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Validating a Biometric Authentication System:
Sample Size Requirements

Sarat Dass Yongfang Zhd, and Anil Jairi

Abstract— Authentication systems based on biometric
features (e.g., fingerprint impressions, iris scans, human

(FARQ.),GAR())

face images, etc.) are increasingly gaining widespread use ¢ npostrasintn

and popularity. Often, vendors and owners of these com- ™ [ .
. . . . . . B H 4

mercial biometric systems claim impressive performance = [ genyne distibution, 3"

that is estimated based on some proprietary data. In
such situations, there is a need to independently validate
the claimed performance levels. System performance is
typically evaluated by collecting biometric templates fromn e
different subjects, and for convenience, acquiring multiple
instances of the biometric for each of then subjects. Very (b)

little work has been done in (i) constructing confidence

regions based on the ROC curve for validating the claimed Fig. 1. Obtaining the ROC curve by varying the threshaldPanel
performance levels, and (i) determining the required num- (&) shows the FRR and FAR corresponding to a threshgld); is
ber of biometric samples needed to establish confidence M0ther threshold different from. Panel (b) shows the ROC curve
regions of pre-specified width for the ROC curve. To sim- 252;”?22;22%?“?3?‘ t;zeth\;zlsuhiswggn’g}} i‘é@hg\?mthe ROC
plify the analysis that address these two problems, several 2 '

previous studies have assumed that multiple acquisitions

of the biometric entity are statistically independent. This

assumption is too restrictive and is generally not valid. based on the query) and the templatel’ of the
We have developed a validation technique based on multi- claimed identity in the database; in Equation (Hj
variate copula models for correlated biometric acquisitions.  (respectively,H;) is the null (alternative) hypothesis that

Based on the same model, we also determine the minimum : . . . . .
number of samples required to achieve confidence bands the user is genuine (impostor). The testing in (1) is

of desired width for the ROC curve. We illustrate the Ccarried out by computing a similarity measuf§Q, T')
estimation of the confidence bands as well as the required Where large (respectively, small) values 8findicate
number of biometric samples using a fingerprint matching that 7" and @ are close to (far from) each other. A
system that is applied on samples collected from a small threshold, )\, is specified so that all similarity values
population. lower (respectively, greater) thanlead to the rejection
Index Terms— Biometric authentication, Error estima- (acceptance) ofHy. Thus, when a decision is made
tion, Gaussian copula models, bootstrap, ROC confidence \yhether to accept or rejedt, the testing procedure
bands. (1) is prone to two types of errors: the false reject rate
(FRR) is the probability of rejectingl, when in fact the
|. INTRODUCTION user is genuine, and the false accept rate (FAR) is the
robability of acceptingd, when in fact the user is an
i he claimed identity of based ?npostor. The genuine accept rate (GAR)lis- FRR,

I to validate the claimed Iidentity of a user based Qfiyich, is the probability that the user is accepted given
his/her physiological characteristics. In such a systeffat he/she is genuine. Both the FRR (and hence GAR)
operating in the verification mode, we are interestea%d the FAR are functions of the threshold valuésee
in accepting queries which are “close” or “similar” tOFigure 1 (a)). The Receiver Operating Curve (ROC) is

the template of the_ cl_air_ned identity, and rejecting thos(fgraph that expresses the relationship between the FAR
that are “far” or “dissimilar”. Suppose a user with trU& arsus GAR when\ varies. that is

identity I; supplies a biometric quer§) and a claimed
identity I.. We are interested in testing the hypothesis ROC(A) = (FAR(XN),GAR(N)), 2

(FARQ.),GAR(,)

Hy:I;=1. vs. Hy: I; # 1, (1) and is commonly used to report the performance of a

biometric authentication system (see Figures 1 (a) and
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accuracies when the underlying biometric templates arenfidence rectangle faROC()\;) (see (2)). Repeating
of very good quality. However, these accuracies may ntitis procedure for each = 1,2,...,7T and combining
reflect the true performance of the biometric system ihe confidence rectangles obtained gives rise to a con-
real field applications where uncontrolled factors sudidence region for ROC\). A major limitation of this

as noise and distortions can significantly degrade tlapproach is that the 90% confidence intervals for the
system’s performance. Thus, the problem we addressHARs and GARs will neither automatically guarantee
this paper is the validation of a claimed ROC curvea 90% confidence rectangle at eagh nor a 90%
ROC.()\), by a biometric vendor. Of course, reportingconfidence region for the ROC curve. In other words,
just ROG.(\) does not give the complete picture. Onensuring a confidence level ¢fo% for each of the
should also report as much information as one can abantlividual intervals cannot, in general, ensure a specific
the underlying biometric samples, such as the quality, titenfidence level for thecombinedapproach. This is
sample acquisition process, sample size as well as a btteé well-known problem of combining evidence from
description of the subjects themselves. If the subjedsnultaneous hypothesis testing scenarios [9], [11], [12]:
used in the experiments for reporting RGE) are not In essence, for each we are performing the tests
representative of the target population, then ROG

is not very useful. But assuming that the underlyingZo.i 1 FAR(A) = FAR(X;) vs. Hiy, : not Ho,
samples are representative and can be replicated by ®)
other experimenters under similar conditions, one c&¥

then proceed to give margins of errors for validatingHgl . GAR(\) = GAR.(\) vs. Hf, : notH;,,
ROC.()). * * (2)

: The process of 9bt?i.”i”9 biometric_ samples usgal{MhereFAR()\i) (respectively,FAR.(\;)) are the true
involves selecting: individuals (or, subjects) and using + inknown (respectively, claimed) FAR at, and

¢ d_|fferent b|orr}etr|c mstancps or entitfedrom each g}AR(/\i) (respectively, GAR.(\;)) are the true but
individual. Additional biometric samples can be obtaine . .
tunknown (respectively, claimed) GAR at;. To test

by _sampll_ng ea(_:h biometric multiple _tlmed, over a each Hy; (and H{ ;) individually, the 90% confidence

period of time. It is well known that multiple acqu'S'tlonsinterval for FAR ’Eand GAR) can be used, and the

corresponding to each biometric exhibit a certain degr?esulting decision has a FRR of at ma&d—90 ': 10%

[03f] d([alpct)a}nd[ig]c:a[l(g]r), (fl?r:ﬁ?tf;\z;e Stf:énfosre(\a/)é?;péz’rli[e e confidence region for the ROC curve combines the
’ P ' ; . YT confidence intervals above and is used to test the

efforts to validate the performance of a biometric syste othesis

based on multiple biometric acquisitions. Bolle et al. [4 yp

first obtained confidence intervals for the FRR and FARy, . NL, {Ho; N H Y} versus  H; : not Hy.

assuming that the multiple biometric acquisitions were (5)

independent of each other. To account for correlatiopowever, the combined confidence region is not guar-
Bolle et al. [2], [3] introduced the subsets bootstragnteed to have a confidence level 93%. In other
approach to construct confidence intervals for the FARIOI’dS, the decision of whether to accept or rejézbt
FRR and the ROC curve. Schuckers [16] proposed t@@es not have an associated FRRL0% as in the case
beta-binomial family to model the correlation betweegf the individual hypotheses. In fact, for a number

the multiple biometric acquisitions as well as to acyhere0 < o < 1, combining27 100(1 — )% level
count for varying FRR and FAR values for differentonfidence intervals based on a-priori selected thresholds
SUbjeCtS. He showed that the beta-binomial model glvggn 0n|y guarantee a lower boundm(l _2Ta)% on

rise to extra variability in the FRR and FAR estimateghe confidence level. This fact is based on Bonferroni's
when correlation is present. However, a limitation ofhequality, and is well-known in the statistics literature.
this approach is that it models correlation for a singlfstead of trying to derive this inequality, we point the
threshold value. Thus, this method cannot be used @@ader to the relevant literature in statistics on simultane-
obtain a confidence region for the entire ROC curvgys hypotheses testing procedures; see, for example, the
Further, Schucker's approach is strictly model-basefgnowing references [9], [11], [12]. The lower bound
inference drawn from this model may be inappropriateyg(1 — 27¢)% on the confidence level is not useful
when the true underlying model does not belong to thghenT is large; in this case,00(1—2Ta)% is negative,

beta-binomial family. and we know that any confidence level should range
To construct confidence bands for the ROC curvgetweeno% and 100%. In Bolle et al’s procedure, the
Bolle et al. [3] select” threshold values)i, Az, ..., A7 value of T is large since the confidence rectangles are

and compute th&0% confidence intervals for the as-reported at various locations of tlemtire ROC curve.
sociated FARs and GARs. At each threshold valye In this paper, we present a new approach for con-

combiningthese 90% confidence intervals results in &yycting confidence regions for the ROC curve with a
1By entities we mean different fingers from each individual, or irin"ar"’mt(':'ed pre-specmed. confldencg level. Ir? fact, we
images from the left and right eyes from each individual, etc. are able to construct confidence regions faoatinuum



To appear in IEEE Trans. on PAMI, 2006.

NPUTS [16] in several respects. First, we explicitly model the
e ROC e RAC correlation via a parametric copula model, and thus, are
e o b 1 able to demonstrate the effects of varying the correlation
. Nomberf mpresionspr fger on the width of the ROC confidence regions. We also ob-
. evel of significanceg . . q

tain a confidencéand rather than confidence rectangles
U as in [3], consisting of upper and lower bounds for the
STEP 1: SCORE GENERATION ROC curve. Further, the confidence bands come with a
. h ine, intra-subject i d inter-subj . . .
imposo e o ity s, T guaranteed confidence level for tleatire ROC in the
e s g region of interest. Thus, we are able to perform tests
U of significance for the ROC curve and report error rates
oo TG corresponding to our decision of whether to accept or
« Fit non-parametric densities to the marginals in Step 1. reject the claimed ROC curve.
«  Fit the copula models to the multivariate distributions . . .
in Step 1 and obtain estimates of the correlation matrix, R. Another Important |ISsue that we addreSS IS that Of
U the test sample size: How many subjects and how many
STEP3: THE BOOTSTRAP biometric acquisitions per subject should be considered
+  Simulate B=1,000 bootstrap samples of size N from the fitted . . . .
copula models in Step 2. in order to obtain a confidence band for the ROC with a
! pre-specified width? Based on the multivariate Gaussian
STEP & ROC CONFIDENCE BANDS copula model for correlated biometric acquisitions, we
+  Construct the ROC confidence bands based on the bootstrap . .. . . .
samples in Step 3 using equations (36) and (37). give the minimum number of subjects required to achieve
U the desired width. In presence of non-zero correlation,
QUTPUT: increasing the number of subjects is more effective in
R o0k )% confdence bands for the e reducing the width of the confidence band compared
e e e vomtir to increasing the number of biometric acquisitions per
L et endorscim, subject. For achieving the desired confidence level, the

required number of subjects based on our method is
much smaller compared to the subset bootstrap. Rules
of thumb such as the Rule of 3 [20] and the Rule
of 30 [14] grossly underestimate the number of users
required to obtain a specific width. The underestimation
becomes more severe as the correlation between any two
acquisitions of a subject increases.

The paper is organized as follows: Section Il presents
the problem formulation. Section Il discusses the use
of multivariate copula functions to model the correlation
between multiple queries per subject for the genuine

of threshold values, and not just for finite pre-selectedd impostor similarity score distributions. Section IV
threshold values. In contrast to the non-parametric boditesents the construction of confidence bands for the
strap approach of [3], we develop a semi-parametric aBOC curve. Section V discusses the minimum number
proach for constructing confidence regions for ROC of biometric samples required for obtaining confidence
This is done by estimating the genuine and impost&ands of a pre-specified width for the ROC curve. Some
distributions of similarity scores obtained from multi-of the more technical details and experimental results
ple biometric acquisitions of the subjects where the have been moved to the Appendix due to space restric-
marginals are first estimated non-parametrically (witho#ons; interested readers can also refer to the paper [6]
any model assumptions), and then coupled together‘%‘iCh incorporates the relevant details into appropriate
form a multivariate joint distribution via a parametricsections of the main text.
family of Gaussian copula models [13]. The parametric
form of the copula models enables us to investigate how Il. PRELIMINARIES
correlation between the multiple biometric acquisitions Suppose we have subjects available for validating
affects the confidence regions. Confidence regions for taebiometric authentication system. Often, during the
ROC are constructed using bootstrap re-samples fratata collection stage, multiple biometric entities (e.g.,
our estimated semi-parametric model. The main steg#ferent fingers) from the same subject are used. We
of our procedure are shown in Figure 2. Note that outenote the number of biometric entities used per subject
approach based on modeling the distribution of similarityy ¢. To obtain additional data, each biometric of a
scores is fundamentally different from that of [16], whersubject is usually sampled a multiple number of times,
binary (0 and 1) observations are used to construét over a period of time. Thus, at the end of the data
confidence intervals for the FRRs and FARs. collection stage, we acquire a total atd biometric
Our approach also varies from that of [1], [3], [10],samples from then subjects. This collection oficd

Fig. 2. The main steps involved in constructing the ROC confiden
bands for validating the claim of a fingerprint vendor.
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biometric samples will be denoted 8 To obtain simi- Entities Yi Li Lij
larity scores, a pair of biometric samplgs,and B’ with Dimension, K | cd(d —1) | c(c—1)d* | ?d”
B # B', are taken from3 and a matchesS is e}pplied TABLE |
to them, resulting in the similarity scot®(B, B ). We  vaLues oF K FOR THE DIFFERENT SETS;, 7; AND ;. HEREC IS
will consider asymmetric matchers f(ﬂ; in this PAPEr.  THE NUMBER OF FINGERS ANDd IS THE NUMBER OF IMPRESSIONS
The matcherS is asymmetric ifS(B,l? ) # S(B,B) PER FINGER
for the pair of biometric sample@3, B ) (a symmetric
matcher implies thas(B, B') = S(B, B")).

In the subsequent text, we will use a fingerprint
authentication system as the generic biometric syste¥hgenuine similarity scores (taking= j and f = f’
that needs to be validated. Thus, theifferent biometric in (6)), the set of intra-subject impostor scorés=( j
entities will be represented asdifferent fingers from andf # f’), and the set of inter-subject impostor scores
each subject, and thé acquisitions will be represented(i¢ # j). We denote the genuine, intra-subject impostor
by d impressions of each finger. Whe and B’ are and inter-subject impostor score sets by
multiple impressions of the same finger from the same c c ¢
user, the similarity scor8(B, B') is termed as a genuine  §; = UsGi £ 0, = U SG.i. 1. 1),
similarity score, whereas whedandB are impressions f=1 f=1s
from either (i) different fingers from the same subject,

<
[

7

~

or (ii) different subjects, the similarity sco¥{B, B') is 90 R

termed as an impostor score. The impostor scores arising and Iy = U U S, f, ) ™
from (i) (respectively, (ii)) are termed as the intra-subject f=1=1

(respectively, inter-subject) impostor scores. wherei # j, respectively.

We give some intuitive understanding of why sim- We give the cardinality or dimension (the number of
ilarity scores arising from certain pairs of fingerprinfossibly distinct similarity scores) of each of the sets
impressions in3 are correlated (or, dependent). Duringliscussed above. The dimensionsdef Z; and Z;; are
the fingerprint acquisition process, multiple impressionsl/(d — 1), ¢(c — 1)d*> and ¢*d?, respectively, when the
of a finger are obtained by successive placement of tAwtcherS is asymmetric. In all of these scenarios, we
finger onto the sensor. Therefore, given the first imprewll denote the dimension corresponding to each set by
sion, B, and two subsequent impressiaBis andB,, the K (see Table I). The total number of sets of similarity
similarity scoresS(B, B1) andS(B, B) are most likely scores arising from the genuine, intra- and inter-impostor
going to be correlated. Further, the fingerprint acquisitiotases will be denoted hy; we have thatV =n, N =n
process is prone to many different types of uncontroRnd N = n(n — 1), respectively, for the total number of
lable factors such as fingertip pressure, fingertip moistugéts of genuine, intra-subject impostor and inter-subject
and skin elasticity factor. These factors cause some lew€ores.
of dependence between fingerprint impressions of twoWhen the matche$ is symmetric, the dimension as-
different fingers of the same user. If this is the cas&ociated with each of the genuine, intra-subject impostor
then we expect to see some level of correlation betwe@nd inter-subject impostor sets of similarity scores gets
the similarity scoresS(B;, By) where B; and B, are reduced since many of the similarity scores in each of
impressions from different fingers. Also, as noted ifhe three sets will be identical to each other. In the
[3], even the scoresS(B,, B,) from different fingers subsequent text, we outline the methodology for vali-
of different subjects could be correlated. All these fac@&ating a vendor’s claim for an asymmetric matcher. Our
lead us to statistically model the correlation for similaritynethodology for constructing the ROC confidence bands
scores in the three major categories, namely the genuif@, & symmetric matcher can be handled in a similar
intra-user impostor and inter-user impostor similaritfashion, keeping in mind the reduction in dimensions
scores. of each of the three sets of similarity scores discussed

In order to develop the framework that incorporate3bOve.
correlation, we need to introduce some notation. We SubsequentlyN will denote the total number of inde-
denote the set consisting of thieimpressions of finger Pendent sets of similarity scores, aAdwill denote the
f.f=1,2,...,c, from subjecti by M, ;. The notation dimension of each of thes¥ sets. Fori =1,2,..., N,

S(i, 4, f, f) = the i-th set of similarity scores will be denoted by the
K-dimensional vector
{S(Buva)§ B, € Mi,fv B, EMJEf” B, #B’U }&6) ﬁz = (s(i,1),8(i,2)7...78(i,K))Ta (8)

represents the set of all similarity scores available fromhere s(i, k) is the generic score corresponding to the
matching the fingerprint impressions of finggrfrom k-th component ofS,, for k =1,2,... K.

subject: and those of fingerf’ from subjectj. Three The ordered indices, 2, ..., K are associated to the
disjoint sets of (6) are of importance, namely, the selements of each of the sets, Z; and Z;; defined
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in (7) in the following way: Lets(By ., B ,) denote Hjy,k = 1,2,..., K: choose a copula functiof’ and
the similarity score obtained when matching impressiaefine the functiond as in (12). It follows thatH is
u of finger f, By,, with impressionv of finger f’, a K-dimensional distribution function with marginals
By 4. In the case of a genuine set (that &, = G;), Hi,k=1,2,..., K.
the order of the genuine scores is taken s@$) = The choice ofC' we consider in this paper is th&-
(s(Bfu:Bfuw),v=12,...,(u—1),(u+1),...,d, u= dimensional Gaussian copulas [5] given by
1,2,...,d) and S, = (s(1),s(2),...,s(c)). In the K1 -1 1
case whenS; = Z;, the order of the scores is takerC R (UL 2, - u) = O (87 (ua), @ (UQ)""’ﬁs)(uK))
! = ’ = . = .
as s(f.f)) = (s(Byu, By ’“)’,U ; 1,2,....d, u where eachy, € [0,1] for k =1,2,..., K, ®(-) is the
1,2,...,d) and S; = (s(f, /"), f = 1,2,...,(f — L . ; Jin
g : : distribution function of the standard normah—"(-) is
D,(f+1,....,¢c, f = 1,2,...,¢). Finally, in the . . K : . o
. . ; . ts inverse, andby is the K-dimensional distribution
case whensS; is an inter-subject impostor set (one o# : :
! A _function of a normal random vector with component
Z;;), the order of the scores are taken &g, f') = . . .
means and variances given by 0 and 1, respectively,
(s(Bfu:Bfrv)yv = 1,2,...,d,u = 1,2,...,d) and . . . . g
S = (s(f. ) f' =1,2 e f=1,2 0 and_ wlth correlat_lon r_natmR. Nott_a thatR is a po§|t|ve
T G AT PN A o definite matrix with diagonal entries equal to unity. The
If the scores:(i, k) are bounded between two numbers.” . .~ . : -
o andb, the order preserving transformation d|str|bgt|on functionF will be assumed to be of the form
' (12) with H, = F, for k =1,2,..., K, andC = Cg;

)
T (s(i, k)) = log (W) ©) thus, we have

) F(S1; 82,00y SK) = CR(Fl(Sl), }7‘2(82)7 el FK(SK))

converts each score onto the entire real line. This trans- (14)

formation yields better non-parametric density estimatesWe denote the observed genuine scoresSy =
for the marginal distribution of similarity scores. The{ sy(i, k), k = 1,2,...,Ko,i = 1,2,...,No} with

transformed scores will be represented by the sam& = cd(d — 1) and Ny = n. Each vector
notation s(i, k). The distribution function for eacly; (so(i,1),s0(i,2),...,s0(i, Ko)) is assumed to be inde-
will be denoted byF, that is, pendently distributed according to (14) with correlation

matrix Ry and marginalsFi o, £k = 1,2,..., K,. Both
Ry and theK, marginals are unknown and have to be
: : estimated from the observed scores. In Section V, we
for real numberssy, s5,...,sx. Note that (i) F' is a . o
T e . % .. show how this is done based on similarity scores ob-
multivariate joint distribution function orR*, and (ii) . : . .
. S ’ tained from a fingerprint matching system. The observed
we assume thaf” is the common distribution function . . . o S
) e . intra-subject and inter-subject impostor similarity scores
for everyi = 1,2,..., N. The distribution functionF' _ ! .
haskK associated marginals; we denote the marginals Byc denoted bisu = {s11(4,k), k=1,2,... Ky, i =
9 ’ 9 ¥2a~~-7N11} with K11:C(C—1)d2 andNH:n, and

Fk' k:1’2’”.’K’ where 812 5{512(1',]6‘)7 k’:1,27...,K12,i:172,...7N12}

P{s(i,k) <sp, 1<k <K}=F(s1,82,...,8K),
(10)

P{s(i,k) < s } = Fi(sp). (11) with K15 = ¢*d® and N1, = n(n — 1), respectively.
Each vector (s11(¢,1),511(¢,2),...,811(¢, K11)) (re-
I1l. COPULA MODELS FORF Spectively, (Slg(i, 1), Slg(i, 2), RN Slg(i, Klg))) is as-

sumed to be independently distributed according to (14)
ARith correlation matrixR;, (R12) and marginalsy, 11,

k= 1,2,..., Ky (Fk712, k= 1,2,..., Klg). The cor-
relation matrices?y;, R1o and the associated marginals
are estimated from the observed impostor scores in the
same way as is done for the genuine case. Details of the
Estimation procedure for the impostor case are presented

We propose a semi-parametric family of Gaussi
copula models as models fdr. Let Hy, H,...,Hg
be K continuous distribution functions on the real line
Suppose thatl is a K-dimensional distribution function
with the k-th marginal given byH;, for k =1,2,... K.
According to Sklar’'s Theorem [13], there exists a uniqu

) i )
fu_nct|on C(u1,uz, ... uk) from [0,1]* to [0,1] satis- i, the Appendix and [6].
fying
H(sy,82,...,55) = C(Hy(s1), Ha(s2), ..., Hx (sx)), IV. CONFIDENCE BANDS FOR THEROC CURVE

(12) The Receiver Operating Curve (ROC) is a graph that
wheresy, so, ..., sk are K real numbers. The function expresses the relationship between the Genuine Accept
C is known as aK-copula function that “couples” Rate (GAR) and the False Accept Rate (FAR), and is
the one-dimensional distribution functiond ,k = used to report the performance of a biometric authenti-

1,2,...,K to obtain H. Basically, K-copula func- cation system. For the threshald the empirical GAR
tions arek -dimensional distribution functions df, 1]  and FAR can be computed using the formulas
whose marginals are uniform. Equation (12) can also be | Mo Ko

used to construct-dimensional distribution function G 4R, ()) = I{so(i,k) > A}, (15)
H whose marginals are the pre-specified distributions NoKo ;;
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and The empirical ROC curve can be obtained by eval-
1 M Ku uating the expressions for GAR and FAR in (15) and
FAR.(N) = { DD H{suli k) > A} (16) at various valuea based on the observed similarity
izt k=1 scores, and plotting the resulting curf@; (), Go())).
Niz Kig However, there is an alternative way in which an ROC
+ > I{sia(i k) > A} } ; (16) curve can be constructed. Note that the ROC expresses
i=1 k=1 the relationship between the FAR and GAR, and the

where I(A) = 1 if property A is satisfied, and), threshold values are necessary only at the intermediate
otherwise, andV; = Ny; K11+ N12K7, denotes the total step for linking the FAR and GAR values. Thus, another
number of impostor scores. The true but unknown valuegpresentation of the ROC curve can be obtained by the
of GAR(\) and FAR()\) are the population versions offollowing re-parameterization: we fix as a value of
(15) and (16); the expression for the populat@AR()\) FAR and obtain the thresholdl, such thatG(\,) = p

is given by or, A, = G (p). Substituting, in (15) gives the ROC
L Mo Ko curve in the form(p, W (p)), where
E(GAR.(\) = P{so(i, k) > A A . L
(CARN) = FRgy 22 Ploolib) > ) W) = Gor) = ColGi ). (20)

1 & Note that in the case when there is nQ such that
Ko ; Plso(1, k) > A} G1(\.) = p, one can re-define the inverg@,;l(p) =
= G\ (17) A, Where )\, is the smallest\ satisfyingG1(\) < p.

’ This definition of the inverse aoff; is more general and
where each sefso(i,k), k = 1,2,..., Ko} for i = always yields a uniqué.,. The true but unknown ROC
1,2,..., Ny is independent and identically distributeccurve can be obtained in the same way as above by
according to the copula model (14). Subsequently, theplacing the empirical versions with the corresponding
probabilities in (17) are functions of the unknown genpopulation version; thus, we have
uine marginal distributionst}, o, k = 1,2,..., Ko, and
the genuine correlation matrixk,. Also, the second W (p) = Go(G1'(p)), (21)
equality in (17) is a consequence of the identically dis-

tributed assumption. In a similar fashion, the populatioff"ere G1 "(p) = A., where ), is the smallest\ satis-
FAR()) is given by fying G1(A) < p. The two representations of the ROC

[ curves (71()), Go(\)) and(p, W (p)), are close approx-
1 LEq ) imations of one another for largh,, and therefore we
M{ZZ P{sn(ik) > A} oo

E(FAR.(N) = use the latter representation for deriving the confidence

Nis Kus bands. For fixed number€, and C; satisfying0 <
i ZZ P{s1a(i,k) > A} } Cy < C1 <1, let us consider alp = FAR values that

=1 k=1

fall in [Cy, C1]. A confidence band for the true (claimed)

=1 k=1 . . .
' ROC curve of a biometric system at confidence level

Ky
_ M Z P{s11(i, k) > A} 100(1 — «)% gives two envelope functiong,,(p) and
Ny =1 ev(p), so that forall p in [Cy, C4], the true ROC curve
K1a lies inside the interval ey (p), ey (p)) with probability
+& Z P{s12(i,k) > A} of at least100(1 — «)%. The numberg’; andC; form
Ny k=1 the lower and upper bounds of the range of FAR, and
= Gi(N), (18) will be chosen to cover typical reported values of FAR

in biometric applications. IfCy; = 0 and C; = 1, the
F‘esulting ROC confidence band is constructed for the
true ROC curve for alp in (0,1).

For a specifico = F AR, the corresponding value of

where now, elements within each of the set
{Sll(i,kj)7 k= 1,2,...,K11} for i = 1,2,..., Nqq,
and{ Slg(i, k), k=1,2,... ,Klg} fori = 1,2,...,Nqio
are independent and identically distributed accordi . . ; )

to the copula model (14) with correponding correlationéoArR’r‘g/g)ﬁ’;Sa ?ﬁgﬁ?;i‘;?o\;m;?oﬁ,akes values(in 1].
matrices and marginals. The probabilities in (18) are prop '

functions of the unknown marginal distributionsy, ;1 . _IF _—
for k = 1,2,...,K11 andFng for k = 1,2,...,K12, \ NO(SIn W(p)_sm \/W(p)) (22)
and the correlation matrice&,, and Ry, for the intra- is a variance stabilizing transformation [15]; the quantity

subject and inter-subject impostor scores, respectivel}{h (22) is asymptotically distributed as a normal with

In light of the notations used for the population . .
. . zero mean and constant variance (independemt arfid
versions of FAR and GAR, equations (15) and (16) ar (p)) for large Ny. To obtain the envelopes, we first

safnple versions ofio(}) andAGl(/\). Thus, we define consider a continuum version of the absolute values
Go(A) = GAR.(A\) and Gi(\) =FAR.()). (19) of (22) for FAR values,p, in [Cy,C1], and take the
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maximum overp € [Cy, C1]. This gives the statistic B. An asymptotic representation of

L N L We approximate the distribution of asymptotically
2 =max,. co<p<e, VNo SN/ W (p)=sin™ VW (p)]. \yhen No is large. LetCo = p1 < po < ... < pm <
(23) Pm+1 < ... < py = Cp be a partition of the interval

Assume for the moment that the distribution ofis [Co, C4]. In the Appendix, we show that

known. If z;_,, denotes thd00(1 — a)% percentile of

z, the envelopes are given by 2 = maxg,<p<c, vV Nol|sinT /W (p) —sin~t\/W(p)|
er(p) = (sin(sin™ /W (p) — 21-a/v/No))? ~ MaX<men [Py Go + Dy - Guwl, - (27)
and where Dy, is a diagonal matrix with thgm,m)-th

N - , entry givenAbyl/\/4W(pm)(1 —W(pm)), D - G‘oyM
ev(p) = (Sin(SIN™\/W(p) + z21-a/VNo))".  (24) and Dy - Gy are independent of each other, the

However, the distribution of: is difficult to obtain distribution of Das - Go.ar (respectively, Dy - Gi,ar)

analytically, and thus, we present two approaches i[%_approximately aM-di_mensionaI muItivarigte normal_
approximate the distribution of in (23) based on with mean 0 (respectively, 0) and covariance matrix

(i) the bootstrap methodology, and (ii) an asymptotigivin by L'y ((;_espehctively,l_“l) given in equation (58)
representation of the distribution effor large V. In the Appendix. The maximum 'm0201] IS approxi-
mated by the component of the multivariate normal that

) ) takes on the maximum absolute value. We define
A. The semi- and non-parametric bootstrap approaches . .
The value z;_,, will be found based on bootstrap maxi<m<n [P - Go.ar + Dar - Giom| = z2u- - (28)
samples from the fitted semi-parametric Gaussian cophe distribution of: is approximated by the distribution
ula models described in Section Ill. This bootstrapf »,, for large M. Denoting thel00(1— )% percentile

procedure requires the simulation of scores from th§f -, by z;_, , the 100(1 — )% confidence interval
estimated distribution functions in (14) and is describegr W (p) is given by (e (p), ev(p)) where

in detail in the Appendix. Thus, we denote & =
{s5(i,k), k =1,2,...,Ko,i = 1,2,...,No}, Sf; = er(p) = (sin(sin ™ \/ W (p) — z1_a.n1/V/No))?
{Syfl(l.,ki)7 k = 1,2,..., K1, = 1,2,...,N11} and

Sty ={st(i k), k=1,2,...,Kps,i=12,...,N;,} and

to be the sets of genuine, intra-impostor and inter- _ einfain=1./Ti 2
impostor similarity scores obtained by one simulation eu(p) = (sin(sin W)+ Zl*a’M/m» - (29)
from the fitted copula models. Also let

» C. Testing the claim of a biometric vendor
W(p) = Go (G (p)), (25) Suppose that a vendor of a biometric authentication

where G;()\) (respectively, G;()\)) is obtained from System claims that his/her biometric authentication sys-
equation (15) (respectively, (16)) with the bootstrafem has a ROC curve given bROC. = (p, We(p)),

the quantity from n subjects, we can test the validity of this claim

by generating our own genuine and impostor similarity

2 = maxg,<p<cy, vV No | sinty/W*(p)—sin~4 /W (p)|, scores, and obtaining the)0(1 — a)% confidence band
(26) for the true ROC curve(p, W (p)), for p € [Co, C1].

with T (p) and W*(p) defined as in equations (20) andVe assume that the subjects as well as the scores
(25), respectively. By repeating the above procedureggnerated from the subjects in the vendor’s database are a
large number of timesB* = 1,000, we obtain1,000 representative sample from the underlying population of
values ofz*, 2}, 25, ..., 2F 00- The 100(1 — )% per- subjects and the corresponding distributions of genuine
centile of the distribution of* can be approximated by and impostor scores derived from this population. If this
2[1000(1—q)]» Which is the[B*(1 — a)]-th element in the assumption is true, then the confidence bands constructed
ordered list ofz}, 25, ..., 2{y00- Thus, we approximate from the previous section can be used for validating the
21_q by Z['}ooou_a)]- vendor’s claim. We perform the test

In the non-parametric bootstrap approach, theSet ) . )
is obtained as follows: Sample with replacement énhe Ho : W(p) =We(p) vs. Hi: W(p)# Wc(pzéo)

dimensional vector from théV, sets inSy, and repeat f il he clai
. . . R

this samplingN, times. The setsS}; and S;,, respec- 1or Somep: and will accepty (the claimed ROC curve)

tively, are obtained from the sef§; andS;s in a similar < <
4 . , . 31

fashion. The non-parametric bootstrap confidence bands er(p) < We(p) < eu(p) (31)

are then constructed using the methodology outlined far all p € (Cy, C1); otherwise, we will reject it. We can

the preceding paragraph. also perform a test for claims of specific valuesfaR R
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andFAR, FRR.andFAR.. At p. = FAR,., we obtain
the upper and lower limits of AR(p.), GARL(p.) and
GARy(p). We will accept the claimed error rates if

GARp(p.) < GAR. < GARy(p.) (32)

(@) (b) (© (d)
whereGAR. =1 — FRR,., and reject it otherwise.

V. EXPERIMENTAL RESULTS

We evaluate the methodology developed in the previ-

ous sections for biometric authentication systems baseu ‘ h

on fingerprints. For evaluation purposes, it is necessarv € () © (h)

that the fingerprint databases consist of multiple impres:

sions of a finger as well as impressions from several dif-

ferent fingers for each subject. Many publicly available

databases do not meet these requirements and as a res

we focused on two databases that were appropriate for  (j) ) (K) ()

our purpose, namely, a database consisting of fingerprint

impressions collected in our laboratory, and a differemig. 3. Examples of fingerprint impressions from [8]: Each row gives

database obtained from West Virginia University. the 4 impressions per finger collected. The first two rows are different

Lo . - : ii:gers from the same subject, whereas the last row contains fingerprint

The Michigan State University (MSU) database [8{npressions from a different subject.

consists of fingerprint impressions frodndifferent fin-

gers (the right index, right middle, left index and left Databases| n | c | d
middle fingers) of160 users. A total of4 impressions MSU 60 | 2 | 2
per finger were obtained; 2 impressions were obtained wvu 263 | 1] 2
on the first day and the remaining two after a period of TABLE Il

a V_Veek' The fingerprint images were z_;\c_qmred US'”Q avaLuEs OFn, ¢ AND d FOR THEMSU AND WVU DATABASES
solid state sensor manufactured by Veridicom, Inc, with

image sizes300 x 300 and resolutions500 dpi. Figure

3 show all 4 impressions of 3 fingers in this database.

The first two fingers (first two rows) are from the same

subject whereas the images in the last row are fromThe West Virginia University (WVU) fingerprint data-

a different subject. A fingerprint similarity score wasase consists of fingerprint impressions from 263 differ-
generated using an asymmetric matcher, described in [@ht users. We used the first 2 impressions of the right
All raw scores ranged betwe@nand 1000, and thus, the index finger to obtain similarity scores with the same
transformation (9) withu = 0 andb = 1000 was used matcher as above; thug, = 1 andd = 2 for the

to convert the scores onto the real line. All subsequew\VU database. Consequently, there is only one kind of
analysis was performed on the transformed similarifynpostor score, namely, the inter-subject impostor score
scores. Thus, we have the following values dorand K for this database. Table Il gives the number of subjects
(with n = 160, c = d = 4): N = 160 and dimensionality (n), as well as the values of(number of different fingers

K =4 x4 x 3 =48 for the set of genuine scored] = per subject) and (number of impressions per finger) for
160 and K = 4x 3 x 42 = 192 for the set of intra-subject the MSU and WVU databases.

impostor scores, and = 160 x 159 = 25,440 and

K = 42 x 42 = 256 for the set of inter-subject impostor o o o

scores. The number of parameters in the correlatiéh Estimating the joint distribution of similarity scores
matrices that need to be estimated for the genuine, intradn order to estimate the joint distributiont’, of
subject impostor and inter-subject impostor scores amgmilarity scores corresponding to the genuine, intra-
respectively, (48 x 47)/2 = 1128, (192 x 191)/2 = subject and inter-subject impostor sets, we first need
18,336 and (256 x 255)/2 = 32,640. The number of to estimate each margindfy, k = 1,2,...,K and
parameters far exceeds the total number of observatiarmsrelation matrixR from observed data. The estimation
in each of the three sets of scores. In order to avoid oveft F;, and R are described in detail in the Appendix
fitting, we reduce the value ok in each case. Insteadand in [6]. We show the results of the non-parametric
of selecting all fingers, we choose only= 2, namely, estimation procedure for the first 2 marginal distribu-
the right index and right middle fingers, and use thtons corresponding to each of the genuine, intra-subject
d = 2 impressions per finger obtained on the first daynpostor and inter-subject impostor scores for the MSU
In this case, the number of parameters that need to d@tabase (see Figure 4). Note the very good agreement
estimated aré, 28 and120 for the genuine, intra-subject between the observed density histogram and the fitted
and inter-subject impostor sets of scores, respectivelydensity curve for each figure, especially at the tails of

USED IN THE EXPERIMENTS
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Fig. 5. Upper and lower ROC envelopes obtained using the three
o4 o4 different methods: The non-parametric, semi-parametric bootstrap, and
02 02 asymptotic envelopes are represented by the symbols, and x,

A 4. | respectively. The middle solid line is the non-parametric ROC curve.

fit to each of the genuine, intra-subject and inter-subject
. . impostor sets of similarity scores. The methodology and
o4 o related plots are presented in the Appendix.

04 04 B. Construction of the ROC confidence bands

o * The95% ROC confidence bands are constructed based
s % -« s 2 a0 = s -« s =2 - o on the semi-parametric bootstrap, asymptotic and the
€ek=1 (k=2 non-parametric bootstrap approaches for the MSU and
WVU databases. The resulting upper and lower bounds

Fig. 4. Fitted density functions (solid line) for the genuine (a,b)pf all the three approaches closely match with each
intra-subject (c,d) and inter-subject (e,f) marginal distributions. other for the two databases; due to space restrictions,
we only show the bands for the MSU database in Figure

5. Figure 5 shows that the semi-parametric bootstrap

the distributions. A good fit at the tails is essential for thSnd the asymptotic approaches give good approximations
construction of a valid ROC curve that accurately reflec{g the true upper and lower confidence bands even for
the authentication performance based on the Observrﬁgderate sample sizes

data of similarity scores.

_The estimate .Of t_he genuine correlation matrix (O(f:. Effects of correlation on the ROC confidence bands
dimension4 x 4) is given by . ] )
Our next set of experiments consist of studying the

1.000 099 0.15 0.16 effect of correlation among the multiple impressions of

Ry = 0.99 1.00 0.15 0.16 ) (33) @a user on the width of the ROC confidence band. Since

0.15 0.15 1.00 0.99 this requires varying the correlation, this experiment is

0.16 0.16 0.99 1.00 not possible using real data since real data would give

The ordered row (and column) dimension®, 3 and4 only one estimate of correlation for each of the sets of
respectively represents the scores genuine, intra-subject and inter-subject impostor similar-

s(B11,B12), s(Bi2,B11), s(Ba1,B22) and ity scores. Instead, our experiment is based on simulated
$(Ba,2, B2 1); recall thate = 2 andd = 2. Consequently, sets of genuine, inter-subject impostor and intra-subject
the off-diagonal entries of (33) give the correlationmpostor similarity scores from the multivariate Gaussian
between the corresponding row and column dimensiors -copula models with Toeplitz forms for the correlation
For example, the entrg.15 in the 2-nd row and3-rd matrix. Let
column of matrixR, is the correlation between between 1
5(31,17 BL%) and 8(3271, 3272). The off-diagonal p
entries of Ry indicate that there is a significant amount R.(p) )
of correlation in the set of genuine similarity scores.

We also obtained estimates of the intra-subject (of S

dimension 8 x 8) and inter-subject (of dimension popop 1

16 x 16) correlation matrices in a similar fashion (seeenote the correlation matrix with all off-diagonal entries
the Appendix). We also developed an assessment ofdijual top. The dimension ofR.(p) will be different

of the copula functions to the observed data and foumdcording to whether the sets of scores are genuine, intra-
that the estimated Gaussian copula functions are a gaaject or inter-subject impostor scores.

N D
D SR oY

p (34)
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Sets/Estimates | p1 P2 dimR.(p1) dimR.(p2)
Genuine 0.15 0.99 c d(d—1) 100
Intra-Subject Impostor; 0.80 0.27  ¢(c—1) d? o8l
Inter-Subject Impostor| 0.26  0.55 c? d? .
S o6t
z
TABLE Il 5 04
DIFFERENT VALUES OFfj1 AND p2 FOR THE GENUINE 8
INTRA-SUBJECT IMPOSTOR AND INTERSUBJECT IMPOSTOR g 92
SIMILARITY SCORES, AS WELL AS THE DIFFERENT DIMENSIONS OF % 90¢
R(p1) AND R(p2) FOR AN ASYMMETRIC MATCHER. (‘Cﬁ 88l
86
84 -1 ‘0 1
. o 10 10 10
For a genuine set, the parameterization of the cor- False Accept Rate(%)

relation mat.nx askt = R. ('01) ® R*(m) |mplles that Fig. 6. Effects of correlation on the ROC confidence bands. The
the correla’Flon bet‘_’veen any two componentSQ()f_) lines with ', O, o and x, respectively, denote the four different
corresponding to fingerf is p2, and the correlation combinations of intra-finger and inter-finger correlations (i), (ii), (iii)
between a component ef ) and a component of(f/) and (V).

for two different fingers,f # f’, is p1 - p2. For an

|ntra—subject |mpo§tor'set, the paramterlgatlon of th‘FabIelll.The 95%
correlation matrix implies that the correlation betwee[‘he ROC curve w
any two components of(f, f') for each pair(f, ) is

& = 0.05) level confidence bands for
ere constructed based®n= 1,000

. bootstrap resamples. Figure 6 gives the ROC confidence
/

p2, and the correlation between a componens(qf, /) bands based on the semi-parametric bootstrap. Note that

p : .
??df/?;c()mp%n?snt O.E(g ’go)r g)r{i;vtveor-sdtljftr)?éi?}mp?;g(,)rthe width of the confidence bands generally increases
’ 9.9 ), 'S p1p2: ) P as we move from combination (i) to (iv). The median

set, the parameterization implies that_ the/ C.Orrelanownidths of the confidence bands for the four combinations
between any two pairs of componentssity, f') is p,

. 7. are 4.62, 5.41, 5.51, 6.06, respectively. The effects of
and the correlation between a components6f, f/) . ) . .
; : . correlation on the confidence bands using the asymptotic
and a component of(g,¢’) for two different pairs, o
, N approach and for the WVU database were similar to the
(faf)# (979)1 IS p1 - p2.

One advantage of selecting correlation matrices to gg otstrap approach, and therefore, are not presented here.

of the formR = R.(p1)®R.(p2) is that the matrices can o i

be determined from specifying only two real numberd- Validation of the ROC confidence bands

p1 and po, and is therefore, easy to use for illustrative We conducted several tests to validate the ROC confi-
purposes. For a given estimated correlation maftix dence bands at a specified confidence level. Recall that
we find the values op; and p, that minimize the sum the 100(1 — «)% ROC confidence bands, by definition,
of Euclidean distances between the entriesfbfand cover the true ROC curve with a probability af least

R.(p1) ® Ri(p2), 100(1 — «)% on repeated sampling from the underlying
- 9 population of similarity scores. Treating the entire MSU
15 = Rau(pr) ® Ra(p2)l[”, (35) database withn = 160 subjects as the underlying

whereR,(p1) and R.(p2) are as in (34) wittp; andp,  population, we selected a subset 86 subjects from this
plugged in forp, respectively, and® is the Kronecker population for constructing the semi-parametric boot-
delta product. The minimizers ¢f; andps, p1 andp,, strap ROC confidence bands; a subseit2of subjects (as
for each of the genuine, intra-subject impostor and inteppposed to smaller subsets of the data) is selected so that
subject impostor sets of scores, as well as the dimensi@simation of the non-parametric marginal distributions
of each ofRR.(p1) and R.(p2) are given in Table Ill for can be performed reliably. We then determined if the
the MSU database. For the WVU database, the estimaggapulation ROC curve (the empirical ROC curve for
values ofp, was found to be 0.99 and 0.39, respectivelyhe 160 subjects) was within the constructed confidence
for the genuine and impostor sets of similarity scoresbands. This procedure was repeated 200 times (with
In order to show the effects of increasing correlatiodifferent subsets of 120 subjects from the population of
on the ROC confidence bands, four combinations 460), and each time, we determined if the population
(p1,p2) were selected. The first three combinations alROC curve was within the constructed ROC confidence
(i) (ppn = 0,p2 = 0), (i) (p1 = 0,p2 = p2), bands. The percentage of coverage based on this valida-
and (iii) (p1 = p1,p2 = p2), where p; and p, are tion procedure should be at leakiO(1 — «)%. In our
selected according to the entries of Table IIl for eackxperiments we selected = 0.05 for the 95% ROC
set of genuine, intra-subject impostor and inter-subjeconfidence bands, and obtained a coverage proportion
impostor similarity scores. The fourth combination (ivpf 99.5%. For the WVU database, validation of the
is obtained by setting the genuing to 0.6 and the ROC confidence bands was carried out with sub-samples
remainingp; s andp,s selected according to the entries if 198 users. The procedure of constructing the ROC



11
To appear in IEEE Trans. on PAMI, 2006.

confidence bands was repeated 500 times. The empirigale an overall confidence level db0(1 — «)% using
ROC curve (ROC curve based on the 263 users) wa$ individual 100(1 — «)% confidence intervals. To
found to be inside the5% confidence bands in 497 (outguarantee al00(1 — a)% confidence level, the level
of the 500) trials, resulting in a coverage probability 06f each individual confidence interval would have to
99.4%. be 100(1 — a/M)% using Bonferroni's inequality. For
m = 1,2,..., M, the minimum sample size require-
ment, ng,(m), for the m-th confidence interval can

E. Sample size requirements X . o . .
) ) ) ) be obtained using similar asymptotic arguments as in
As correlated multiple biometric observations affectection 1V-B with Cy = C; = pm. It follows that

the width of the ROC confidence bands, we now procegge minimum sample size required to achieve the pre-

to determine the number of users;, required by a gpecified width for allM/ confidence intervals is given
system to report 400(1 — a)% ROC confidence band by

with a width of at mostw. We takew = 1%. Our
results are based on simulation with correlations selected

according to combinations (i-iv) in Section V-C. Thus, Table IV reports the average andn?, over10 simu-

;he reshqltﬁ reﬁ'cl))r.tec(jj.ﬁhere Zan be g?r?erah?_ed 10 '%&ion runs with the numbers below (respectivelyn®,)
.ata which exni It di erent degrees of Intra- Inger an presenting the average total number of observations
inter-finger correlations. The values of* are given

: o n*cd (nl,cd). The numbers in the parenthesis are the
for different combinations of and d, and therefore, . .oshonding standard deviations over the 10 runs. If

varying dimensionality of the genuine, intra-subject ang i, metric authentication system was tested based on
inter-subject sets of similarity scores. Consequently, We isers. where is chosen according to the* entries

assume a common marginal for each of the three sgfsp,po IV, we will be95% certain that the true ROC
given by the mixture over component scores. We selecteg .« will lie in the interval W — 0.5, W +0.5]. Table

Co = 0'1%’ C1 = 10% and M = 21 here, and |y inqicates that as the correlation among the multiple
pm = 1001F0I=D) g = 12, M. For each ;. - : : ’

) ! pressions of a finger increases for each fixeahdd,
m=12,...,M,the width of the ROC CP”f'P‘e”CG ban he total number of observations needed to achieve the
at eachi"AR = p,, (see equation (29)) is given by width w for the confidence band increases. The same

wipm) = ev(pm) —eL(pm) holds true wher: and d values are increased for each
421 anr /W o) (L= W (o) correlation cqmblnatlon. Thus, in the presence of non-
= = ™77 (36) zero correlation, we are better off selecting a larger
Vi number of users rather than increasing the number of
for large n(= Ny), wherez;_, s is the 100(1 — «)%  acquisitions per user. Note that the sample sizes required
percentile of the distribution of; defined in (28); the by our method,n*, is smaller compared ta}, for
second equality is from applying the delta method [15] tachieving the same overall confidence level.
ey (pm) —eL(pm) in (29). In order to determine; _,, s, We also obtained the minimum sample sizes deter-
we first estimate the covariance matridgsandI'; (see mined by the “Rule of 3" [20] and the “Rule of 30” [14]
equation (59) in the Appendix) as accurately as possiblsee Appendix for their derivation). For the fingerprint
This estimation is performed based on 1000 simulatethtabase [8]n; was approximately 150 for all pairs
samples from each of the correlation combinations (i-igf correlation combinationes and d, while ngy was
for n = 1000 subjects. To achieve a width af for the approximately 770. Comparing the values of and
confidence band implies that(p,,) < w for all p,,, mns30 with n*cd, we see that botms and ngs, grossly
m = 1,2,..., M. Thus, the minimum number of usersunderestimate the total number of biometric acquisitions
required is given by the formula* = ng + 1 whereny required to achieve a desired width. The underestimation

n:b = maxlSmSM nsb(m). (38)

is the greatest integer less than or equal to becomes more prominent when significant correlation is
9 present between multiple acquisitions of the biometric

a1 <4Z1_a,M VW () (1= W (pm)) ~ templates from a subject.
== w(pm) To illustrate the effects of correlation on the sample

(37) size requirement for the WVU database, we choose three
We also compare the minimum sample size requiremermismbinations of the genuine and impostor within finger
given by our method to that of the subset bootstragprrelations, namelyp3“", p5"'*) = (0,0), (0.49,0.19)
approach [3]. One important point is that [3] obtain&nd(0.99,0.39) to reflect the no correlation (or, indepen-
confidence rectangles, and not confidence bands, at edehce), intermediate and high correlation states. Table V
threshold value on the ROC curve. In order to performreports the average* andn?, over 10 simulation runs
valid band to band comparison of the two methods, wer the widthw = 1%, with the average total number of
applied the subset bootstrap procedure to the alternatiMeservationsp*d andn?,d given by the entries directly
parametrization of the ROC curve given in (20). Adelow then*s. The numbers in the parenthesis are the
mentioned earlier, the subset bootstrap is not able ¢orresponding standard deviations over the 10 runs. Note
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Values ofc andd

c=1,d=2 c=2,d=2 c=2,d=3
Correlations| n* nk n* nk n* nk
(p1,p2) mean mean | mean mean | mean mean

(sd) (sd) | (sd) (sd) | (sd) (sd)

(0,0) 11,443 48,674| 5809 24,201| 1,967 8,143
(246)  (600) | (148) (373) | (31)  (136)
22,885 97,350| 23,235 96,810| 11,801 48,860
(492)  (1,200)| (590) (1,493)| (190)  (814)

(0, p2) 20,439 90,725| 10,476 46,209 9,505 43,500
(790)  (315) | (279)  (837) | (263)  (455)
40,877 181,450 41,905 184,840 57,028 261,000
(1,581)  (630) | (1,115) (3,346)| (1,580) (2,729)

(pr.p2) | 21,403 90,477| 11,056 47,855| 9,749 46,269
(1,004) (407) | (346)  (430) | (163)  (968)
42,806 180,950 44,223 191,420 58,492 277,620
(2,008) (813) | (1,382) (1,720)| (977) (5,811)

(0.6,p2) | 19,015 89,993| 13,321 61,394| 11,558 56,723
(503)  (429) | (506)  (884) | (423)  (826)
38,029 179,990 53,285 245,570 69,346 340,34Q
(1,006)  (858) | (2,026) (3,536)| (2,540) (4,956)

TABLE IV
MEAN n* AND n}, VALUES FOR ACHIEVING A WIDTH OF 1% FOR THE95% CONFIDENCE BAND. THE TOTAL NUMBER OF OBSERVATIONS
n*cd AND n¥,cd, ARE GIVEN BELOW THEn* AND n¥, ENTRIES, RESPECTIVELY ENTRIES ARE CALCULATED AS THE MEANS OF10
SIMULATION RUNS. THE CORRESPONDING STANDARD DEVIATIONS ARE GIVEN IN PARENTHESIS

Values ofc andd

c=1,d=2 c=1,d=3 c=1,d=14
Correlations|  n* nk n* nk n* nh
(p5°", p5?) | mean mean | mean mean | mean mean

(sd) (sd) (sd) (sd) | (sd) (sd)

(0,0) 12,875 47,526| 4,251  16,170| 2,103 8,144
(283)  (655) | (77)  (280) | (37)  (169)
25749 95050| 12,754 48,510 8,412 32,580
(477)  (1,310)| (231)  (841) | (148)  (676)

(0.49,0.19) | 15,215 61,195 7,719 35,053| 6,200 29,149
(513) (1,074)| (215)  (697) | (299)  (940)
30,430 122,390 23,158 105,160 24,799 116,600
(1,025) (2,148)| (645) (2,091)| (1,197) (3,761)

(0.99,0.39) | 23,802 90,334| 20,898 86,357| 18,748 84,478
(886)  (170) | (414)  (400) | (698)  (766)
47,604 180,670 62,693 259,070 74,991 337,910
(1,772)  (304) | (1,244) (1,200)| (2,793) (3,064)

TABLE V
MEAN n* AND n7, VALUES FOR ACHIEVING A WIDTH OF 1% FOR THE95% CONFIDENCE BAND BASED ON THEWEST VIRGINIA
UNIVERSITY DATABASE. THE TOTAL NUMBER OF OBSERVATIONS n*cd AND n’, cd, ARE GIVEN BELOW THEn™ AND n}, ENTRIES,
RESPECTIVELY ENTRIES ARE CALCULATED AS THE MEANS OF10 SIMULATION RUNS. THE CORRESPONDING STANDARD DEVIATIONS ARE
GIVEN IN PARENTHESIS
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samples are based on fingerprint databases with a small

number of subjects. We plan to test our methodology on

larger databases as they become available. We will also

focus on extending the current framework to validate

reported performances of multimodal systems.

APPENDIX |
SIMULATION FROM F'

We first describe how to simulate samples frdm
assuming thatF" is of the form (14). This simulation
procedure will be needed for the estimation of the
) ] marginalsFy, and generating bootstrap samples frém
The authors wish to thank Karthik Nandakumar, Arug, construct the ROC confidence bands. The following

Ross, Umut Uludag and Yi Chen for their help Whe@teps outline how to generat®y samples fromF:
we were conducting our experiments. This research (iﬂ Generate a vectof = (Zy,Zs,...,7Zx)T from

partially supported by the NSF ITR grant 0312646. ¢ the K-dimensional multivariate normal with mean

0, variance 1, and correlation matrik, (2) Obtain
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wherel(A) is the indicator function of the set; I(A) = B. Assessing the Goodness of Fit
1if Ais true, and) otherwise. Note thaE(s) = 0 for
all s < symin and Ey(s) = 1 for all s > sp,4., Where

Smin ANdSmas, respectively, are the minimum and max- We present a method here for graphically assessing the
imum of the observationgs(i, k) : i = 1,2,...,N}. goodness of fit of the estimated multivariate Gaussian

Next, we defineH(s) = —log(1 — Ey(s)), and note copula model to the observed data. We first give the gen-

that discontinuity points ofZ(s) will also be points of €ral methodology, and then apply it to the observed gen-
discontinuity of #(s). In order to obtain a continuousUine and impostor similarity scores. Lower dimensional

estimate of(s), the following procedure is adopted:Mmarginals of ai’-copula functionC'(us, uz, . . ., ux) can
For an M-partition s, = sg < $1 < ... < Sy = be obtained by fixing the irrelevaniys to be equal
Smaz OF [Smin, Smaz), the value of H(s) at a point tO one: For example, if we require the 2- d|men5|onal
5 € [Smin, Smaz) is redefined via the linear interpolationcopula function in the dimensions d¢f and k', where
formula k#k,kk =1,2,... K, this can be obtained by
R s s setting the otheujs (j 7é k, j# k) to 1, that is,

H(s) = H(sm)+(H(sm+1—H(sm)) ———— (40)

Sm+1 — Sm

whenevers,, < s < sp,4+1 and subsequently, the esti- (g, ) = C(1, 1
mated distribution functionf (s), of Fy(s) is obtained %k % UK = D
as

Sug, 1, L, 1,000 1),
(46)
. . It follows that all lower k-dimensional ¥ < K)
Fi(s) =1 —exp{—H(s)}. (41) marginals of the multivariate Gaussiaki-copula are
Gaussiark-copulas. In particular, fok = 2, we obtain
(g) bivariate Gaussian copulas from a single Gaussian
K-copula as in (13). Each bivariate Gaussian copula
is characterized by a single correlation parameter; for
dimensionst andk’, this parameter i, .. of matrix R.

It follows that eachﬁk(s) is a continuous distribution
function. Next we generat®* samples fromFy,: (1)
Generate a uniform random variablé in [0, 1], (2)
DefineV = —log(1 — U), and (3) Find the valud *
such thatH(V*) = V. It follows that V* is a random
variable with distribution functionf,. To generateB* The bivariate empirical copula based oh indepen-
independent realizations frof,, we repeat the steps (1-dent bivariate observationsX;,Y;), i =1,2,...,N is
3) B* times. Finally, a non-parametric density estimatdefined as follows: For eadh< z <1 and0 <y <1,
of Fj is obtained based on the simulated samples using
a Gaussian kernel.

The estimate ofR based on the observed similarity

N
. . . 1
score vectors{&- o= .1,2,...,N} is obtained C,,,,(z,y) = NZ KX < X(nap» Vi < Yvg b
in the following way: Define a new vectog; = i=1
(Z(i,1), Z(i,2), ..., Z(i, K))T where _ _ (47)
where X((n,)) (respectively,Y((n,))) is the [Nz]-th
Z(i, k) = & H(Ex(s(i, k)), (42) ([Ny]-th) element in the ordered list of (Y) samples,

_ ] and the notatiorju] represents the greatest integer less
for k =1,2,..., K. The mean vectog is then obtained than or equal ta:. The empirical copula function gives

by averaging over the vectots;, that is, the best approximation to the true but unknown copula
LN function that generated the observed d@g\g,Y;), i =
z _ . 1,2,...,N.
Z‘NZZZ 43 L2..., | | | |
=1 Our graphical test for checking goodness of fit consists
and the covariance matrix is defined as of the following steps: (i) Optain thé’;) 2-dimensional
N marginal copulas based oR. For the dimension pair
1 > > k, k'), we obtain the contour plot ot ,/ (uy,u,)
J==-S (2 -2)- (2 - 2. 4gy (kK), P ot (U U
N2 (E-2)(2-2) (48) et by

i=1

The estimate op,, is given by

L O , , 2 “lug), @,
Pkk’—ima (45) Chor (U, ) = (ppkk (@7 (ug), @7 (uy)).  (48)

whereo,,’ is the(k,k')-th entry of J in (44), and the

estimated correlation matrix is given by = ((pgxr)). (i) Obtain the empirical copula based on the score
The total number of correlation parameters that need vectors (s(i, k), s(i, k' ))” for i = 1,2,...,N using

be estimated ig( (K —1)/2; thus, it is necessary to haveequation (47); here(i, k) are theX samples and(:, k:’)

K (K —1)/2 much smaller tharV to avoid over-fitting. are theY samples.
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C. Results for the fingerprint database [8] The smallest sample size based on the Rule of 30 was
The estimates of the intra-subject impostor correlatid?Ptained using the formula
matrix (of dimension(8 x 8)) is given by Ry; = 2 % 1.96)2
N30 = MaXi<m<mM Q (51)
1.00 0.58 0.52 0.42 0.90 0.53 0.54 0.41 FRR,
0.58 1.00 0.44 0.47 0.58 0.46 0.88 0.46
0.52 0.44 1.00 0.45 0.50 0.86 0.37 0.42 E. Asymptotic Theory

0.42 047 045 1.00 041 0.41 043 0.87

0.90 058 050 041 100 053 055 041 We derive several results below to validate the asymp-

0.53 046 0.86 041 0.53 1.00 040 042 totic representation of in equation (28). In proving
0.54 0.88 0.37 0.43 0.55 0.40 1.00 0.44 these results, we assume that the biometric entities
041 046 042 087 041 042 0.44 1-00(49) considered are the different subjects, and the matSher

) ) ) \ _is asymmetric. Recall that the total number of subjects
We also obtained the estimate of the inter-subject iny;o< denoted by, andd impressions of fingers for each

postor correlation matrileg, WhiCh ?S of dim_ension_ subject were acquired for validating a vendor’s claim.
16 x 16. Due to the large dimensionality associated Wit this case No = n, Ko = ed(d — 1), Niy = n

this matrix, we do not present it here. L = clc — D)d?, Nia = n(n — 1) and K5 = 2d2.

) : K
For assessing the goodness of fit, the total number ﬁﬁe asymptotic results presented here will berfor oo

pairs of components for the sets of genuine, intrg—subj%&h ¢ and d fixed.

and inter-subject scores are, respectively,= 6, (5) = e will first derive the asymptotic theory for

28, and () = 120. Figures 7, 8 and 9 respectively, /7 (17 (p) — W (p)), and then extend it to the quantity
give the plots of 6 component pairs for the genuine,

intra-subject impostor and inter-subject impostor sets H{FO.(S_'” '\ W(p) - sin™\/W(p)). We denote the
this case. Note that the figures indicate that there is9g"SIti€S 0fGo and G, assuming they exist, byo
good agreement between the empirical and the propositti g1, respectively. The quantity’No(sin™" /W (p) —
Gaussian copula functions. We checked all of the paigin=',/W(p)) is a continuous function ofp ¢
wise copula plots and found that there were no majoc, C;] since the component marginals and their es-
discrepancies between the empirical contours and thienates for the genuine, intra-subject impostor and
fitted Gaussian copula contours. Thus, we conclude thater-subject impostor joint distributions are continu-
the proposed Gaussian copula functions are good modeigs. In order to find the asymptotic distribution of

for representing the correlation structures in all of the P i1
: . : : : v Noma sin W(p) — sin”"/W(p)|, we
genuine, intra-subject and inter-subject sets of scor 0 My <p<0 | () )l

There is always a problem of quantitatively assessir(frg?;St define a partition ofCo, C1]: Co = pr < P2 <
the quality of a model fit to the observed data when- < pv = Ci. Defining 2(p) = sin™'\/W(p) —
the sample size is very large (as in the case of tlsn /W (p), we have

genuine and impostor sets of similarity scores here).
A small discrepancy between the observed data an
model fit will magnify due to the large sample size an?
cause a gquantitative goodness of fit test to be statistical

significant. The point to note here is that the test ¢
potentially be statistically significant even if the model
are a good fit to the observed data set.

No maxc,<p<cy [2(p)] & v/ NoMaX<menr [2(pm)|
(52)
large M. Thus, we first derive the joint as-
ptotic distribution of the A -dimensional vector
No z(pm), m = 1,2,...,M, and then obtain the
distribution of the maximum of the absolute values of
thesem components. Note that by Taylor's expansion,
we have

D. Rules of 3 and 30 i
ules of 3 an VNoz(p) ~ Dp)VNo(W(p)—W(p)) (53)

Recall that the Rule of 3 and the Rule of 30 are

rules of thumb to select the sample size, for the for large Ny, where D(p) = ————. In other
reliable estimation of an error probability, based on (=W ) P

. : . ’ ) words, we require to find the distribution @, - Wy,
n independent binary observations,, z, . .., x,, with Where
P(r; =1) =1— P(z; = 0) = p (see [20] and [14] for . .
details). Since both the rules were derived for setting upVyy = +/No (W(p1) — W(p1), W(p2) — W(p2),
confidence intervals for specific values of FAR and GAR W) = Wipa)T (54)

(and not confidence bands for a range of FAR and GAR . ] ] ]

values), we were required to modify them slightly to su#§ an //-dimensional vector and),, is the diagonal
the present case. For the Rule of 3, we computed tRErix with the (im,m)-th entry given byD(p,,). We
quantity FRR,, = 1 — GAR(p,,) form =1,2,..., M introduce some notation before stating the main results.

and derived the minimum sample size as Form =1,2,..., M, define¢,, and¢,, to be thep,,-th
3 upper quantiles ofy; and Gy, respectively, that is

3 = MB<mem FRp— G0 ¢, =G'pm)  and & =Gilpm). (55)
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(d) (k, k) = (2,3)

Nine level curves (at levels1,0.2,...,0.9) indicating a good match between

(€) (k, k') = (2,4) () (kF) = (3,4)

the empirical copula (black lines) and the estimated

bivariate Gaussian copula (red lines) along dimensiomsd &’ for the genuine scores.
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Nine level curves (at levels.1,0.2,...,0.9) indicating a good match between the empirical copula (black lines) and the estimated
bivariate Gaussian copula (red lines) along dimensiorsid &’ for the intra-subject impostor scores.
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Fig. 9. Nine level curves (at levels1,0.2,...,0.9) indicating a good match between the empirical copula (black lines) and the estimated
bivariate Gaussian copula (red lines) along dimensioasd &’ for the inter-subject impostor scores.

Since G; — G converges almost surely t6, we entry of Dy, Dy (pm) = T )(11 o will be
~ . Pm - Pm

have &, : ¢m — 0 as No — oo. Also, denoting estimated by plugging iﬂﬁ/(pm) in place of W (p,,).

Gomw = VNo(Go(&1) — Gol&), Go(&2)

G0(§2>7 sy G0<§M) — GO(gNIZ)T and GI,M = APPENDIX I

VNg (Go(&1) = Go(&), Go(&2) — Go(&e), -, L EMMAS

Go(fjw) — Go(fju) )T, we have
. R . We now state and prove the required lemmas. De-
Wi = Gom + G- 58 fine Gi1(\) = LK% P{s;y(1,k) > A} and

Lemmas 1 - 4 in Appendix Il can be used to show tha12(\) = - Y25 P{si2(1,k) > A}. It follows
Go,vr andG y are asymptotically independent, and thehen, thatG:(A) = 2ufu Gy (3) + 22fae o, ().
limiting distributions ofG » andG s are multivariate For m = 1,2,..., M, define ¢&12,, = G5 (pm)-
normals with means 0 and covariance matrices given Rye introduce a few notations for the subsequent dis-
Oy and ]Z\V’—‘ll@l, respectively; see Lemmas 2 and 3 for theussion: Letgy (k,m) = P{sy(1,k) > &g} and
forms of ©, and ©,, respectively. Thus, it follows that g (k, k', m,m’) = P{sg(1,k) > Egm, sa(1,k') >

for the M-partition Co = p1 < pa < ...pm = C1, the ¢y} for the setsH = {0,11,12}, respectively,
distribution of /Ny (z(pm), m = 1,2,..., M) is given denoting the genuine, intra-subject impostor and inter-
by subject impostor cases.

_ 5 A We state
Dar-War = Dar - Goar o+ Dag-Grar- G0y o302 1 The M-dimensional vector

VN2 <g1(§1)(£1 —&1) g1(&)(E — &)

Since Gy, and Gy, are asymptotically independent,
it follows that Dy - Go.ar @and Dy - Gy pr are also as-

ymptotically independent, and the limiting distributions p1(1—p1) p2(1—p2)
of Dy - Go, i @and Dy - G py are multivariate normals Eo e T
with means 0 and covariance matrices given by e 91(6n)(Enr — Eu) Zu (59)
N pv (1 —pur)
0
Iy=Dy6oDy and Iy = N Dy®©1D}y,  whereZ,, is a multivariate normal random variable with

(58) zero means, unit variances and correlation matrix given
respectively. Since the covariance matrices above depdnd

on unknown parameters, they will, in practice, be de- K1 K1
termined by plugging in parameter estimates in place O12(m,m’) = LZ Z 012(k, k' ;m,m')  (60)
of the unknown parameters; for example, the, m)-th K, 1 b1
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where Lemma 2:Let t = (tl,tg,...,tM)T. If ¢o(t) de-
Bra(k, k', m,m’) — Bra(k,m)Biz(k',m’) Notes the characteristic function 6fo s, andpo(t) =

Or2(k, k', m,m') o) Ao @ —pm) exp{—3tT ©yt} is the characteristic function of an-
L pm (61) dimensional normal with mean 0 and covariance matrix
Proof: Consider the expression Oo, then
. |0(t) — wo(t)] — 0 (64)
/ (91(Em)(Em — Em))
P{ e pm(l_pm) = asn — oo.
1<m< M) Proof: The proof of Lemma 2 will first involve condi-
-~ tioning on &, for m = 1,2,..., M. Using the mul-
. T Pl —pm) tivariate Central Limit Theorem [15], it follows that
= Poém=émt 71 (Em) N VN (Go(ém) — Go(ém)) converges to anM -variate
normal distribution with zero means and covariance
1<m< M} matrix given by ©,, where O, is the matrix ©, in
. - (1= pm) (A63) with ém used Ain place of2,,. But, note that,
= P{Gi|é&n+ > Dms &m — &12.m SO that®y — ©¢. Lemma 2 follows. QED.
91(&m) Nz For the next lemma, le®; denote thell x M matrix
1<m< M} whose(m, m’)-th entry is given by
= P{KuXu+ Ki2X12 > Niopm, 012(m,m/) = J(m) - @12(m,m’) . J(m'), (65)
1<m< M},

where©®,5(m,m’) is as given in (60) and
where X is a Binomial random variable with para-

meters Ny for the total number of trials angy = J(m) = Vpm(L — pm) - go(im)_
Gu(&m+ gl”fgm)\/p"‘glv;p”)) as the probability of suc- 91(&m)
cess in each trial, fod = {11} and {12}. It follows We state
that the last expression above can be re-written aslemma 3:Let u = (uy,ug,...,upar)?. If ¢1(w)
P{Ki2 275 > Q™, m=1,2,..., M} where denotes the characteristic function VFNTIOQ G1. and
o = 1 { Nipym — v1(u) = eXp{—%gT 0, g}, then
Niapfz (1= i) [61(w) — o1 ()] — 0 (66)
N1Gy | & + Tm Pl =pm) | asn — oo. A )
91(&m) Niz Proof: The m-th component of7; 5/, \/ANO(GO(gm) -
. Go(&n)), can be written as/Nogo(&m) (Em —&m) uUsing
K Zi\/Nupli (1= pih) | Taylor's expansion for large sinceé,, — &,, — 0. We

can re-write this as
Zf = (X1 — Nupfi)/+/Nupii(1 —pii), and

2 = (Xn M)y Nl - ). [N soln) pmu_pm).(m(fm—fm)

As n — oo, using the Taylors expansion for V Niz g1(&m) pm(l—prz)
6

G1 ggm - glgggn) pm(]blfm) and the facts that Lemma 3 follows from applying Lemma 1 to (67). QED.
Ni1/N1i2 — 0, Ni/N12 — Ko and pfy — py,, we The next lemma is . )

get Q™ — —Kiax,,. The limiting distributions of  Lemma 4:Let ¢o; (¢, u) = E(et Gontiu"Grary
each Z}} is normal with mean O and variance 1, folbe the characteristic function & s, G1 as). Then,

u = {11} and {12}. Further, a computation of the

covariance gives the expression (60) for the covariance £ow) — ot - | No Wl =0 68
betweenZ7: and Z7% . QED. o(t, ) = 2ol - Nia wl (68)

For the next lemma, defing,(k, k”m,m/) by asn — oo, where py(t) and SDI(H) are as defined in

Oo(k, k', m,m') = Go(k, &', m, m")— By (k, m) G (K, m’), Lemmas 2 and 3, respectively.
(62) Proof: We first condition on all the impostor similarity

and let®, be theM x M matrix whose(m, m’)-th entry Scores. Thus, we have

is given b
9 y ©o0,1(t,u)
Ko Ko T A T A
1 E(e't Go,m+iv” Gi,m
@0(m7m’) = ﬁ Z Z QO(ka k/;mam/)' (63) ( T O . Té)
0 k=1 k=1 = E(e@ LM E(e@ 0,M ‘811 U 512))

We state = E(elﬂTélvM w5 (1)),
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wherey?(t) is po(t) with ©, replaced byd,. Next, we

have
No
0,1t w) — @o(t)e1(y/ N—y)\
12
= |My+ M| < |My| + | M|
where My = B(€" %1 (p0*(t) — po(t)) and
My = E(engcl,M(po@)_gpo@)@l(\/IQII;Q). Note that

[My| < Elgg(t) — #ol(t))| — 0 asn — oo (sinceps(t)
andyg(t) are bounded functions by Lemma 2, and point-
wise convergence implies convergence in expectation).

Also [Ma] < |1 (/Do u) w(;/mun — 0 using

Lemma 3. Lemma 4 follows. QED.



