = 0 when
FAR = 0 and ROC = 1 when FAR = 1. Two biometric systems

Figure 2. Fingerprint, voice, and face biometric-based recognition
in high-end mobile phones.
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Figure 3. Schematic diagram showing the processing tasks in-
volved in the enrollment, verification, and identification modes of a
fingerprint-based authentication system.

can be compared in terms of their ROC curves; system 1 is said
to be better than system 2 in the FAR range [p0,p1] if their
ROCs satisfy

ROC1(p) ≥ ROC2(p) (3)

for all p ∈ [p0,p1] with strict inequality for at least one such p.
Another popular performance measure is the equal error rate
(EER), defined as the common value of FAR(λ∗) and FRR(λ∗)
for the threshold λ∗ that makes FAR(λ∗) equal to FRR(λ∗).

Although it can be argued that fingerprints represent one of
the best biometric traits, the performance of fingerprint-based
authentication systems in many cases does not meet the desired
levels of accuracy. For example, in the fingerprint verification

competition FVC 2002, the best-performing algorithm had an
EER of .1% (Maio, Maltoni, Cappelli, Wayman, and Jain 2002),
whereas 2 years later in FVC 2004 (Maio et al. 2004), the best-
performing algorithm had an EER of 2%. The drop in perfor-
mance rate was caused by the fact that the fingerprint database
used in FVC 2004 was more challenging than that used in FVC
2002. The drop in performance also reflects real operating en-
vironments, which are affected by large intraclass and small in-
terclass variability, resulting in far from perfect performance of
these systems. Large intraclass variability refers to the situation
in which fingerprints from the same individual look very differ-
ent from one another. For example, the variability in placement
of a finger on the sensing surface gives rise to finger impres-
sions that are rigid transformations (i.e., rotation and transla-
tion) of one another in the two-dimensional plane and causes
a large intraclass variability. Other factors include uneven skin
elasticity and finger pressure that give rise to nonlinear distor-
tions in the sensed image (Fig. 5). Extraneous factors such as
sensor noise, sensing environments, and the condition of the
finger itself (e.g., cuts on a finger) constitute sources of vari-
ability that effect the quality of the acquired impressions. It is
well known that the fingerprint features lose their ability to dis-
criminate when the underling quality of the image is poor. Con-
sequently, these noise sources also have the effect of increasing
the intraclass variability among multiple acquisitions of finger-
prints for the same individual. Small interclass variability refers
to the case when fingerprints from different individuals look
very similar to one another; Figure 6 provides an example.

It is important to note that these noisy input images cause
fingerprint-based authentication systems to make mistakes,
which can have serious consequences for the general public.
In the case of Brandon Mayfield (Federal Bureau of Investi-
gation 2004; Thompson and Cole 2005), a wrong fingerprint
match based on a latent lifted from the Madrid train bombing
scene resulted in his wrongful imprisonment for 19 days. Inci-
dents such as this emphasize the need for research for further
improving the performance of these authentication systems.

(a) (b)

Figure 4. Obtaining the ROC curve by varying the threshold λ on the match scores (Dass, Zhu, and Jain 2006a). (a) The FRR and FAR
corresponding to a threshold λ1. λ2 is another threshold different than λ1. (b) The ROC curve obtained when λ varies. The values of (FAR,GAR)

on the ROC curve corresponding to the thresholds λ1 and λ2 are shown.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Eight different impressions of the same finger showing the intraclass variability due to finger placement and nonlinear distortions
caused by skin elasticity. Source: FVC 2002 DB1 database.

As illustrated in Figure 3, a fingerprint-based authentication
system goes through several intermediate processing tasks be-
fore deciding the outcome of the matching algorithm. The out-
come of each intermediate task and the final decision are af-
fected by one or more sources of noise mentioned above. In this
article we give an overview of four major tasks of fingerprint-
based authentication systems—feature extraction, indexing, in-
dividuality, and fusion—and discuss methods that have been
developed to perform these tasks effectively. We point out the
current challenges in these four areas and discuss work that has
been done to further enhance the performance of fingerprint-
based recognition systems.

2. FINGERPRINT FEATURE EXTRACTION

Two fingerprint images from the NIST Special Database 4
(http://www.nist.gov/srd/nistsd4.htm) are shown in Figure 7.
These images are of size 512 × 512 (pixels2), with gray inten-
sities at each pixel ranging from 0 (darkest) to 255 (lightest).
Note that alternating dark and light flow lines traverse the en-
tire fingerprint area, termed ridges and valleys. Occasionally,
the ridges and valleys either form patterns of very high curva-
ture or meet at a point from three different directions. These
points are termed singularities. Figure 7 shows all of the im-
portant characteristics, or fingerprint features, typically present

(a) (b)

Figure 6. Illustrating small interclass variability: Two fingerprint
impressions with similar characteristics from two different fingers.

in a fingerprint image. These features can be categorized into
two main groups, global and local. The global features in a fin-
gerprint image consist of the information on ridge flow and the
location and type of singularities. A singularity of type “core” is
localized at the innermost point with the highest curvature of a
sequence of alternating ridges and valleys, whereas the “delta”
is localized at the confluence of three different ridge flow direc-
tions. Local or fine fingerprint features arise due to anomalies
in the ridge flow. The most common type of anomaly, termed
minutiae, consists of breaks (endings) and bifurcations in the
ridges. Thus information from a minutiae consists of its spatial
location (where the break or bifurcation occurs), type (either
bifurcation or ending), and direction (i.e., the direction of ridge
flow at that minutiae location). Most fingerprint-based authen-
tication systems use information extracted from minutiae bifur-
cation and endings, as well as the ridge flow and singularities,
to assess the degree of similarity between two fingerprints.

Information on the ridge flow is obtained through the direc-
tional field, that is, the set consisting of the direction of flow
of the ridges at each pixel (or a block of pixels) in the finger-
print image. Thus the ridge flow direction at every pixel con-
sists of an angle θ indicating the direction of flow with respect
to the x-axis. Because opposite ridge flow directions are equiv-
alent, θ is determined uniquely only in [0,π]. Obtaining fast
and reliable estimates of the directional field has been the fo-
cus of many previous research efforts; these include methods
based on neural networks (Wilson, Candela, and Watson 1994),
filter-based approaches (O’Gorman and Nickerson 1987), and
gradient-based approaches (Rao 1990; Hong, Wan, and Jain
1998; Jain, Hong, Pankanti, and Bolle 1997; Ratha, Chen, and
Jain 1995; Bazen and Gerez 2002). Extraction of the directional
field is prone to various noise factors. For example, cuts and
bruises on the fingertip can create disruptions in the ridge flow,
whereas low moisture content of the fingertip causes random
ridge breaks that distort the extraction process. The detection
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(a) (b)

Figure 7. Two examples of fingerprint images showing the salient features used for authentication.

of singularities also has been addressed in many previous stud-
ies. Finding regions of high curvature and subsequently clas-
sifying a feature vector into core, delta, or a reject class was
the approach taken by Nakamura, Goto, and Minami (1982)
and Srinivasan and Murthy (1992). Rao and Jain (1992) used
a geometric theory of differential equations to derive signal-to-
symbol representations in the flow field domain for cores and
deltas. Perona (1998) used the local energy of the directional
field in a neighborhood of a block of pixels was used to measure
how closely it resembles a flow field around singularities. Jain,
Prabhakar, Hong, and Pankanti (2000) used a ratio of sines of
directional fields in two adjacent regions to detect singularities,
whereas Bazen and Gerez (2002) used a scheme for detecting
singularities based on the Poincare index. Dass (2004) obtained
a more robust directional field and singularity extraction algo-
rithm by eliciting statistical models that account for the natural
smoothness of spatial ridge flows. We describe this approach in
greater detail later.

For the gray intensity image I(x, y) over a rectangular do-
main, we wish to recover its directional field. The fundamen-
tal image attributes for this purpose are the sitewise image

intensity gradients denoted by μs = ( ∂I
∂x ,

∂I
∂y )

T
for each site

s = (x, y). Also let νs denote the normalized version of μs, so
that ‖νs‖ = 1. It is common in the image processing literature
to analyze blocks of sites, instead of individual sites, to remove
noise and achieve faster processing speed. For a block B with
image intensity gradients μs, s ∈ B, our objective is to recover
the principal gradient direction of block B, denoted by the unit
vector lB, which represents the dominant direction of the μs,
s ∈ B. Once lB is obtained, the directional field for block B,
DFB, is taken to be the unit vector orthogonal to lB, namely

DFB = l⊥B . (4)

The main challenge here is that gradients μs with opposite
signs should reinforce, not cancel out each other (see, e.g.,
Fig. 8). This criteria is satisfied if the distribution of νs given lB
(thus the likelihood of lB) has the form

�B(lB | νs, s ∈ B) =
∏

s∈B

C(τs) · exp{τsd(νs, ls)}, (5)

where

d(ν, l) = (νT l)2 (6)

measures the degree of similarity between ν and l, τs denotes
the precision, and C(τs) is the normalizing constant (indepen-
dent of lB). For the collection of all blocks, B, the likelihood of
lB,B ∈ B is obtained through independence as

�(lB,B ∈ B) =
∏

B∈B

(
�B(lB | νs, s ∈ B)

)wB

=
∏

B∈B

∏

s∈B

(C(τs))
wB · exp{wBτsd(νs, ls)}, (7)

where wB is the weight given to block B. Dass (2004) dis-
cussed the choices of (a) τs = ‖μs‖2 within each block B and
(b) wB = coherence of block B as a measure of influence of
block B in B. The implication of (a) is that gradients with larger
magnitudes are more influential in the recovery of lB in block B,
whereas (b) gives more weight to blocks with larger coherence
(i.e., when all of the μs’s point in the same direction, up to the ±
sign, as opposed to being randomly distributed). Based on (7),
the maximum likelihood estimate of lB, l̂B, can be shown to be
the unit eigenvector corresponding to the maximum eigenvalue
of

AB =
∑

s∈B

τsνsν
T
s . (8)

Figure 8. An example of a fingerprint image block with gradient
directions and magnitudes indicated by arrowheads and lengths.
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Subsequently, the directional field estimate, D̂Fs = l̂⊥B , is pre-
cisely the well-known Rao estimate of the directional field re-
ported in the literature (see, e.g., Bazen and Gerez 2002; Rao
1990). Note that the weights wB do not influence this estimate
of the directional field, because we are assuming that the blocks
are independent of one another. However, the weights wB, will
be influential when we incorporate spatial dependence between
neighboring blocks. We will pursue this later.

One drawback of Rao’s estimator is that it is highly suscepti-
ble to noise factors, thus requiring several postprocessing stages
to satisfactorily smooth out the errors. To alleviate the problem
with Rao’s estimator, Dass (2004) incorporated spatial smooth-
ness of the principal gradient directions in neighboring blocks
to achieve a more robust estimator of the directional field. More
specifically, a Markovian prior of the form

π(lB,B ∈ B) = C(α) · exp

{
λ

∑

B∼B′
wBB′dα(lB, lB′)

}
(9)

is assumed on the collection {lB,B ∈ B}, where dα(l,m) =
|lTm|α for a positive constant α, the notation

∑
B∼B′ repre-

sents the sum over all blocks B and B′ that are neighbors of one
another in a neighborhood structure specified by Dass (2004),
wBB′ are nonnegative weights measuring the influence of the
block pair (B,B′) in the overall summation, and λ measures
the degree of spatial smoothness, with large (small) values of
λ indicating that neighboring lB values are similar (dissimilar).
Subsequently, the posterior distribution of lB, B ∈ B, is given by
the density

π(lB,B ∈ B | data)

∝ exp

{∑

B∈B
wB(lTBABlB) + λ

∑

B∼B′
wBB′dα(lB, lB′)

}
. (10)

The maximum a posteriori (MAP) estimate of lB,B ∈ B, is
obtained by maximizing the posterior (10) with respect to lB,
B ∈ B. Details of the iterative procedure developed to find the
MAP estimate were reported by Dass (2004), along with an in-
vestigation into the properties of the extracted field for different
choices of α, block size, and smoothing parameter λ. Once the
MAP estimate lB,MAP is found, the estimate of the directional
field is taken to be

DFB,MAP = l⊥B,MAP. (11)

The singularity detection algorithm of Dass (2004) uses ref-
erence parametric templates for the core (C) and delta (D) and
checks to see whether the extracted directional field around a
point is close to one of the templates. For a window of size
w × w centered at (0,0), the parametric templates are obtained
using

DF(x,y)(C) =
(

cos(θ1/2)

sin(θ1/2)

)
and

(12)

DF(x,y)(D) =
(

cos(θ2/2)

sin(θ2/2)

)
,

where (r1, θ1) and (r2, θ2) are the polar representations of
(y,−x) and (−y,−x). Figure 9 shows the reference parametric
templates for the core and delta for a window of size 17 × 17.
Now consider a singular point of type S = {C,D} centered at
u0 = (x0, y0) and rotated ξ degrees with respect to the horizon-
tal axis. In this case the parametric directional field vector is
given by

DFu(S, ξ) ≡
(

cos(ξ) − sin(ξ)

sin(ξ) cos(ξ)

)
· DFu∗(S) (13)

for each u = (x, y), where u∗ = (x∗, y∗) with x∗ = (x −
x0) cos(ξ) + (y − y0) sin(ξ) and y∗ = −(x − x0) sin(ξ) + (y −

(a) (b)

Figure 9. The directional field around singularities based on reference templates for core (a) and delta (b) (Dass 2004). The location of the
singularity is indicated by a black dot in the center of each image.
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y0) cos(ξ), and DFu∗(S) is as given in (12). To assess the close-
ness of the extracted directional field, DFu,MAP [see (11)], to
that of DFu(S, ξ) in a w × w window Wu0 centered at u0, the
function

f (S, ξ ;u0) = 1

w2

∑

u∈Wu0

d
(
DFu,MAP,DFu(S, ξ)

)
(14)

is evaluated with d defined as in (6). Large values of f indi-
cate that the extracted field DFu,MAP around u0 matches that
of DFu(S, ξ) and suggests the presence of a singularity at u0.
However, the rotation angle ξ is not known in practice and must
be estimated. The estimate of ξ is taken to be ξ̂ , which maxi-
mizes f (S, ξ ;u0) for each S-template model, that is,

ξ̂ = arg max
ξ

f (S, ξ ;u0) (15)

with

f̂ (S;u0) = f (S, ξ̂ ;u0). (16)

The details pertaining to the estimation of ξ have been given by
Dass (2004). The value of f̂ (S;u0) represents the best value of
similarity of the extracted directional field, with the directional
field specified by the S-template model rotated at angle ξ̂ with
respect to the horizontal axis. The function f̂ (S;u0) is evaluated
for all blocks of sites u0 in a fingerprint image. The maximum
of f̂ (C;u0) and f̂ (D;u0) is then determined and compared with
a prespecified threshold T0, where 0 < T0 < 1. A singularity is
said to be present at u0 if this maximum is greater than T0, with
singularity type and orientation taken to be those correspond-
ing to the maximum. If the maximum is less than T0, then no
singularity is detected at u0.

One advantage of the template-based singularity extraction
algorithm is that fewer numbers of spurious singularities are de-
tected compared with previous methods. Dass (2004) combined
the algorithm to extract the smooth directional field (10) with
singularity detection [see (14)–(16)] to obtain an algorithm that
extracts both features simultaneously. Another advantage of the
dynamic updating of features is that the directional field can be
molded based on current singularity information to detect other
singularities in the fingerprint impression. Two examples are
presented in Figure 10; note that noisy regions do not adversely
effect the extracted field with the addition of smoothness con-
straints on neighboring directional field values.

(a) (b) (c)

Figure 11. Fingerprint quality (Chen, Dass, and Jain 2005a):
(a) good quality, (b) medium quality, (c) poor quality. White boxes and
the associated lines indicate locations and directions of detected minu-
tiae. Poor-quality impressions yield higher rates of spurious detection
as well as higher rates of missed true minutiae.

Robust detection of ridge ending and bifurcation-type minu-
tiae in a fingerprint is crucial, because most fingerprint-match-
ing algorithms use these two types of minutiae for authenti-
cation. Current methods for minutiae detection use some kind
of ridge enhancement followed by thinning (i.e., reducing the
ridge width to one pixel wide) and detection (Ratha et al. 1995).
Nonlinear distortions of the finger caused by uneven fingertip
pressure and nonuniform skin elasticity result in spurious minu-
tiae points being detected as well as true minutiae points being
missed. Nonlinear distortions also have the effect of changing
the type of a minutiae from a bifurcation to an ending or vice
versa. Although current authentication systems do some de-
gree of postprocessing of the extracted features, the problems
with spurious minutiae, missed true minutiae, and incorrect ex-
traction of minutiae type still exist. With poor-quality images,
these problems are further aggravated (Fig. 11). One approach
to overcoming the problems associated with incorrect feature
extraction is to report confidence measures associated with the
extracted minutiae. Current algorithms do not report these val-
ues, thus making the contribution of a falsely detected feature
in the authentication stage equal to that of a true feature. In ad-
dition, errors incurred in the feature-extraction stage propagate
to the subsequent matching stage, and thus significantly affect
the overall performance of an authentication system.

3. FINGERPRINT CLASSIFICATION AND INDEXING

As mentioned earlier, identification of an individual is a more
challenging problem than verification, because no claimed

(a) (b) (c) (d)

Figure 10. Simultaneous directional field and singularity extraction (Dass 2004): (a) and (b) the original images; (c) and (d) the extracted
global features for (a) and (b). Note that the extracted directional field is not affected by the noisy region close to the delta in (b) and (d) due to
the imposed smoothness.
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(a) (b) (c) (d) (e)

Figure 12. Five major classes of fingerprints in the Henry system of classification: (a) left loop, (b) right loop, (c) arch, (d) tented arch, and
(e) whorl. The images are from the NIST database.

identity is provided. Thus the system must perform an exhaus-
tive search on databases to come up with a list of candidate
identities (called the top M matches). In large-scale government
and forensic applications, these databases consist of millions of
fingerprints; for example, the FBI database comprises approx-
imately 50 million subjects and 500 million fingerprint images
(10 fingers/subject).

Indexing of a fingerprint database refers to the partitioning
of the database by means of assigning a label to each finger-
print and grouping fingerprints with identical labels to form a
class. Effective indexing procedures reduce search time (and the
resulting matching accuracy) during the identification process,
because only an appropriate subset of the entire database is
searched. There are two main types of indexing approaches:
(a) discrete classification, where fingerprints are partitioned
into predefined classes according to their macro features, and
(b) continuous classification, where each fingerprint is repre-
sented by a similarity metric that measures its proximity to
some preselected class prototype. The Henry system (Henry
1900) is a well-known example of discrete classification used
in many forensic applications. Whereas the Henry classification
system has many classes (∼17), almost 99% of the fingerprints
belong to five major types: right loop, left loop, whorl, arch,
and tented arch. Figure 12 presents typical fingerprint images
in the five major classes of the Henry system. The four-class
Henry system is derived from the five classes by combining the
arch and tented arch fingerprints into a single class, because
these two classes are rather difficult to discriminate. There is a
significant body of work on automatic classification of finger-
prints into the Henry system (see, e.g., Cappelli, Lumini, Maio,
and Maltoni 1999; Chang and Fan 2002; Chong, Ngee, Jun,
and Gay 1997; Karu and Jain 1996). These approaches can be
grouped into five main categories: (a) approaches based on sin-
gular points (Karu and Jain 1996), (b) structure-based (Cap-
pelli et al. 1999; Chang and Fan 2002; Chong et al. 1997),
(c) frequency-based (Jain et al. 2000), (d) syntactic or grammar-
based (Moayer and Fu 1975, 1976a,b), and (e) approaches
based on mathematical models (Dass and Jain 2004). Hybrid
methods combine at least two approaches in (a)–(e) to arrive at
a fingerprint classification algorithm (see, e.g., Chang and Fan
2002; Chong et al. 1997; Dass and Jain 2004). Table 2 com-
pares the classification accuracies obtained by several finger-
print classification methods reported in the literature.

Classifying fingerprints into the Henry system is extremely
difficult; the best reported accuracy is only 94.8% (at 5.1% re-
ject rate) for the five-class problem (see Chang and Fan 2002).

The difficulty in classifying fingerprints into the Henry system
is inherent in the class definitions themselves; sometimes, even
human experts assign more than one class label to the same fin-
gerprint because of the ambiguity among the classes (Fig. 13).
Another drawback of the Henry system is that fingerprints are
unevenly distributed among the five classes: 31.7% for right
loop, 33.8% for left loop, 27.9% for whorl, 3.7% for arch, and
2.9% for tented arch. This makes them very inefficient for in-
dexing, because most searches will be conducted in the first
three classes.

In a continuous fingerprint classification scheme, there are
no fixed classes as in the discrete case. The main idea of a
continuous classification scheme is to compute the similarity
of an input image to a set of prototypes. Then a search is per-
formed on those fingerprints that have similarity values (as de-
termined by a threshold) close to the computed values. This
procedure significantly reduces the number of fingerprints that
must be searched, because only the subset of the fingerprints
with similarity measures close to the computed values is con-
sidered. There are several advantages of continuous classifica-
tion over discrete schemes. First, the reduction in search time
is significant, because only a subset of relevant fingerprints is
searched (i.e., images with similarity values close to the input
fingerprint). Second, the continuous classification scheme over-
comes the difficulties associated with the ambiguity between

Table 2. A comparison of classification accuracies (in %) of several
fingerprint classification methods in the literature

(Dass and Jain 2004)

No. of Four-class Five-class Reject
Method fingerprints problem problem rate

Cappelli et al. 1,204 87.1a 0
Chang and Fan 2,000 94.8 5.1
Chong et al. 89 96.6b 0
Hong and Jain 4,000 92.3 87.5 0
Jain et al. 4,000 94.8 90.0 0
Karu and Jain 4,000 91.4 85.4 0
Wilson et al. 4,000 94.0c 10.0
Dass and Jain 4,000 94.4 0

NOTE: Reject rates are given in percentages.
aUsing the natural distribution (based on the following percentages for the five classes:

31.7% for right loop, 33.8% for left loop, 27.9% for whorl, 3.7% for arch, and 2.9% for
tented arch) of fingerprints.

bBased on the five classes: double loop, whorl, left loop, right loop, and arch.
cUsing the natural distribution of fingerprints; equal distribution of each class yields

accuracies of 84–88%.
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(a) (b)

Figure 13. Ambiguous assignment of class in the Henry system.
(a) Either right-loop or tented arch. (b) Either left-loop or tented arch.
Source: NIST database.

classes in the Henry system. A number of continuous classifi-
cation schemes have been developed. Cappelli et al. (1999) de-
veloped a continuous classification scheme based on partition-
ing the directional field into several homogeneous regions with
respect to the image ridge flow. However, the class prototypes
that they chose relate strongly to the basic classes of the Henry
system. Other indexing approaches not based on ridge flows
were reported by Bhanu and Tan (2003) and Germain, Califano,
and Colville (1997). In these approaches, minutiae triplets were
generated for an input image, and the features extracted based
on the triplets were used for indexing. The performance of an
indexing scheme is measured in term of the retrieval accuracy—
the probability that the top M matches include the person who
provided the input. Bhanu and Tan (2003) achieved an overall
retrieval accuracy of 86.5% was achieved for the top (M = 1)
match. An important point to remember is that retrieval accura-
cies degrade drastically as a function of image quality, because
extraction of features as well as the computation of the similar-
ity measures are affected by noise.

4. THE INDIVIDUALITY OF FINGERPRINTS

Expert testimony based on forensic evidence (e.g., handwrit-
ing, fingerprint, hair, bite marks) is delivered in a courtroom by
comparing salient features of a latent print lifted from a crime
scene with those taken from the defendant. A reasonably high
degree of matching between the salient features lead the experts
to testify irrefutably that the owner of the latent print and the
defendant are one and the same person. For decades, testimony
provided by forensic individualization experts was almost never
excluded from these cases, and the foundations and basis of this
testimony were rarely questioned on cross-examination. Cen-
tral to establishing an identity based on forensic evidence is the
assumption of discernible uniqueness; salient features of dif-
ferent individuals are observably different, and thus when two
prints share many common features, the experts conclude that
the owner of the two different prints is one and the same person.
The assumption of discernible uniqueness (Saks and Koehler
2005), although lacking sound theoretical and empirical foun-
dations, allows forensic experts to offer unquestionable proof of
the defendant’s guilt, and, to make matters worse, these experts
are never questioned on the uncertainty associated with their
testimonials (i.e., how frequently would an observable match

between a pair of prints lead to errors in the identification of
individuals). Thus discernible uniqueness precludes the oppor-
tunity to establish error rates that would be known from collect-
ing population samples, analyzing the inherent feature variabil-
ity, and reporting the corresponding probability of two different
persons sharing a set of common features.

A significant break from this trend occurred in the case of
Daubert vs. Merrell Dow Pharmaceuticals (1993), where the
U.S. Supreme Court ruled that for expert forensic testimony
to be allowed in a court case, it had to be subject to three
main criteria of scientific validation: whether the particular tool
or methodology in question (a) has been tested, (b) has been
subject to peer review, and (c) has known error rates. Fol-
lowing Daubert, fingerprint identification was first challenged
in the case of U.S. v. Byron Mitchell (1999) under the fun-
damental premise that the uniqueness of fingerprints had not
been objectively tested and thus matching error rates were un-
known. Based on the outcome of U.S. v. Byron Mitchell (1999),
fingerprint-based identification has been challenged in more
than 20 court cases in the United States (e.g., U.S. v. Llera Plaza
2002a,b; U.S. v. Crisp 2003); Cole (2006) has given additional
court cases. As recently as December 2005, the Massachusetts
Supreme Judicial Court barred key fingerprint evidence ob-
tained from several latent prints in the case of Terry L. Patterson
(Saltzman 2005a,b).

The aforementioned court rulings demonstrate both the
awareness and the need to develop measures that reflect the
confidence in a match when fingerprint evidence is presented.
Fingerprint individuality deals with the problem of quantifying
the extent of uniqueness of a fingerprint. How similar should
two fingerprints be before we can conclude with high confi-
dence that they are from the same finger? What are the measures
of fingerprint individuality that reflect the extent of uncertainty
in the observed match?

The main challenge in studying fingerprint individuality is to
develop models that adequately describe the variability of fin-
gerprint features in a target population. These models can, in
turn, be used to derive the probability of a random match be-
tween two different fingerprints picked arbitrarily from the tar-
get population. Eliciting candidate models for representing the
variability of fingerprint features is not an easy task due to the
complex nature of this variability. Candidate models should sat-
isfy two important requirements: they are flexible (i.e., they can
represent a wide range of distributional characteristics of fin-
gerprint features in the population) and associated confidence
measures can be easily obtained from them.

Some studies (although not many compared with other topics
in fingerprints) have been reported on fingerprint individuality.
Pankanti, Prabhakar, and Jain (2002) assumed a uniform distri-
bution as the model on minutiae locations and directions; Fig-
ure 14 illustrates how the location and direction of a minutiae
are determined. The uniform distribution was used to derive the
probability of a random correspondence (PRC) between a pair
of fingerprints. The PRC measures the likelihood of observing
a certain degree of match or similarity between a pair of arbi-
trary fingerprints. More specifically, if Q and T denote a pair of
fingerprints with m and n minutiae, then the PRC is given by

PRC(w) = P(Exactly w minutiae matches | m,n), (17)
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(a) (b) (c)

Figure 14. Minutiae features consisting of the location, s, and direction, θ , for a typical fingerprint image (b). (a) s and θ for a ridge bifurcation
and ending. (c) Two subregions of (b) in which orientations that are spatially close tend to be very similar. The minutiae location is indicated by
a square, and the direction is indicated by a line emanating from the square.

where the probability in (17) is computed assuming that the m
(resp. n) minutiae in Q (resp. T) are distributed uniformly and
independently of one another.

The uniform model on fingerprint minutiae has several draw-
backs. It is well known that fingerprint minutiae form clusters
(see, e.g., Stoney and Thornton 1986). Further, minutiae loca-
tions in different regions of the fingerprint domain are observed
to be associated with different region-specific minutiae direc-
tions. Also, minutiae that are spatially close tend to have similar
direction values to each other. Figure 14 illustrates these facts.
Empirical observations such as these need to be taken into ac-
count when eliciting reliable statistical models on fingerprint
features. For the reasons mentioned earlier, Pankanti’s model
underestimates the true probability of a fingerprint match. To
alleviate the problem with the uniform distribution, a family of
finite mixture models was developed by Dass et al. (2006b) to
represent minutiae clusters. The mixture model on minutiae lo-
cation, s, and direction, θ , has the form

f (s, θ |�G) =
G∑

g=1

τgf L
g (s|μg,�g) · f D

g (θ |νg, κg,pg), (18)

where G is the total number of components; for the gth com-
ponent, f L

g (s | μg,�g) is the distribution of minutiae locations,
with μg and �g representing the measures of center and disper-
sion, for f L

g . The density f D
g (θ |νg, κg,pg) represents the distri-

bution of minutiae directions with center νg, precision κg, and
mixing probabilities pg. Whereas any density function on R2 is
a potential model for f L

g , eliciting a candidate for f D
g requires

more thought. Minutiae directions tend to have either similar
or opposite directions to the local ridge orientation flow (see
Fig. 14), and we require that our model satisfy this condition.
One possible choice for f D

g is

f D
g (θ |νg, κg,pg)

= pgf O
g (θ | νg, κg) + (1 − pg)f

O
g (θ − π | νg, κg), (19)

where f O
g is the density for the ridge flow orientation for the gth

cluster. The density f D
g in (19) can be interpreted as follows: For

the ridge flow ω distributed as f O
g , minutiae directions that are

either ω or ω + π have probabilities pg and 1 − pg. (Dass et al.
(2006b) took the density f L

g to be a bivariate Gaussian density

with mean μg and covariance matrix �g and took f O
g to be the

Von Mises density (see Mardia 1972),

f O
g (θ | νg, κg) = 2

I0(κg)
exp{κg cos 2(θ − νg)}, (20)

with I0(κg) defined as

I0(κg) =
∫ 2π

0
exp{κg cos(θ − νg)}dθ. (21)

In (20), νg and κg represent the mean angle and the precision
(inverse of the variance) of the Von Mises distribution.

Parameter estimation is carried out using the EM algorithm
for mixtures (Dempster, Laird, and Rubin 1977); for fixed G,
the missing component for the jth minutiae location and di-
rection pair (Xj,Dj) is its class label, cj ∈ {1,2, . . . ,G}, for
j = 1,2, . . . ,N. The transformation

ωj =
{

Dj if Dj ∈ [0,π)

Dj − π if Dj ∈ [π,2π)
(22)

converts the minutiae directions into orientations that take val-
ues in [0,π). The corresponding distribution for each (Xj,ωj)

then becomes

G∑

g=1

τgf L
g (Xj | μg,�g) · f O

g (ωj | νg, κg), (23)

where f O
g (ωj | νg, κg) is as given in (20). Note that the expres-

sion in (23) is now in the standard form for mixture models (see,
e.g., McLachlan and Krishnan 1997, sec. 2.7) and can be solved
using general formulas for the E and M steps. To find the opti-
mal number of clusters, G∗, we first estimate the model parame-
ters for different values of G using the EM algorithm described
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earlier, and then select G∗ using the Bayes information criterion
(BIC). The approach outlined here extends the methodology of
Fraley and Raftery (2002) by including angular variables in the
mixture modeling. The BIC is defined as

BIC(G) = 2 ∗
N∑

j=1

log f (Xj,Dj | �G) − |�G| log(N), (24)

where �G = {(μg,�g, νg, κg,pg, τg),g = 1,2, . . . ,G} denotes
the set of all unknown parameters and |�G| is the cardinality
of �G. The value of G∗ is selected as the value of G that maxi-
mizes BIC(G).

Along with the mixture models developed to represent (a) the
minutiae variability in different fingers, Dass et al. (2006b) also
developed stochastic models for two other sources of minu-
tiae variability, namely (b) the variability due to local pertur-
bations arising from nonlinear distortion effects in multiple im-
pressions of a finger and (c) the variability due to the size of
partial prints (or the area of finger region captured) in mul-
tiple acquisitions of a finger. For a fingerprint database with
F fingers, the compound stochastic model is fit to each fin-
ger f , f = 1,2, . . . ,F. For each finger f , the stochastic mod-
els are then used to generate H synthetic sets of query (resp.
template) minutiae with m (resp. n) minutiae. We denote the
simulated query (resp. template) minutiae sets by FQ(f ,h),
h = 1,2, . . . ,H [resp. FT(f ,h), h = 1,2, . . . ,H]. The matcher,
M, of Ross, Dass, and Jain (2005) is used to determine the num-
ber of minutiae matches for each impostor pair of query and
template minutiae sets [i.e., between FQ(f ,h) and FT(f ′,h′),
where f �= f ′ and h,h′ = 1,2, . . . ,H]. The value of the PRC
in (17) is estimated using

p(w) =
∑H

h=1
∑H

h′=1
∑F

f=1
∑F

f ′=1,f ′ �=f
Iw{(f ,h), (f ′,h′)}

F(F − 1)H2

(25)

for integers w ≤ w0, where Iw{(f ,h), (f ′,h′)} is 1 if M(FQ(f ,
h),FT(f ′,h′)) equals w and 0 otherwise. For values of w > w0,
an extrapolation scheme based on p(w) for w ≤ w0 is devel-
oped; Dass et al. (2006b) have provided further details on these
estimation and extrapolation procedures.

The PRC corresponding to the FBI’s “12-point match” cri-
teria (i.e., declare that the two prints come from one and the
same person if the number of minutiae matches is 12 or more)
can be obtained by summing (17) over w values greater than
or equal to 12. Table 3 gives the fingerprint individuality esti-
mates derived from the mixture as well as Pankanti’s models for
the “12-point match criteria” based on FVC 2002 DB1 database
(see Dass et al. 2006b for more details). Note that the estimates
based on the mixture models are orders of magnitude higher

Table 3. A comparison between fingerprint individuality estimates
(Dass et al. 2006b)

(mQ,mT ,w) Mixture model Pankanti’s model

(26,26,12) 6.8 × 10−10 2.4 × 10−15

(36,36,12) 6.5 × 10−7 1.0 × 10−10

(46,46,12) 2.0 × 10−5 3.9 × 10−8

compared with those of Pankanti et al. (2002) due to common
clustering tendencies of minutiae in different fingerprints.

Basic questions related to fingerprint individuality remain
unanswered. For example, we have assumed that all of the de-
tected minutiae in a fingerprint are true. Of course, this is not
a valid assumption for medium- to poor-quality images. One
topic of investigation would be to see how the PRCs deteriorate
as a function of the quality of the underlying input image. More
specifically, given an input with a certain image quality, what
is the best estimate of PRC (corresponding to the lowest uncer-
tainty in the observed match) that can be reported? Research in
these areas will enhance the scientific basis of presenting fin-
gerprint evidence in courts.

5. MULTIBIOMETRIC FUSION

The best performing fingerprint authentication algorithm
(among the 41 algorithms evaluated) in the FVC 2004 (Maio
et al. 2004) fingerprint verification competition had an EER
of 2%. In general, biometric systems based on fingerprint ev-
idence alone (unimodal systems) suffer from limitations such
as the lack of uniqueness, nonuniversality, and noisy data (Jain
and Ross 2004) resulting in suboptimal performance. In con-
trast, multimodal biometric systems combine information from
its component modalities (e.g., multiple fingers or fingerprint
and face) to arrive at a decision (Ross and Jain 2003). Several
studies (Bigun, Bigun, Duc, and Fischer 1997; Kittler, Hatef,
Duin, and Matas 1998; Lam and Suen 1995; Wang, Tan, and
Jain 2003) have demonstrated that by consolidating informa-
tion from multiple sources, better recognition performance can
be achieved compared with the unimodal systems. In a mul-
timodal biometric system, integration can be done at the fea-
ture level, matching-score level, or decision level. However, to
achieve the best results, devising methods for optimally com-
bining information from these multiple sources is necessary.

Compared with fusion at the feature and decision levels, con-
solidation of information at the matching-score level is the most
useful and feasible for biometric systems. Biometric feature
spaces are often high-dimensional and not compatible with each
other for combination [e.g., fingerprint minutiae and PCA for
face (Moon and Phillips 2001)], whereas decision-level fusion
has very limited information available for useful consolidation.
There are several challenges involved in fusing matching scores
as well. Scores from different matchers may not be compatible;
for example, the two face matchers in the NIST–BSSR1 data-
base generate scores in the intervals [−1,1] and [0,100]. Fur-
ther, the scores of different matchers can be either dissimilarity
or similarity measures, and they may follow different proba-
bility distributions. Another issue is that the accuracy of the
matchers may be quite different, and the matching scores may
be correlated.

A popular approach to fusion at the matching-score level is
based on score normalization (Ross and Jain 2003; Jain, Nan-
dakumar, and Ross 2005). In a score normalization scheme,
matching scores from the different sources are transformed to a
common domain by changing the location and scale parameters
of the individual score distributions. In a good normalization
scheme, the estimates of the location and scale parameters are
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required to be robust as well as efficient; robustness refers to the
property where the estimator of interest is not affected by out-
liers, whereas efficiency relates to the closeness of the estimator
to the true value (see, e.g., Huber 1981). Once robust and effi-
cient estimators are determined, score normalization then fuses
the (normalized) scores using various combination rules. Al-
though many score normalization techniques are available, the
challenge is to find a procedure that is both robust and efficient.
Typical transformations involved in score normalization are of
the form:

s′ = s − μ

σ
, (26)

where μ and σ are the location and scale parameters, and
s and s′ are the original and transformed scores. Different nor-
malization rules arise by making different choices for μ and σ ;
the min–max rule is derived by taking μ to be the minimum
score and σ to be the range, the z score results from taking μ

to be the mean and σ to be the standard deviation, and a robust
version of the z score is derived by taking μ to be the median
and σ to be the mean absolute deviation. The tan h estimators
based on work of Hample, Rousseeuw, Ronchetti, and Stahel
(1986) are robust and highly efficient. This normalization rule
is given by

s′ = 1

2

{
tan h

(
.01

(
s − μGH

σGH

))
+ 1

}
, (27)

where μGH and σGH are the mean and standard deviation es-
timators corresponding to the genuine score distribution given
by the Hampel estimators. The Hampel estimators are based
on an influence function that reduces the influence of points
at the tails of the matching score distributions (see Jain et al.
2005) for details. Other score normalization techniques use the
double-sigmoid function (see Cappelli, Maio, and Maltoni 2000
for details).

Subsequently, fusion of the normalized scores is based on
several different rules: simple and weighted sum of scores and
the maximum, minimum, and product rules (Kittler et al. 1998;
Jain et al. 2005). Snelick, Indovina, Yen, and Mink (2003) stud-
ied the different score normalization techniques and concluded
that the max–min rule followed by the sum fusion rule per-
formed the best based on the experimental results on their data-
base. Jain et al. (2005) conducted a more systematic study of
the different normalization techniques to ascertain their perfor-
mance based on a multimodal database comprising the finger-
print, face, and hand-geometry modalities. It was found that the
weighted sum rule performed the best among all combination
rules. An important component of the analysis presented by Jain
et al. (2005) is the use of a nonparametric technique for estimat-
ing the density of the matching score distributions. This has the
added advantage that it is not necessary to assume that each
matching score distribution has a Gaussian distribution.

The disadvantage of a score normalization scheme is that the
selection of optimal weights for the score combination is car-
ried out on a case-by-case basis. This can be very challenging.
Another approach that has been investigated is to fuse informa-
tion automatically at the matching-score level based on likeli-
hood functions (Dass, Nandakumar, and Jain 2005). One chal-
lenge with the likelihood function framework, as in score nor-
malization, is that it is not easy to specify complete parametric

distributions for matching scores. Matching-score distributions
tend to be highly non-Gaussian and to consist of discrete com-
ponents. The method of fusion outlined by Dass et al. (2005)
uses copula functions (Nelsen 1999; Cherubini, Luciano, and
Vecchiato 2004) and has several desirable properties. First,
no parametric form is assumed for distributions on matching
scores. Thus this approach is applicable in a variety of contexts.
Second, the correlation between different biometric matchers
is accounted for by the copula. Previous studies assumed that
different matchers are independent of each other (see Griffin
2004) and, consequently, could not be applied to highly corre-
lated data (e.g., matching scores from two different fingerprint
matchers applied on the same fingerprint database). Finally, the
copula approach automatically assigns optimal weights to dif-
ferent matchers during fusion and, thus bypasses the need to
determine fusion weights on a case-by-case basis.

Fusion using the algorithm outlined by Dass et al. (2005)
shows that the likelihood-based framework consistently achie-
ves high performance rates. Figure 15 presents results on two
multimodal databases, NIST–BSSR1 and West Virginia Univer-
sity (WVU). The NIST Biometric Scores Set–Release I (NIST–
BSSR1) is a multimodal database in which matching scores
were obtained using two fingerprints (on two index fingers) and
two face matchers for 517 users. The West Virginia Univer-
sity multimodal database (WVU–Multimodal) consists of 320
subjects with 5 samples each of fingerprint and iris modalities.
More details of the two databases have been given by Dass et al.
(2005). Table 4 provides summary information for the two data-
bases. Compared with the best single modality, the likelihood-
based fusion gives improvements in the genuine acceptance rate
(GAR) of 14.2% and 9.1% for the NIST and WVU databases at
the false acceptance rate (FAR) level of .1%.

6. RECENT ADVANCES IN COMMERCIAL SYSTEMS

Several advances in fingerprint recognition technology have
been made by commercial vendors. Until recently, the three
main methods for acquiring fingerprint impressions have been
the “ink technique” and acquisitions based on optical and solid-
state sensors (Maltoni et al. 2003). In the ink technique, the
subject’s finger is coated with black ink and rolled over a pa-
per card. The card is then scanned to produce a fingerprint im-
pression. The advent of optical “live scan” sensors gave rise
to digital fingerprint impressions. These sensors are based on
the total internal reflection (TIR) principle, measuring the re-
flectivity of light of the sensing surface when a fingertip is
placed on it. Solid-state sensors use silicon-based capacitive
sensors to convert information in the fingertip surface into elec-
trical signals. To date, several new sensing technologies have
emerged. The multispectral fingerprint imaging (MSI) tech-
nique has been introduced by Lumidigm Inc. (Rowe, Cor-
coran, Nixon, and Ostrom 2005). This device scans various
skin layers by using different wavelengths of light. Finger-
print images acquired using the MSI technology are signif-
icantly better quality for wet and dry fingers. Another new
fingerprint-sensing technology based on a multicamera system
has been introduced by TBS Inc. (Parziale and Diaz-Santana
2006). The “touchless” TBS sensor avoids contact of the fin-
gertip to any sensing surface, thereby reducing deformations
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(a) (b)

Figure 15. Improvement in authentication performance using the fusion rule based on Gaussian copula functions (Dass et al. 2005): The ROC
curves for the fusion and individual biometric systems based on the NIST–BSSR1 (a) and WVU (b) databases.

due to skin elasticity during the acquisition process. A touch-
less fingerprint sensing device is also available from Mitsubishi
(http://global.mitsubish.electric.com).

The resolution of a digital image, measured in terms of the
number of dots or pixels per inch (dpi or ppi), is an important
characteristic of the image. Images in the resolution range of
250–500 dpi are effective in recovering fingerprint minutiae and
ridge flow information, but ineffective for detecting finer fea-
tures. For this reason, higher-resolution sensors are currently
under development. Although solid-state sensors still cannot
achieve this high resolution due to the cost factor, several op-
tical sensors with resolution 1,000 dpi are commercially avail-
able. Optical sensors with resolution range of 4,000–7,000 dpi
are currently under development.

One advantage of such high-level resolution sensors is that
finer fingerprint features, consisting of sweat pores, ridge con-
tours, incipient ridges, and scars (see Jain, Chen, and Demirkus
2006, 2007) can be observed and extracted. These finer fea-
tures are grouped as level 3 features in a hierarchy, where
levels 1 and 2 consists of the ridge flow information and the
minutiae (Kryszczuk, Drygajlo, and Morier 2004; Roddy and
Stosz 1997; Jain et al. 2006, 2007). Several studies incorporat-
ing level 3 features have reported performance improvement in
recognition systems (see, e.g., Jain et al. 2006, 2007; Stosz and
Alyea 1994).

Current commercial systems also incorporate preventive
measures against spoof (liveliness) attacks. This is a security
threat where the fingerprint system can be tricked into accept-
ing an artificial input (called a gummy fingerprint). This kind
of attack was famously described by Matsumoto, who used a

Table 4. Summary of multibiometric databases

Database Biometric traits K No. of users

NIST-multimodal Fingerprint (two fingers) 4 517
Face (two different matchers)

WVU-multimodal Fingerprint, iris 2 320

NOTE: K denotes the number of matchers used for each database.

gelatin material (similar to that contained in candies) to spoof
a variety of sensors (Rowe et al. 2005). With the advent of new
sensor technology, research has been carried out on developing
methods for preventing spoof attacks based on the multispec-
tral sensors (Nixon and Rowe 2005). Another approach, based
on discriminating the extent of distortion present in real finger-
print acquisitions compared with false ones, was reported by
Antonelli, Cappelli, Maio, and Maltoni (2006) and Chen, Jain,
and Dass (2005b). Commercial vendors have also developed
methods for enhancing template security based on fingerprint
vaults and watermark encryption strategies (see, e.g., Uludag,
Pankanti, Prabhakar, and Jain 2004; Jain and Uludag 2003; and
references therein). Smart cards with in-built sensors, feature
extractor, matcher, and template storage chips from makers
such as Privaris Inc. have been proposed to curb credit card
theft and identity fraud (Jain and Pankanti 2006).

Other commercial advances have been aimed at develop-
ing quantitative measures for the quality of fingerprint images
(Chen et al. 2005a). One goal is to incorporate quality measures
in a fusion framework, because authentication is severely af-
fected by the quality of the underlying biometric. This is an im-
portant point to consider, because it has practical consequences.
In real environments, one cannot expect that all input biomet-
rics corresponding to an individual will be of the best quality. In
that case, a fusion framework in which low-quality images will
automatically be assigned lower weights will be of great inter-
est and importance. Developing methodology for validating the
performance of fingerprint systems claimed by system vendors
is also gaining interest. The challenge here is to derive tests and
confidence statements to either validate or reject claims on sys-
tem performance (Dass et al. 2006a). Other concerns of com-
mercial systems include ergonomics (user-friendliness of the
system), throughput (number of users recognized per unit of
time), and system cost.

7. SUMMARY AND CONCLUSION

We have attempted to give a brief overview of fingerprint-
based recognition and to describe current challenges faced in
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making these systems perform more effectively. Four impor-
tant aspects of fingerprint-based recognition as well as recent
advances in commercial systems have been discussed. Finger-
print recognition systems face many problems and challenges.
Despite these challenges, new applications (e.g., deployment of
fingerprint recognition systems in Disney theme parks, inside
mobile phones, flash drives, and memory sticks) continue to
appear, strongly suggesting that this type of authentication is
here to stay. Statistics can play a pivotal role in this area by
providing insight into the stochastic processes (signal as well
as noise) involved in the development of effective methodology
and algorithms for recognition.
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