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Validating a Biometric Authentication System:
Sample Size Requirements

Sarat Dass∗, Yongfang Zhu∗, and Anil Jain∗

Abstract— Authentication systems based on biometric
features (e.g., fingerprint impressions, iris scans, human
face images, etc.) are increasingly gaining widespread use
and popularity. Often, vendors and owners of these com-
mercial biometric systems claim impressive performance
that is estimated based on some proprietary data. In
such situations, there is a need to independently validate
the claimed performance levels. System performance is
typically evaluated by collecting biometric templates fromn
different subjects, and for convenience, acquiring multiple
instances of the biometric for each of then subjects. Very
little work has been done in (i) constructing confidence
regions based on the ROC curve for validating the claimed
performance levels, and (ii) determining the required num-
ber of biometric samples needed to establish confidence
regions of pre-specified width for the ROC curve. To sim-
plify the analysis that address these two problems, several
previous studies have assumed that multiple acquisitions
of the biometric entity are statistically independent. This
assumption is too restrictive and is generally not valid.
We have developed a validation technique based on multi-
variate copula models for correlated biometric acquisitions.
Based on the same model, we also determine the minimum
number of samples required to achieve confidence bands
of desired width for the ROC curve. We illustrate the
estimation of the confidence bands as well as the required
number of biometric samples using a fingerprint matching
system that is applied on samples collected from a small
population.

Index Terms— Biometric authentication, Error estima-
tion, Gaussian copula models, bootstrap, ROC confidence
bands.

I. I NTRODUCTION

T He purpose of a biometric authentication system is
to validate the claimed identity of a user based on

his/her physiological characteristics. In such a system
operating in the verification mode, we are interested
in accepting queries which are “close” or “similar” to
the template of the claimed identity, and rejecting those
that are “far” or “dissimilar”. Suppose a user with true
identity It supplies a biometric queryQ and a claimed
identity Ic. We are interested in testing the hypothesis

H0 : It = Ic vs. H1 : It 6= Ic (1)
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Fig. 1. Obtaining the ROC curve by varying the thresholdλ. Panel
(a) shows the FRR and FAR corresponding to a thresholdλ1. λ2 is
another threshold different fromλ1. Panel (b) shows the ROC curve
obtained whenλ varies. The values of(FAR, GAR) on the ROC
curve corresponding to the thresholdsλ1 andλ2 are shown.

based on the queryQ and the templateT of the
claimed identity in the database; in Equation (1),H0

(respectively,H1) is the null (alternative) hypothesis that
the user is genuine (impostor). The testing in (1) is
carried out by computing a similarity measure,S(Q, T )
where large (respectively, small) values ofS indicate
that T and Q are close to (far from) each other. A
threshold,λ, is specified so that all similarity values
lower (respectively, greater) thanλ lead to the rejection
(acceptance) ofH0. Thus, when a decision is made
whether to accept or rejectH0, the testing procedure
(1) is prone to two types of errors: the false reject rate
(FRR) is the probability of rejectingH0 when in fact the
user is genuine, and the false accept rate (FAR) is the
probability of acceptingH0 when in fact the user is an
impostor. The genuine accept rate (GAR) is1 − FRR,
which is the probability that the user is accepted given
that he/she is genuine. Both the FRR (and hence GAR)
and the FAR are functions of the threshold valueλ (see
Figure 1 (a)). The Receiver Operating Curve (ROC) is
a graph that expresses the relationship between the FAR
versus GAR whenλ varies, that is,

ROC(λ) = (FAR(λ), GAR(λ)), (2)

and is commonly used to report the performance of a
biometric authentication system (see Figures 1 (a) and
(b)).

In marketing commercial biometric systems, it is often
the case that error rates are either not reported or poorly
reported (i.e., reported without giving details on how it
was determined). In a controlled environment such as
in laboratory experiments, one may achieve very high
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accuracies when the underlying biometric templates are
of very good quality. However, these accuracies may not
reflect the true performance of the biometric system in
real field applications where uncontrolled factors such
as noise and distortions can significantly degrade the
system’s performance. Thus, the problem we address in
this paper is the validation of a claimed ROC curve,
ROCc(λ), by a biometric vendor. Of course, reporting
just ROCc(λ) does not give the complete picture. One
should also report as much information as one can about
the underlying biometric samples, such as the quality, the
sample acquisition process, sample size as well as a brief
description of the subjects themselves. If the subjects
used in the experiments for reporting ROCc(λ) are not
representative of the target population, then ROCc(λ)
is not very useful. But assuming that the underlying
samples are representative and can be replicated by
other experimenters under similar conditions, one can
then proceed to give margins of errors for validating
ROCc(λ).

The process of obtaining biometric samples usually
involves selectingn individuals (or, subjects) and using
c different biometric instances or entities1 from each
individual. Additional biometric samples can be obtained
by sampling each biometric multiple times,d, over a
period of time. It is well known that multiple acquisitions
corresponding to each biometric exhibit a certain degree
of dependence (or, correlation); see, for example, [1],
[3], [10], [16]–[19]). There have been several earlier
efforts to validate the performance of a biometric system
based on multiple biometric acquisitions. Bolle et al. [4]
first obtained confidence intervals for the FRR and FAR
assuming that the multiple biometric acquisitions were
independent of each other. To account for correlation,
Bolle et al. [2], [3] introduced the subsets bootstrap
approach to construct confidence intervals for the FAR,
FRR and the ROC curve. Schuckers [16] proposed the
beta-binomial family to model the correlation between
the multiple biometric acquisitions as well as to ac-
count for varying FRR and FAR values for different
subjects. He showed that the beta-binomial model gives
rise to extra variability in the FRR and FAR estimates
when correlation is present. However, a limitation of
this approach is that it models correlation for a single
threshold value. Thus, this method cannot be used to
obtain a confidence region for the entire ROC curve.
Further, Schucker’s approach is strictly model-based;
inference drawn from this model may be inappropriate
when the true underlying model does not belong to the
beta-binomial family.

To construct confidence bands for the ROC curve,
Bolle et al. [3] selectT threshold values,λ1, λ2, . . . , λT

and compute the90% confidence intervals for the as-
sociated FARs and GARs. At each threshold valueλi,
combining these 90% confidence intervals results in a

1By entities we mean different fingers from each individual, or iris
images from the left and right eyes from each individual, etc.

confidence rectangle forROC(λi) (see (2)). Repeating
this procedure for eachi = 1, 2, . . . , T and combining
the confidence rectangles obtained gives rise to a con-
fidence region for ROC(λ). A major limitation of this
approach is that the 90% confidence intervals for the
FARs and GARs will neither automatically guarantee
a 90% confidence rectangle at eachλi nor a 90%
confidence region for the ROC curve. In other words,
ensuring a confidence level of90% for each of the
individual intervals cannot, in general, ensure a specific
confidence level for thecombinedapproach. This is
the well-known problem of combining evidence from
simultaneous hypothesis testing scenarios [9], [11], [12]:
In essence, for eachi, we are performing the tests

H0,i : FAR(λi) = FARc(λi) vs. H1,i : not H0,i,
(3)

and

H∗
0,i : GAR(λi) = GARc(λi) vs. H∗

1,i : not H∗
0,i,
(4)

whereFAR(λi) (respectively,FARc(λi)) are the true
but unknown (respectively, claimed) FAR atλi, and
GAR(λi) (respectively,GARc(λi)) are the true but
unknown (respectively, claimed) GAR atλi. To test
eachH0,i (and H∗

0,i) individually, the 90% confidence
interval for FAR (and GAR) can be used, and the
resulting decision has a FRR of at most100−90 = 10%.
The confidence region for the ROC curve combines the
2T confidence intervals above and is used to test the
hypothesis

H0 : ∩T
i=1 {H0,i ∩H∗

0,i } versus H1 : not H0.
(5)

However, the combined confidence region is not guar-
anteed to have a confidence level of90%. In other
words, the decision of whether to accept or rejectH0

does not have an associated FRR of10% as in the case
of the individual hypotheses. In fact, for a numberα
where 0 < α < 1, combining2T 100(1 − α)% level
confidence intervals based on a-priori selected thresholds
can only guarantee a lower bound of100(1−2Tα)% on
the confidence level. This fact is based on Bonferroni’s
inequality, and is well-known in the statistics literature.
Instead of trying to derive this inequality, we point the
reader to the relevant literature in statistics on simultane-
ous hypotheses testing procedures; see, for example, the
following references [9], [11], [12]. The lower bound
100(1 − 2Tα)% on the confidence level is not useful
whenT is large; in this case,100(1−2Tα)% is negative,
and we know that any confidence level should range
between0% and 100%. In Bolle et al.’s procedure, the
value of T is large since the confidence rectangles are
reported at various locations of theentire ROC curve.

In this paper, we present a new approach for con-
structing confidence regions for the ROC curve with a
guaranteed pre-specified confidence level. In fact, we
are able to construct confidence regions for acontinuum
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INPUTS: 
• Claimed ROC curve, ROCc 
• Matcher, S 
• Number of subjects, n 
• Number of fingers, c 
• Number of impressions per finger, d 
• Level of significance, �  

STEP 1: SCORE GENERATION 
• Compute the genuine, intra-subject impostor and inter-subject 

impostor sets of similarity scores. 
• These sets of similarity scores are multivariate in nature with 

corresponding dimensionalities specified in Table I. 
•  

STEP 2: MODEL TRAINING 
• Fit non-parametric densities to the marginals in Step 1. 
• Fit the copula models to the multivariate distributions 

in Step 1 and obtain estimates of the correlation matrix, R. 

STEP 3: THE BOOTSTRAP  
• Simulate B=1,000 bootstrap samples of size N from the fitted 

copula models in Step 2. 

STEP 4: ROC CONFIDENCE BANDS 
• Construct the ROC confidence bands based on the bootstrap 

samples in Step 3 using equations (36) and (37).  

OUTPUT: 
• The 100(1- �  )% confidence bands for the true 

ROC curve. 
• Verify if ROCc is inside the confidence bands:   

1. If yes, accept the vendor’s claim at  
100(1-� )% level; 

2. If no, reject the vendor’s claim. 

Fig. 2. The main steps involved in constructing the ROC confidence
bands for validating the claim of a fingerprint vendor.

of threshold values, and not just for finite pre-selected
threshold values. In contrast to the non-parametric boot-
strap approach of [3], we develop a semi-parametric ap-
proach for constructing confidence regions for ROC(λ).
This is done by estimating the genuine and impostor
distributions of similarity scores obtained from multi-
ple biometric acquisitions of then subjects where the
marginals are first estimated non-parametrically (without
any model assumptions), and then coupled together to
form a multivariate joint distribution via a parametric
family of Gaussian copula models [13]. The parametric
form of the copula models enables us to investigate how
correlation between the multiple biometric acquisitions
affects the confidence regions. Confidence regions for the
ROC are constructed using bootstrap re-samples from
our estimated semi-parametric model. The main steps
of our procedure are shown in Figure 2. Note that our
approach based on modeling the distribution of similarity
scores is fundamentally different from that of [16], where
binary (0 and 1) observations are used to construct
confidence intervals for the FRRs and FARs.

Our approach also varies from that of [1], [3], [10],

[16] in several respects. First, we explicitly model the
correlation via a parametric copula model, and thus, are
able to demonstrate the effects of varying the correlation
on the width of the ROC confidence regions. We also ob-
tain a confidenceband, rather than confidence rectangles
as in [3], consisting of upper and lower bounds for the
ROC curve. Further, the confidence bands come with a
guaranteed confidence level for theentire ROC in the
region of interest. Thus, we are able to perform tests
of significance for the ROC curve and report error rates
corresponding to our decision of whether to accept or
reject the claimed ROC curve.

Another important issue that we address is that of
the test sample size: How many subjects and how many
biometric acquisitions per subject should be considered
in order to obtain a confidence band for the ROC with a
pre-specified width? Based on the multivariate Gaussian
copula model for correlated biometric acquisitions, we
give the minimum number of subjects required to achieve
the desired width. In presence of non-zero correlation,
increasing the number of subjects is more effective in
reducing the width of the confidence band compared
to increasing the number of biometric acquisitions per
subject. For achieving the desired confidence level, the
required number of subjects based on our method is
much smaller compared to the subset bootstrap. Rules
of thumb such as the Rule of 3 [20] and the Rule
of 30 [14] grossly underestimate the number of users
required to obtain a specific width. The underestimation
becomes more severe as the correlation between any two
acquisitions of a subject increases.

The paper is organized as follows: Section II presents
the problem formulation. Section III discusses the use
of multivariate copula functions to model the correlation
between multiple queries per subject for the genuine
and impostor similarity score distributions. Section IV
presents the construction of confidence bands for the
ROC curve. Section V discusses the minimum number
of biometric samples required for obtaining confidence
bands of a pre-specified width for the ROC curve. Some
of the more technical details and experimental results
have been moved to the Appendix due to space restric-
tions; interested readers can also refer to the paper [6]
which incorporates the relevant details into appropriate
sections of the main text.

II. PRELIMINARIES

Suppose we haven subjects available for validating
a biometric authentication system. Often, during the
data collection stage, multiple biometric entities (e.g.,
different fingers) from the same subject are used. We
denote the number of biometric entities used per subject
by c. To obtain additional data, each biometric of a
subject is usually sampled a multiple number of times,
d, over a period of time. Thus, at the end of the data
collection stage, we acquire a total ofncd biometric
samples from then subjects. This collection ofncd
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biometric samples will be denoted byB. To obtain simi-
larity scores, a pair of biometric samples,B andB

′
with

B 6= B
′
, are taken fromB and a matcherS is applied

to them, resulting in the similarity scoreS(B, B
′
). We

will consider asymmetric matchers forS in this paper:
The matcherS is asymmetric ifS(B, B

′
) 6= S(B

′
, B)

for the pair of biometric samples(B, B
′
) (a symmetric

matcher implies thatS(B, B
′
) = S(B,B

′
)).

In the subsequent text, we will use a fingerprint
authentication system as the generic biometric system
that needs to be validated. Thus, thec different biometric
entities will be represented asc different fingers from
each subject, and thed acquisitions will be represented
by d impressions of each finger. WhenB and B

′
are

multiple impressions of the same finger from the same
user, the similarity scoreS(B, B

′
) is termed as a genuine

similarity score, whereas whenB andB
′
are impressions

from either (i) different fingers from the same subject,
or (ii) different subjects, the similarity scoreS(B,B

′
) is

termed as an impostor score. The impostor scores arising
from (i) (respectively, (ii)) are termed as the intra-subject
(respectively, inter-subject) impostor scores.

We give some intuitive understanding of why sim-
ilarity scores arising from certain pairs of fingerprint
impressions inB are correlated (or, dependent). During
the fingerprint acquisition process, multiple impressions
of a finger are obtained by successive placement of the
finger onto the sensor. Therefore, given the first impres-
sion,B, and two subsequent impressionsB1 andB2, the
similarity scoresS(B, B1) andS(B, B2) are most likely
going to be correlated. Further, the fingerprint acquisition
process is prone to many different types of uncontrol-
lable factors such as fingertip pressure, fingertip moisture
and skin elasticity factor. These factors cause some level
of dependence between fingerprint impressions of two
different fingers of the same user. If this is the case,
then we expect to see some level of correlation between
the similarity scoresS(B1, B2) where B1 and B2 are
impressions from different fingers. Also, as noted in
[3], even the scoresS(B1, B2) from different fingers
of different subjects could be correlated. All these facts
lead us to statistically model the correlation for similarity
scores in the three major categories, namely the genuine,
intra-user impostor and inter-user impostor similarity
scores.

In order to develop the framework that incorporates
correlation, we need to introduce some notation. We
denote the set consisting of thed impressions of finger
f , f = 1, 2, . . . , c, from subjecti byMi,f . The notation
S(i, j, f, f ′) =

{S(Bu, Bv); Bu ∈Mi,f , Bv ∈Mj,f ′ , Bu 6= Bv }
(6)

represents the set of all similarity scores available from
matching the fingerprint impressions of fingerf from
subjecti and those of fingerf ′ from subjectj. Three
disjoint sets of (6) are of importance, namely, the set

Entities Gi Ii Iij

Dimension,K cd(d− 1) c(c− 1)d2 c2d2

TABLE I

VALUES OF K FOR THE DIFFERENT SETSGi, Ii AND Iij . HERE c IS

THE NUMBER OF FINGERS ANDd IS THE NUMBER OF IMPRESSIONS

PER FINGER.

of genuine similarity scores (takingi = j and f = f ′

in (6)), the set of intra-subject impostor scores (i = j
andf 6= f ′), and the set of inter-subject impostor scores
(i 6= j). We denote the genuine, intra-subject impostor
and inter-subject impostor score sets by

Gi ≡
c⋃

f=1

S(i, i, f, f), Ii ≡
c⋃

f=1

c⋃
f′=1
f′ 6=f

S(i, i, f, f ′),

and Iij ≡
c⋃

f=1

c⋃

f ′=1

S(i, j, f, f ′) (7)

wherei 6= j, respectively.
We give the cardinality or dimension (the number of

possibly distinct similarity scores) of each of the sets
discussed above. The dimensions ofGi, Ii and Iij are
cd(d − 1), c(c − 1)d2 and c2d2, respectively, when the
matcherS is asymmetric. In all of these scenarios, we
will denote the dimension corresponding to each set by
K (see Table I). The total number of sets of similarity
scores arising from the genuine, intra- and inter-impostor
cases will be denoted byN ; we have thatN = n, N = n
andN = n(n− 1), respectively, for the total number of
sets of genuine, intra-subject impostor and inter-subject
scores.

When the matcherS is symmetric, the dimension as-
sociated with each of the genuine, intra-subject impostor
and inter-subject impostor sets of similarity scores gets
reduced since many of the similarity scores in each of
the three sets will be identical to each other. In the
subsequent text, we outline the methodology for vali-
dating a vendor’s claim for an asymmetric matcher. Our
methodology for constructing the ROC confidence bands
for a symmetric matcher can be handled in a similar
fashion, keeping in mind the reduction in dimensions
of each of the three sets of similarity scores discussed
above.

Subsequently,N will denote the total number of inde-
pendent sets of similarity scores, andK will denote the
dimension of each of theseN sets. Fori = 1, 2, . . . , N ,
the i-th set of similarity scores will be denoted by the
K-dimensional vector

Si = (s(i, 1), s(i, 2), . . . , s(i,K))T , (8)

wheres(i, k) is the generic score corresponding to the
k-th component ofSi, for k = 1, 2, . . . , K.

The ordered indices1, 2, . . . , K are associated to the
elements of each of the setsGi, Ii and Iij defined
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in (7) in the following way: Lets(Bf,u, Bf ′,v) denote
the similarity score obtained when matching impression
u of finger f , Bf,u, with impressionv of finger f ′,
Bf ′,v. In the case of a genuine set (that is,Si = Gi),
the order of the genuine scores is taken ass(f) ≡
(s(Bf,u, Bf,v), v = 1, 2, . . . , (u−1), (u+1), . . . , d, u =
1, 2, . . . , d) and Si = (s(1), s(2), . . . , s(c)). In the
case whenSi = Ii, the order of the scores is taken
as s(f, f ′) ≡ (s(Bf,u, Bf ′,v), v = 1, 2, . . . , d, u =
1, 2, . . . , d ) and Si = (s(f, f ′), f ′ = 1, 2, . . . , (f −
1), (f + 1), . . . , c, f = 1, 2, . . . , c ). Finally, in the
case whenSi is an inter-subject impostor set (one of
Iij), the order of the scores are taken ass(f, f ′) ≡
(s(Bf,u, Bf ′,v), v = 1, 2, . . . , d, u = 1, 2, . . . , d) and
Si = (s(f, f ′), f ′ = 1, 2, . . . , c, f = 1, 2, . . . , c).

If the scoress(i, k) are bounded between two numbers
a andb, the order preserving transformation

T (s(i, k)) = log

(
s(i, k)− a

b− s(i, k)

)
(9)

converts each score onto the entire real line. This trans-
formation yields better non-parametric density estimates
for the marginal distribution of similarity scores. The
transformed scores will be represented by the same
notation s(i, k). The distribution function for eachSi

will be denoted byF , that is,

P{ s(i, k) ≤ sk, 1 ≤ k ≤ K} = F (s1, s2, . . . , sK),
(10)

for real numberss1, s2, . . . , sK . Note that (i) F is a
multivariate joint distribution function onRK , and (ii)
we assume thatF is the common distribution function
for every i = 1, 2, . . . , N . The distribution functionF
hasK associated marginals; we denote the marginals by
Fk, k = 1, 2, . . . , K, where

P{ s(i, k) ≤ sk } = Fk(sk). (11)

III. C OPULA MODELS FORF

We propose a semi-parametric family of Gaussian
copula models as models forF . Let H1,H2, . . . , HK

be K continuous distribution functions on the real line.
Suppose thatH is aK-dimensional distribution function
with thek-th marginal given byHk for k = 1, 2, . . . ,K.
According to Sklar’s Theorem [13], there exists a unique
function C(u1, u2, . . . , uK) from [0, 1]K to [0, 1] satis-
fying

H(s1, s2, . . . , sK) = C(H1(s1),H2(s2), . . . , HK(sK)),
(12)

wheres1, s2, . . . , sK areK real numbers. The function
C is known as aK-copula function that “couples”
the one-dimensional distribution functionsHk , k =
1, 2, . . . , K to obtain H. Basically, K-copula func-
tions areK-dimensional distribution functions on[0, 1]K

whose marginals are uniform. Equation (12) can also be
used to constructK-dimensional distribution function
H whose marginals are the pre-specified distributions

Hk , k = 1, 2, . . . , K: choose a copula functionC and
define the functionH as in (12). It follows thatH is
a K-dimensional distribution function with marginals
Hk , k = 1, 2, . . . ,K.

The choice ofC we consider in this paper is theK-
dimensional Gaussian copulas [5] given by

CR(u1, u2, . . . , uK) = ΦK
R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK))

(13)
where eachuk ∈ [0, 1] for k = 1, 2, . . . ,K, Φ(·) is the
distribution function of the standard normal,Φ−1(·) is
its inverse, andΦK

R is the K-dimensional distribution
function of a normal random vector with component
means and variances given by 0 and 1, respectively,
and with correlation matrixR. Note thatR is a positive
definite matrix with diagonal entries equal to unity. The
distribution functionF will be assumed to be of the form
(12) with Hk = Fk for k = 1, 2, . . . ,K, andC = CR;
thus, we have

F (s1, s2, . . . , sK) = CR(F1(s1), F2(s2), . . . , FK(sK)).
(14)

We denote the observed genuine scores byS0 ≡
{ s0(i, k), k = 1, 2, . . . , K0, i = 1, 2, . . . , N0} with
K0 = cd(d − 1) and N0 = n. Each vector
(s0(i, 1), s0(i, 2), . . . , s0(i,K0)) is assumed to be inde-
pendently distributed according to (14) with correlation
matrix R0 and marginalsFk,0, k = 1, 2, . . . ,K0. Both
R0 and theK0 marginals are unknown and have to be
estimated from the observed scores. In Section V, we
show how this is done based on similarity scores ob-
tained from a fingerprint matching system. The observed
intra-subject and inter-subject impostor similarity scores
are denoted byS11 ≡ { s11(i, k), k = 1, 2, . . . , K11, i =
1, 2, . . . , N11} with K11 = c(c−1)d2 andN11 = n, and
S12 ≡ { s12(i, k), k = 1, 2, . . . , K12, i = 1, 2, . . . , N12}
with K12 = c2d2 and N12 = n(n − 1), respectively.
Each vector (s11(i, 1), s11(i, 2), . . . , s11(i, K11)) (re-
spectively, (s12(i, 1), s12(i, 2), . . . , s12(i,K12))) is as-
sumed to be independently distributed according to (14)
with correlation matrixR11 (R12) and marginalsFk,11,
k = 1, 2, . . . ,K11 (Fk,12, k = 1, 2, . . . , K12). The cor-
relation matricesR11, R12 and the associated marginals
are estimated from the observed impostor scores in the
same way as is done for the genuine case. Details of the
estimation procedure for the impostor case are presented
in the Appendix and [6].

IV. CONFIDENCE BANDS FOR THEROC CURVE

The Receiver Operating Curve (ROC) is a graph that
expresses the relationship between the Genuine Accept
Rate (GAR) and the False Accept Rate (FAR), and is
used to report the performance of a biometric authenti-
cation system. For the thresholdλ, the empirical GAR
and FAR can be computed using the formulas

GARe(λ) =
1

N0K0

N0∑

i=1

K0∑

k=1

I{ s0(i, k) > λ}, (15)
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and

FARe(λ) =
1

N1

{
N11∑

i=1

K11∑

k=1

I{ s11(i, k) > λ}

+
N12∑

i=1

K12∑

k=1

I{ s12(i, k) > λ}
}

, (16)

where I(A) = 1 if property A is satisfied, and0,
otherwise, andN1 = N11K11+N12K12 denotes the total
number of impostor scores. The true but unknown values
of GAR(λ) andFAR(λ) are the population versions of
(15) and (16); the expression for the populationGAR(λ)
is given by

E(GARe(λ)) =
1

N0K0

N0∑

i=1

K0∑

k=1

P{ s0(i, k) > λ}

=
1

K0

K0∑

k=1

P{ s0(1, k) > λ}

≡ G0(λ), (17)

where each set{ s0(i, k), k = 1, 2, . . . , K0} for i =
1, 2, . . . , N0 is independent and identically distributed
according to the copula model (14). Subsequently, the
probabilities in (17) are functions of the unknown gen-
uine marginal distributions,Fk,0, k = 1, 2, . . . , K0, and
the genuine correlation matrix,R0. Also, the second
equality in (17) is a consequence of the identically dis-
tributed assumption. In a similar fashion, the population
FAR(λ) is given by

E(FARe(λ)) =
1

N1

{
N11∑

i=1

K11∑

k=1

P{ s11(i, k) > λ}

+
N12∑

i=1

K12∑

k=1

P{ s12(i, k) > λ}
}

=
N11

N1

K11∑

k=1

P{ s11(i, k) > λ}

+
N12

N1

K12∑

k=1

P{ s12(i, k) > λ}

≡ G1(λ), (18)

where now, elements within each of the sets
{ s11(i, k), k = 1, 2, . . . , K11} for i = 1, 2, . . . , N11,
and{ s12(i, k), k = 1, 2, . . . , K12} for i = 1, 2, . . . , N12

are independent and identically distributed according
to the copula model (14) with correponding correlation
matrices and marginals. The probabilities in (18) are
functions of the unknown marginal distributions,Fk,11

for k = 1, 2, . . . ,K11 and Fk,12 for k = 1, 2, . . . , K12,
and the correlation matrices,R11 andR12, for the intra-
subject and inter-subject impostor scores, respectively.

In light of the notations used for the population
versions of FAR and GAR, equations (15) and (16) are
sample versions ofG0(λ) andG1(λ). Thus, we define

Ĝ0(λ) ≡ GARe(λ) and Ĝ1(λ) ≡ FARe(λ). (19)

The empirical ROC curve can be obtained by eval-
uating the expressions for GAR and FAR in (15) and
(16) at various valuesλ based on the observed similarity
scores, and plotting the resulting curve(Ĝ1(λ), Ĝ0(λ)).
However, there is an alternative way in which an ROC
curve can be constructed. Note that the ROC expresses
the relationship between the FAR and GAR, and the
threshold values are necessary only at the intermediate
step for linking the FAR and GAR values. Thus, another
representation of the ROC curve can be obtained by the
following re-parameterization: we fixp as a value of
FAR and obtain the thresholdλ∗ such thatĜ1(λ∗) = p
or, λ∗ ≡ Ĝ−1

1 (p). Substitutingλ∗ in (15) gives the ROC
curve in the form(p, Ŵ (p)), where

Ŵ (p) = Ĝ0(λ∗) ≡ Ĝ0(Ĝ−1
1 (p)). (20)

Note that in the case when there is noλ∗ such that
Ĝ1(λ∗) = p, one can re-define the inverse,Ĝ−1

1 (p) ≡
λ∗, whereλ∗ is the smallestλ satisfying Ĝ1(λ) ≤ p.
This definition of the inverse of̂G1 is more general and
always yields a uniqueλ∗. The true but unknown ROC
curve can be obtained in the same way as above by
replacing the empirical versions with the corresponding
population version; thus, we have

W (p) = G0(G−1
1 (p)), (21)

whereG−1
1 (p) ≡ λ∗, whereλ∗ is the smallestλ satis-

fying G1(λ) ≤ p. The two representations of the ROC
curves (̂G1(λ), Ĝ0(λ)) and(p, Ŵ (p)), are close approx-
imations of one another for largeN0, and therefore we
use the latter representation for deriving the confidence
bands. For fixed numbersC0 and C1 satisfying 0 ≤
C0 < C1 ≤ 1, let us consider allp = FAR values that
fall in [C0, C1]. A confidence band for the true (claimed)
ROC curve of a biometric system at confidence level
100(1 − α)% gives two envelope functions,eL(p) and
eU (p), so that forall p in [C0, C1], the true ROC curve
lies inside the interval( eL(p), eU (p) ) with probability
of at least100(1− α)%. The numbersC0 andC1 form
the lower and upper bounds of the range of FAR, and
will be chosen to cover typical reported values of FAR
in biometric applications. IfC0 = 0 and C1 = 1, the
resulting ROC confidence band is constructed for the
true ROC curve for allp in (0, 1).

For a specificp = FAR, the corresponding value of
GAR, W (p), is a proportion which takes values in[0, 1].
For proportions, the transformation

√
N0(sin−1

√
Ŵ (p)− sin−1

√
W (p)) (22)

is a variance stabilizing transformation [15]; the quantity
in (22) is asymptotically distributed as a normal with
zero mean and constant variance (independent ofp and
W (p)) for large N0. To obtain the envelopes, we first
consider a continuum version of the absolute values
of (22) for FAR values,p, in [C0, C1], and take the
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maximum overp ∈ [C0, C1]. This gives the statistic

z ≡ maxp : C0≤p≤C1

√
N0 | sin−1

√
Ŵ (p)−sin−1

√
W (p)|.
(23)

Assume for the moment that the distribution ofz is
known. If z1−α denotes the100(1 − α)% percentile of
z, the envelopes are given by

eL(p) = (sin(sin−1
√

Ŵ (p)− z1−α/
√

N0))2

and

eU (p) = (sin(sin−1
√

Ŵ (p) + z1−α/
√

N0))2. (24)

However, the distribution ofz is difficult to obtain
analytically, and thus, we present two approaches to
approximate the distribution ofz in (23) based on
(i) the bootstrap methodology, and (ii) an asymptotic
representation of the distribution ofz for largeN0.

A. The semi- and non-parametric bootstrap approaches

The value z1−α will be found based on bootstrap
samples from the fitted semi-parametric Gaussian cop-
ula models described in Section III. This bootstrap
procedure requires the simulation of scores from the
estimated distribution functions in (14) and is described
in detail in the Appendix. Thus, we denote byS∗0 ≡
{ s∗0(i, k), k = 1, 2, . . . , K0, i = 1, 2, . . . , N0}, S∗11 ≡
{ s∗11(i, k), k = 1, 2, . . . ,K11, i = 1, 2, . . . , N11} and
S∗12 ≡ { s∗12(i, k), k = 1, 2, . . . , K12, i = 1, 2, . . . , N12}
to be the sets of genuine, intra-impostor and inter-
impostor similarity scores obtained by one simulation
from the fitted copula models. Also let

W ∗(p) = G∗0(G
∗−1

1 (p)), (25)

where G∗0(λ) (respectively,G∗1(λ)) is obtained from
equation (15) (respectively, (16)) with the bootstrap
sampless∗(i, k) used in place of thes(i, k)s. We form
the quantity

z∗ ≡ maxC0≤p≤C1

√
N0 | sin−1

√
W ∗(p)−sin−1

√
Ŵ (p)|,
(26)

with Ŵ (p) andW ∗(p) defined as in equations (20) and
(25), respectively. By repeating the above procedure a
large number of times,B∗ = 1, 000, we obtain1, 000
values ofz∗, z∗1 , z∗2 , . . . , z∗1,000. The 100(1 − α)% per-
centile of the distribution ofz∗ can be approximated by
z∗[1000(1−α)], which is the[B∗(1− α)]-th element in the
ordered list ofz∗1 , z∗2 , . . . , z∗1000. Thus, we approximate
z1−α by z∗[1000(1−α)].

In the non-parametric bootstrap approach, the setS∗0
is obtained as follows: Sample with replacement oneK0

dimensional vector from theN0 sets inS0, and repeat
this samplingN0 times. The setsS∗11 andS∗12, respec-
tively, are obtained from the setsS11 andS12 in a similar
fashion. The non-parametric bootstrap confidence bands
are then constructed using the methodology outlined in
the preceding paragraph.

B. An asymptotic representation ofz

We approximate the distribution ofz asymptotically
when N0 is large. LetC0 ≡ p1 < p2 < . . . < pm <
pm+1 < . . . < pM ≡ C1 be a partition of the interval
[C0, C1]. In the Appendix, we show that

z ≡ maxC0<p<C1

√
N0 | sin−1

√
Ŵ (p)− sin−1

√
W (p)|

≈ max1≤m≤M |DM · Ĝ0,M + DM · Ĝ1,M |, (27)

where DM is a diagonal matrix with the(m,m)-th
entry given by1/

√
4W (pm)(1−W (pm)), DM · Ĝ0,M

and DM · Ĝ1,M are independent of each other, the
distribution of DM · Ĝ0,M (respectively,DM · Ĝ1,M )
is approximately aM -dimensional multivariate normal
with mean 0 (respectively, 0) and covariance matrix
given by Γ0 (respectively,Γ1) given in equation (58)
in the Appendix. The maximum in[C0, C1] is approxi-
mated by the component of the multivariate normal that
takes on the maximum absolute value. We define

max1≤m≤M |DM · Ĝ0,M + DM · Ĝ1,M | ≡ zM . (28)

The distribution ofz is approximated by the distribution
of zM for largeM . Denoting the100(1−α)% percentile
of zM by z1−α,M , the100(1−α)% confidence interval
for W (p) is given by(eL(p), eU (p)) where

eL(p) = (sin(sin−1
√

Ŵ (p)− z1−α,M/
√

N0))2

and

eU (p) = (sin(sin−1
√

Ŵ (p) + z1−α,M/
√

N0))2. (29)

C. Testing the claim of a biometric vendor

Suppose that a vendor of a biometric authentication
system claims that his/her biometric authentication sys-
tem has a ROC curve given byROCc = (p,Wc(p)),
for p in some interval[C0, C1]. Based on acquisitions
from n subjects, we can test the validity of this claim
by generating our own genuine and impostor similarity
scores, and obtaining the100(1−α)% confidence band
for the true ROC curve,(p,W (p)), for p ∈ [C0, C1].
We assume that the subjects as well as the scores
generated from the subjects in the vendor’s database are a
representative sample from the underlying population of
subjects and the corresponding distributions of genuine
and impostor scores derived from this population. If this
assumption is true, then the confidence bands constructed
from the previous section can be used for validating the
vendor’s claim. We perform the test

H0 : W (p) = Wc(p) vs. H1 : W (p) 6= Wc(p),
(30)

for somep, and will acceptH0 (the claimed ROC curve)
if

eL(p) ≤ Wc(p) ≤ eU (p) (31)

for all p ∈ (C0, C1); otherwise, we will reject it. We can
also perform a test for claims of specific values ofFRR
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andFAR, FRRc andFARc. At pc = FARc, we obtain
the upper and lower limits ofGAR(pc), GARL(pc) and
GARU (p). We will accept the claimed error rates if

GARL(pc) ≤ GARc ≤ GARU (pc) (32)

whereGARc = 1− FRRc, and reject it otherwise.

V. EXPERIMENTAL RESULTS

We evaluate the methodology developed in the previ-
ous sections for biometric authentication systems based
on fingerprints. For evaluation purposes, it is necessary
that the fingerprint databases consist of multiple impres-
sions of a finger as well as impressions from several dif-
ferent fingers for each subject. Many publicly available
databases do not meet these requirements and as a result,
we focused on two databases that were appropriate for
our purpose, namely, a database consisting of fingerprint
impressions collected in our laboratory, and a different
database obtained from West Virginia University.

The Michigan State University (MSU) database [8]
consists of fingerprint impressions from4 different fin-
gers (the right index, right middle, left index and left
middle fingers) of160 users. A total of4 impressions
per finger were obtained; 2 impressions were obtained
on the first day and the remaining two after a period of
a week. The fingerprint images were acquired using a
solid state sensor manufactured by Veridicom, Inc, with
image sizes300 × 300 and resolution500 dpi. Figure
3 show all 4 impressions of 3 fingers in this database.
The first two fingers (first two rows) are from the same
subject whereas the images in the last row are from
a different subject. A fingerprint similarity score was
generated using an asymmetric matcher, described in [7].
All raw scores ranged between0 and1000, and thus, the
transformation (9) witha = 0 and b = 1000 was used
to convert the scores onto the real line. All subsequent
analysis was performed on the transformed similarity
scores. Thus, we have the following values forN andK
(with n = 160, c = d = 4): N = 160 and dimensionality
K = 4× 4× 3 = 48 for the set of genuine scores,N =
160 andK = 4×3×42 = 192 for the set of intra-subject
impostor scores, andN = 160 × 159 = 25, 440 and
K = 42× 42 = 256 for the set of inter-subject impostor
scores. The number of parameters in the correlation
matrices that need to be estimated for the genuine, intra-
subject impostor and inter-subject impostor scores are,
respectively,(48 × 47)/2 = 1128, (192 × 191)/2 =
18, 336 and (256 × 255)/2 = 32, 640. The number of
parameters far exceeds the total number of observations
in each of the three sets of scores. In order to avoid over-
fitting, we reduce the value ofK in each case. Instead
of selecting all4 fingers, we choose onlyc = 2, namely,
the right index and right middle fingers, and use the
d = 2 impressions per finger obtained on the first day.
In this case, the number of parameters that need to be
estimated are6, 28 and120 for the genuine, intra-subject
and inter-subject impostor sets of scores, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Examples of fingerprint impressions from [8]: Each row gives
the 4 impressions per finger collected. The first two rows are different
fingers from the same subject, whereas the last row contains fingerprint
impressions from a different subject.

Databases n c d

MSU 160 2 2
WVU 263 1 2

TABLE II

VALUES OF n, c AND d FOR THE MSU AND WVU DATABASES

USED IN THE EXPERIMENTS.

The West Virginia University (WVU) fingerprint data-
base consists of fingerprint impressions from 263 differ-
ent users. We used the first 2 impressions of the right
index finger to obtain similarity scores with the same
matcher as above; thus,c = 1 and d = 2 for the
WVU database. Consequently, there is only one kind of
impostor score, namely, the inter-subject impostor score
for this database. Table II gives the number of subjects
(n), as well as the values ofc (number of different fingers
per subject) andd (number of impressions per finger) for
the MSU and WVU databases.

A. Estimating the joint distribution of similarity scores

In order to estimate the joint distribution,F , of
similarity scores corresponding to the genuine, intra-
subject and inter-subject impostor sets, we first need
to estimate each marginalFk, k = 1, 2, . . . , K and
correlation matrixR from observed data. The estimation
of Fk and R are described in detail in the Appendix
and in [6]. We show the results of the non-parametric
estimation procedure for the first 2 marginal distribu-
tions corresponding to each of the genuine, intra-subject
impostor and inter-subject impostor scores for the MSU
database (see Figure 4). Note the very good agreement
between the observed density histogram and the fitted
density curve for each figure, especially at the tails of
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(e) k = 1 (f) k = 2

Fig. 4. Fitted density functions (solid line) for the genuine (a,b),
intra-subject (c,d) and inter-subject (e,f) marginal distributions.

the distributions. A good fit at the tails is essential for the
construction of a valid ROC curve that accurately reflects
the authentication performance based on the observed
data of similarity scores.

The estimate of the genuine correlation matrix (of
dimension4× 4) is given by

R̂0 =




1.00 0.99 0.15 0.16
0.99 1.00 0.15 0.16
0.15 0.15 1.00 0.99
0.16 0.16 0.99 1.00


 . (33)

The ordered row (and column) dimensions1, 2, 3 and4
respectively represents the scores
s(B1,1, B1,2), s(B1,2, B1,1), s(B2,1, B2,2) and
s(B2,2, B2,1); recall thatc = 2 andd = 2. Consequently,
the off-diagonal entries of (33) give the correlation
between the corresponding row and column dimensions.
For example, the entry0.15 in the 2-nd row and3-rd
column of matrixR̂0 is the correlation between between
s(B1,1, B1,2) and s(B2,1, B2,2). The off-diagonal
entries ofR̂0 indicate that there is a significant amount
of correlation in the set of genuine similarity scores.
We also obtained estimates of the intra-subject (of
dimension 8 × 8) and inter-subject (of dimension
16 × 16) correlation matrices in a similar fashion (see
the Appendix). We also developed an assessment of fit
of the copula functions to the observed data and found
that the estimated Gaussian copula functions are a good
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Fig. 5. Upper and lower ROC envelopes obtained using the three
different methods: The non-parametric, semi-parametric bootstrap, and
asymptotic envelopes are represented by the symbols◦, 2, and ∗,
respectively. The middle solid line is the non-parametric ROC curve.

fit to each of the genuine, intra-subject and inter-subject
impostor sets of similarity scores. The methodology and
related plots are presented in the Appendix.

B. Construction of the ROC confidence bands

The95% ROC confidence bands are constructed based
on the semi-parametric bootstrap, asymptotic and the
non-parametric bootstrap approaches for the MSU and
WVU databases. The resulting upper and lower bounds
of all the three approaches closely match with each
other for the two databases; due to space restrictions,
we only show the bands for the MSU database in Figure
5. Figure 5 shows that the semi-parametric bootstrap
and the asymptotic approaches give good approximations
to the true upper and lower confidence bands even for
moderate sample sizes.

C. Effects of correlation on the ROC confidence bands

Our next set of experiments consist of studying the
effect of correlation among the multiple impressions of
a user on the width of the ROC confidence band. Since
this requires varying the correlation, this experiment is
not possible using real data since real data would give
only one estimate of correlation for each of the sets of
genuine, intra-subject and inter-subject impostor similar-
ity scores. Instead, our experiment is based on simulated
sets of genuine, inter-subject impostor and intra-subject
impostor similarity scores from the multivariate Gaussian
K-copula models with Toeplitz forms for the correlation
matrix. Let

R∗(ρ) =




1 ρ ρ · · · ρ
ρ 1 ρ · · ·
ρ ρ 1 · · · ρ
...

...
...

. ..
...

ρ ρ ρ · · · 1




(34)

denote the correlation matrix with all off-diagonal entries
equal toρ. The dimension ofR∗(ρ) will be different
according to whether the sets of scores are genuine, intra-
subject or inter-subject impostor scores.
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Sets/Estimates ρ̂1 ρ̂2 dimR∗(ρ1) dimR∗(ρ2)
Genuine 0.15 0.99 c d(d− 1)

Intra-Subject Impostor 0.80 0.27 c(c− 1) d2

Inter-Subject Impostor 0.26 0.55 c2 d2

TABLE III

DIFFERENT VALUES OFρ̂1 AND ρ̂2 FOR THE GENUINE,

INTRA-SUBJECT IMPOSTOR AND INTER-SUBJECT IMPOSTOR

SIMILARITY SCORES, AS WELL AS THE DIFFERENT DIMENSIONS OF

R(ρ1) AND R(ρ2) FOR AN ASYMMETRIC MATCHER.

For a genuine set, the parameterization of the cor-
relation matrix asR ≡ R∗(ρ1) ⊗ R∗(ρ2) implies that
the correlation between any two components ofs(f)
corresponding to fingerf is ρ2, and the correlation
between a component ofs(f) and a component ofs(f ′)
for two different fingers,f 6= f ′, is ρ1 · ρ2. For an
intra-subject impostor set, the paramterization of the
correlation matrix implies that the correlation between
any two components ofs(f, f ′) for each pair(f, f ′) is
ρ2, and the correlation between a component ofs(f, f ′)
and a component ofs(g, g′) for two different pairs,
(f, f ′) 6= (g, g′), is ρ1 ·ρ2. For an inter-subject impostor
set, the parameterization implies that the correlation
between any two pairs of components ins(f, f ′) is ρ2,
and the correlation between a component ofs(f, f ′)
and a component ofs(g, g′) for two different pairs,
(f, f ′) 6= (g, g′), is ρ1 · ρ2.

One advantage of selecting correlation matrices to be
of the formR ≡ R∗(ρ1)⊗R∗(ρ2) is that the matrices can
be determined from specifying only two real numbers,
ρ1 and ρ2, and is therefore, easy to use for illustrative
purposes. For a given estimated correlation matrixR̂,
we find the values ofρ1 andρ2 that minimize the sum
of Euclidean distances between the entries ofR̂ and
R∗(ρ1)⊗R∗(ρ2),

||R̂−R∗(ρ1)⊗R∗(ρ2)||2, (35)

whereR∗(ρ1) andR∗(ρ2) are as in (34) withρ1 andρ2

plugged in forρ, respectively, and⊗ is the Kronecker
delta product. The minimizers ofρ1 andρ2, ρ̂1 and ρ̂2,
for each of the genuine, intra-subject impostor and inter-
subject impostor sets of scores, as well as the dimensions
of each ofR∗(ρ1) andR∗(ρ2) are given in Table III for
the MSU database. For the WVU database, the estimated
values ofρ2 was found to be 0.99 and 0.39, respectively,
for the genuine and impostor sets of similarity scores.

In order to show the effects of increasing correlation
on the ROC confidence bands, four combinations of
(ρ1,ρ2) were selected. The first three combinations are
(i) (ρ1 = 0, ρ2 = 0), (ii) (ρ1 = 0, ρ2 = ρ̂2),
and (iii) (ρ1 = ρ̂1, ρ2 = ρ̂2), where ρ̂1 and ρ̂2 are
selected according to the entries of Table III for each
set of genuine, intra-subject impostor and inter-subject
impostor similarity scores. The fourth combination (iv)
is obtained by setting the genuineρ1 to 0.6 and the
remainingρ1s andρ2s selected according to the entries in
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Fig. 6. Effects of correlation on the ROC confidence bands. The
lines with ’*’, 2, ◦ and ×, respectively, denote the four different
combinations of intra-finger and inter-finger correlations (i), (ii), (iii)
and (iv).

Table III. The 95% (α = 0.05) level confidence bands for
the ROC curve were constructed based onB∗ = 1, 000
bootstrap resamples. Figure 6 gives the ROC confidence
bands based on the semi-parametric bootstrap. Note that
the width of the confidence bands generally increases
as we move from combination (i) to (iv). The median
widths of the confidence bands for the four combinations
are 4.62, 5.41, 5.51, 6.06, respectively. The effects of
correlation on the confidence bands using the asymptotic
approach and for the WVU database were similar to the
bootstrap approach, and therefore, are not presented here.

D. Validation of the ROC confidence bands

We conducted several tests to validate the ROC confi-
dence bands at a specified confidence level. Recall that
the 100(1− α)% ROC confidence bands, by definition,
cover the true ROC curve with a probability ofat least
100(1−α)% on repeated sampling from the underlying
population of similarity scores. Treating the entire MSU
database withn = 160 subjects as the underlying
population, we selected a subset of120 subjects from this
population for constructing the semi-parametric boot-
strap ROC confidence bands; a subset of120 subjects (as
opposed to smaller subsets of the data) is selected so that
estimation of the non-parametric marginal distributions
can be performed reliably. We then determined if the
population ROC curve (the empirical ROC curve for
the 160 subjects) was within the constructed confidence
bands. This procedure was repeated 200 times (with
different subsets of 120 subjects from the population of
160), and each time, we determined if the population
ROC curve was within the constructed ROC confidence
bands. The percentage of coverage based on this valida-
tion procedure should be at least100(1 − α)%. In our
experiments we selectedα = 0.05 for the 95% ROC
confidence bands, and obtained a coverage proportion
of 99.5%. For the WVU database, validation of the
ROC confidence bands was carried out with sub-samples
of 198 users. The procedure of constructing the ROC
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confidence bands was repeated 500 times. The empirical
ROC curve (ROC curve based on the 263 users) was
found to be inside the95% confidence bands in 497 (out
of the 500) trials, resulting in a coverage probability of
99.4%.

E. Sample size requirements

As correlated multiple biometric observations affect
the width of the ROC confidence bands, we now proceed
to determine the number of users,n∗, required by a
system to report a100(1 − α)% ROC confidence band
with a width of at mostw. We takew = 1%. Our
results are based on simulation with correlations selected
according to combinations (i-iv) in Section V-C. Thus,
the results reported here can be generalized to real
data which exhibit different degrees of intra-finger and
inter-finger correlations. The values ofn∗ are given
for different combinations ofc and d, and therefore,
varying dimensionality of the genuine, intra-subject and
inter-subject sets of similarity scores. Consequently, we
assume a common marginal for each of the three sets
given by the mixture over component scores. We selected
C0 = 0.1%, C1 = 10% and M = 21 here, and
pm = 10(−1+0.1(m−1)) , m = 1, 2, . . . , M . For each
m = 1, 2, . . . , M , the width of the ROC confidence band
at eachFAR = pm (see equation (29)) is given by

w(pm) = eU (pm)− eL(pm)

=
4z1−α,M

√
W (pm)(1−W (pm))√

n
(36)

for large n(= N0), wherez1−α,M is the 100(1 − α)%
percentile of the distribution ofzM defined in (28); the
second equality is from applying the delta method [15] to
eU (pm)−eL(pm) in (29). In order to determinez1−α,M ,
we first estimate the covariance matricesΓ0 andΓ1 (see
equation (59) in the Appendix) as accurately as possible.
This estimation is performed based on 1000 simulated
samples from each of the correlation combinations (i-iv)
for n = 1000 subjects. To achieve a width ofw for the
confidence band implies thatw(pm) ≤ w for all pm,
m = 1, 2, . . . , M . Thus, the minimum number of users
required is given by the formulan∗ = n0 + 1 wheren0

is the greatest integer less than or equal to

max1≤m≤M

(
4z1−α,M

√
W (pm)(1−W (pm))
w(pm)

)2

.

(37)
We also compare the minimum sample size requirements
given by our method to that of the subset bootstrap
approach [3]. One important point is that [3] obtains
confidence rectangles, and not confidence bands, at each
threshold value on the ROC curve. In order to perform a
valid band to band comparison of the two methods, we
applied the subset bootstrap procedure to the alternative
parametrization of the ROC curve given in (20). As
mentioned earlier, the subset bootstrap is not able to

give an overall confidence level of100(1 − α)% using
M individual 100(1 − α)% confidence intervals. To
guarantee a100(1 − α)% confidence level, the level
of each individual confidence interval would have to
be 100(1 − α/M)% using Bonferroni’s inequality. For
m = 1, 2, . . . , M , the minimum sample size require-
ment, nsb(m), for the m-th confidence interval can
be obtained using similar asymptotic arguments as in
Section IV-B with C0 = C1 = pm. It follows that
the minimum sample size required to achieve the pre-
specified width for allM confidence intervals is given
by

n∗sb = max1≤m≤M nsb(m). (38)

Table IV reports the averagen∗ andn∗sb over10 simu-
lation runs with the numbers belown∗ (respectively,n∗sb)
representing the average total number of observations
n∗cd (n∗sbcd). The numbers in the parenthesis are the
corresponding standard deviations over the 10 runs. If
a biometric authentication system was tested based on
n users, wheren is chosen according to then∗ entries
in Table IV, we will be95% certain that the true ROC
curvewill lie in the interval [Ŵ − 0.5 , Ŵ + 0.5]. Table
IV indicates that as the correlation among the multiple
impressions of a finger increases for each fixedc andd,
the total number of observations needed to achieve the
width w for the confidence band increases. The same
holds true whenc and d values are increased for each
correlation combination. Thus, in the presence of non-
zero correlation, we are better off selecting a larger
number of users rather than increasing the number of
acquisitions per user. Note that the sample sizes required
by our method,n∗, is smaller compared ton∗sb for
achieving the same overall confidence level.

We also obtained the minimum sample sizes deter-
mined by the “Rule of 3” [20] and the “Rule of 30” [14]
(see Appendix for their derivation). For the fingerprint
database [8],n3 was approximately 150 for all pairs
of correlation combination,c and d, while n30 was
approximately 770. Comparing the values ofn3 and
n30 with n∗cd, we see that bothn3 and n30 grossly
underestimate the total number of biometric acquisitions
required to achieve a desired width. The underestimation
becomes more prominent when significant correlation is
present between multiple acquisitions of the biometric
templates from a subject.

To illustrate the effects of correlation on the sample
size requirement for the WVU database, we choose three
combinations of the genuine and impostor within finger
correlations, namely,(ρgen

2 , ρimp
2 ) = (0, 0), (0.49, 0.19)

and(0.99, 0.39) to reflect the no correlation (or, indepen-
dence), intermediate and high correlation states. Table V
reports the averagen∗ andn∗sb over 10 simulation runs
for the widthw = 1%, with the average total number of
observations,n∗d andn∗sbd given by the entries directly
below then∗s. The numbers in the parenthesis are the
corresponding standard deviations over the 10 runs. Note
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Values ofc andd

c = 1, d = 2 c = 2, d = 2 c = 2, d = 3

Correlations n∗ n∗sb n∗ n∗sb n∗ n∗sb

(ρ1, ρ2) mean mean mean mean mean mean
(sd) (sd) (sd) (sd) (sd) (sd)

(0,0) 11,443 48,674 5,809 24,201 1,967 8,143
(246) (600) (148) (373) (31) (136)

22,885 97,350 23,235 96,810 11,801 48,860
(492) (1,200) (590) (1,493) (190) (814)

(0, ρ̂2) 20,439 90,725 10,476 46,209 9,505 43,500
(790) (315) (279) (837) (263) (455)

40,877 181,450 41,905 184,840 57,028 261,000
(1,581) (630) (1,115) (3,346) (1,580) (2,729)

(ρ̂1, ρ̂2) 21,403 90,477 11,056 47,855 9,749 46,269
(1,004) (407) (346) (430) (163) (968)
42,806 180,950 44,223 191,420 58,492 277,620
(2,008) (813) (1,382) (1,720) (977) (5,811)

(0.6, ρ̂2) 19,015 89,993 13,321 61,394 11,558 56,723
(503) (429) (506) (884) (423) (826)

38,029 179,990 53,285 245,570 69,346 340,340
(1,006) (858) (2,026) (3,536) (2,540) (4,956)

TABLE IV

MEAN n∗ AND n∗sb VALUES FOR ACHIEVING A WIDTH OF 1% FOR THE95% CONFIDENCE BAND. THE TOTAL NUMBER OF OBSERVATIONS,

n∗cd AND n∗sbcd, ARE GIVEN BELOW THE n∗ AND n∗sb ENTRIES, RESPECTIVELY. ENTRIES ARE CALCULATED AS THE MEANS OF10

SIMULATION RUNS. THE CORRESPONDING STANDARD DEVIATIONS ARE GIVEN IN PARENTHESIS.

Values ofc andd

c = 1, d = 2 c = 1, d = 3 c = 1, d = 4

Correlations n∗ n∗sb n∗ n∗sb n∗ n∗sb

(ρgen
2 , ρimp

2 ) mean mean mean mean mean mean
(sd) (sd) (sd) (sd) (sd) (sd)

(0,0) 12,875 47,526 4,251 16,170 2,103 8,144
(283) (655) (77) (280) (37) (169)

25,749 95,050 12,754 48,510 8,412 32,580
(477) (1,310) (231) (841) (148) (676)

(0.49, 0.19) 15,215 61,195 7,719 35,053 6,200 29,149
(513) (1,074) (215) (697) (299) (940)

30,430 122,390 23,158 105,160 24,799 116,600
(1,025) (2,148) (645) (2,091) (1,197) (3,761)

(0.99, 0.39) 23,802 90,334 20,898 86,357 18,748 84,478
(886) (170) (414) (400) (698) (766)

47,604 180,670 62,693 259,070 74,991 337,910
(1,772) (304) (1,244) (1,200) (2,793) (3,064)

TABLE V

MEAN n∗ AND n∗sb VALUES FOR ACHIEVING A WIDTH OF 1% FOR THE95% CONFIDENCE BAND BASED ON THEWEST V IRGINIA

UNIVERSITY DATABASE. THE TOTAL NUMBER OF OBSERVATIONS, n∗cd AND n∗sbcd, ARE GIVEN BELOW THE n∗ AND n∗sb ENTRIES,

RESPECTIVELY. ENTRIES ARE CALCULATED AS THE MEANS OF10 SIMULATION RUNS. THE CORRESPONDING STANDARD DEVIATIONS ARE

GIVEN IN PARENTHESIS.
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here, again, thatn∗ is smaller compared ton∗sb for
achieving the same overall confidence level.

VI. CONCLUSION

With the growing deployment of biometric systems in
several government and commercial applications, it has
become even more important to validate the performance
levels of a system claimed by a vendor. We present a
flexible semi-parametric approach for estimating both the
genuine and impostor distributions of similarity scores
using multivariate Gaussian copula functions with non-
parametric marginals. Confidence bands for the ROC
curve are constructed using (i) semi-parametric bootstrap
re-samples, and (ii) asymptotic approximations derived
from the estimated models. We also determine the min-
imum required number of subjects needed to achieve a
desired width for the confidence band of the ROC curve.
Currently, the implementation of the ROC validation
procedure and the estimation of required number of
samples are based on fingerprint databases with a small
number of subjects. We plan to test our methodology on
larger databases as they become available. We will also
focus on extending the current framework to validate
reported performances of multimodal systems.
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APPENDIX I
SIMULATION FROM F

We first describe how to simulate samples fromF
assuming thatF is of the form (14). This simulation
procedure will be needed for the estimation of the
marginalsFk and generating bootstrap samples fromF
to construct the ROC confidence bands. The following
steps outline how to generateN samples fromF :
(1) Generate a vectorZ = (Z1, Z2, . . . , ZK)T from
ΦK

R , the K-dimensional multivariate normal with mean
0, variance 1, and correlation matrixR, (2) Obtain
the vectorU = (U1, U2, . . . , UK)T by letting Uk =
Φ(Zk) for k = 1, 2, . . . , K, and (3) Obtain the vector
S∗ = (s∗1, s

∗
2, . . . , s

∗
K)T using s∗k = F−1

k (Uk) for k =
1, 2, . . . , K, whereF−1

k is the inverse ofFk. It follows
thatS∗ is a sample fromF . In order to obtain a sample
of sizeN , steps (1-3) are repeatedN times resulting in
the simulated samples{s∗(i, k) , k = 1, 2, . . . , K } for
i = 1, 2, . . . , N . In practice, one difficulty is that the
marginal distributions and the correlation matrices for
the genuine and impostor similarity scores will generally
be unknown, and will have to be estimated from the
observed scores (this is discussed in the subsequent
section). Once they have been estimated, we can follow
steps (1-3) to obtain samples from the fitted copula
models.

A. Estimation ofFk and R

The marginal distribution functions,Fk, and the cor-
relation matrixR are generally unknown and have to be
estimated from the observed vector of similarity scores,
{Si, : i = 1, 2, . . . , N }. The empirical distribution
function for thek-th marginal is given by

Ek(s) =
1
N

N∑

i=1

I{ s(i, k) ≤ s }, (39)
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whereI(A) is the indicator function of the setA; I(A) =
1 if A is true, and0 otherwise. Note thatEk(s) = 0 for
all s < smin and Ek(s) = 1 for all s ≥ smax, where
smin andsmax, respectively, are the minimum and max-
imum of the observations{s(i, k) : i = 1, 2, . . . , N}.
Next, we defineH(s) ≡ −log(1 − Ek(s)), and note
that discontinuity points ofEk(s) will also be points of
discontinuity ofH(s). In order to obtain a continuous
estimate ofH(s), the following procedure is adopted:
For an M -partition smin ≡ s0 < s1 < . . . < sM ≡
smax of [smin, smax], the value ofH(s) at a point
s ∈ [smin, smax] is redefined via the linear interpolation
formula

Ĥ(s) = H(sm)+(H(sm+1−H(sm))· s− sm

sm+1 − sm
(40)

wheneversm ≤ s ≤ sm+1 and subsequently, the esti-
mated distribution function,̂Fk(s), of Fk(s) is obtained
as

F̂k(s) = 1− exp{−Ĥ(s)}. (41)

It follows that eachF̂k(s) is a continuous distribution
function. Next we generateB∗ samples fromF̂k: (1)
Generate a uniform random variableU in [0, 1], (2)
Define V = −log(1 − U), and (3) Find the valueV ∗

such thatĤ(V ∗) = V . It follows that V ∗ is a random
variable with distribution functionF̂k. To generateB∗

independent realizations from̂Fk, we repeat the steps (1-
3) B∗ times. Finally, a non-parametric density estimate
of Fk is obtained based on the simulated samples using
a Gaussian kernel.

The estimate ofR based on the observed similarity
score vectors{Si : i = 1, 2, . . . , N} is obtained
in the following way: Define a new vectorZi =
(Z(i, 1), Z(i, 2), . . . , Z(i,K))T where

Z(i, k) = Φ−1(Ek(s(i, k)), (42)

for k = 1, 2, . . . ,K. The mean vector̄Z is then obtained
by averaging over the vectorsZi, that is,

Z̄ =
1
N

N∑

i=1

Zi (43)

and the covariance matrix is defined as

J =
1
N

N∑

i=1

(Zi − Z̄) · (Zi − Z̄)T . (44)

The estimate ofρkk′ is given by

ρ̂kk′ =
σkk′√

σkkσk′k′
, (45)

whereσkk′ is the (k, k
′
)-th entry ofJ in (44), and the

estimated correlation matrix is given bŷR = ((ρ̂kk′ )).
The total number of correlation parameters that need to
be estimated isK(K−1)/2; thus, it is necessary to have
K(K− 1)/2 much smaller thanN to avoid over-fitting.

B. Assessing the Goodness of Fit

We present a method here for graphically assessing the
goodness of fit of the estimated multivariate GaussianK-
copula model to the observed data. We first give the gen-
eral methodology, and then apply it to the observed gen-
uine and impostor similarity scores. Lower dimensional
marginals of aK-copula functionC(u1, u2, . . . , uK) can
be obtained by fixing the irrelevantuks to be equal
to one: For example, if we require the 2-dimensional
copula function in the dimensions ofk and k

′
, where

k 6= k
′
, k, k

′
= 1, 2, . . . ,K, this can be obtained by

setting the otherujs (j 6= k , j 6= k
′
) to 1, that is,

Ck,k′ (uk, uk′ ) ≡ C(1, 1, . . . , uk, 1, . . . , 1, uk′ , 1, . . . , 1).
(46)

It follows that all lower k-dimensional (k < K)
marginals of the multivariate GaussianK-copula are
Gaussiank-copulas. In particular, fork = 2, we obtain(
K
2

)
bivariate Gaussian copulas from a single Gaussian

K-copula as in (13). Each bivariate Gaussian copula
is characterized by a single correlation parameter; for
dimensionsk andk′, this parameter isρkk′ of matrix R.

The bivariate empirical copula based onN indepen-
dent bivariate observations(Xi, Yi) , i = 1, 2, . . . , N is
defined as follows: For each0 ≤ x ≤ 1 and0 ≤ y ≤ 1,

Cemp(x, y) =
1
N

N∑

i=1

I{Xi ≤ X([Nx]) , Yi ≤ Y([Ny])},
(47)

where X([Nx]) (respectively, Y([Ny])) is the [Nx]-th
([Ny]-th) element in the ordered list ofX (Y ) samples,
and the notation[u] represents the greatest integer less
than or equal tou. The empirical copula function gives
the best approximation to the true but unknown copula
function that generated the observed data(Xi, Yi) , i =
1, 2, . . . , N .

Our graphical test for checking goodness of fit consists
of the following steps: (i) Obtain the

(
K
2

)
2-dimensional

marginal copulas based on̂R. For the dimension pair
(k, k

′
), we obtain the contour plot ofCk,k′ (uk, uk′ )

given by

Ck,k′ (uk, uk′ ) = Φ2
ρ̂

kk
′ (Φ

−1(uk), Φ−1(uk′ )). (48)

(ii) Obtain the empirical copula based on the score
vectors (s(i, k), s(i, k

′
))T for i = 1, 2, . . . , N using

equation (47); heres(i, k) are theX samples ands(i, k
′
)

are theY samples.
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C. Results for the fingerprint database [8]

The estimates of the intra-subject impostor correlation
matrix (of dimension(8× 8)) is given byR̂11 =



1.00 0.58 0.52 0.42 0.90 0.53 0.54 0.41
0.58 1.00 0.44 0.47 0.58 0.46 0.88 0.46
0.52 0.44 1.00 0.45 0.50 0.86 0.37 0.42
0.42 0.47 0.45 1.00 0.41 0.41 0.43 0.87
0.90 0.58 0.50 0.41 1.00 0.53 0.55 0.41
0.53 0.46 0.86 0.41 0.53 1.00 0.40 0.42
0.54 0.88 0.37 0.43 0.55 0.40 1.00 0.44
0.41 0.46 0.42 0.87 0.41 0.42 0.44 1.00




.

(49)
We also obtained the estimate of the inter-subject im-
postor correlation matrix,̂R12, which is of dimension
16×16. Due to the large dimensionality associated with
this matrix, we do not present it here.

For assessing the goodness of fit, the total number of
pairs of components for the sets of genuine, intra-subject
and inter-subject scores are, respectively,

(
4
2

)
= 6,

(
8
2

)
=

28, and
(
16
2

)
= 120. Figures 7, 8 and 9 respectively

give the plots of 6 component pairs for the genuine,
intra-subject impostor and inter-subject impostor sets in
this case. Note that the figures indicate that there is a
good agreement between the empirical and the proposed
Gaussian copula functions. We checked all of the pair-
wise copula plots and found that there were no major
discrepancies between the empirical contours and the
fitted Gaussian copula contours. Thus, we conclude that
the proposed Gaussian copula functions are good models
for representing the correlation structures in all of the
genuine, intra-subject and inter-subject sets of scores.
There is always a problem of quantitatively assessing
the quality of a model fit to the observed data when
the sample size is very large (as in the case of the
genuine and impostor sets of similarity scores here).
A small discrepancy between the observed data and
model fit will magnify due to the large sample size and
cause a quantitative goodness of fit test to be statistically
significant. The point to note here is that the test can
potentially be statistically significant even if the models
are a good fit to the observed data set.

D. Rules of 3 and 30

Recall that the Rule of 3 and the Rule of 30 are
rules of thumb to select the sample size,n, for the
reliable estimation of an error probability,p, based on
n independent binary observations,x1, x2, . . . , xn, with
P (xi = 1) = 1− P (xi = 0) = p (see [20] and [14] for
details). Since both the rules were derived for setting up
confidence intervals for specific values of FAR and GAR
(and not confidence bands for a range of FAR and GAR
values), we were required to modify them slightly to suit
the present case. For the Rule of 3, we computed the
quantityFRRm = 1−GAR(pm) for m = 1, 2, . . . , M
and derived the minimum sample size as

n3 = max1≤m≤M
3

FRRm
. (50)

The smallest sample size based on the Rule of 30 was
obtained using the formula

n30 = max1≤m≤M
(2 ∗ 1.96)2

FRRm
. (51)

E. Asymptotic Theory

We derive several results below to validate the asymp-
totic representation ofz in equation (28). In proving
these results, we assume that the biometric entities
considered are the different subjects, and the matcherS
is asymmetric. Recall that the total number of subjects
was denoted byn, andd impressions ofc fingers for each
subject were acquired for validating a vendor’s claim.
In this case,N0 = n, K0 = cd(d − 1), N11 = n,
K11 = c(c − 1)d2, N12 = n(n − 1) and K12 = c2d2.
The asymptotic results presented here will be forn →∞
with c andd fixed.

We will first derive the asymptotic theory for√
N0(Ŵ (p)−W (p)), and then extend it to the quantity√
N0(sin−1

√
Ŵ (p) − sin−1

√
W (p)). We denote the

densities ofG0 and G1, assuming they exist, byg0

andg1, respectively. The quantity
√

N0(sin−1
√

Ŵ (p)−
sin−1

√
W (p)) is a continuous function ofp ∈

[C0, C1] since the component marginals and their es-
timates for the genuine, intra-subject impostor and
inter-subject impostor joint distributions are continu-
ous. In order to find the asymptotic distribution of√

N0 maxC0≤p≤C1 |sin−1
√

Ŵ (p) − sin−1
√

W (p)|, we
first define a partition of[C0, C1]: C0 ≡ p1 < p2 <

. . . < pM ≡ C1. Defining z(p) = sin−1
√

Ŵ (p) −
sin−1

√
W (p), we have

√
N0 maxC0≤p≤C1 |z(p)| ≈

√
N0 max1≤m≤M |z(pm)|

(52)
for large M . Thus, we first derive the joint as-
ymptotic distribution of the M -dimensional vector√

N0 z(pm), m = 1, 2, . . . ,M , and then obtain the
distribution of the maximum of the absolute values of
thesem components. Note that by Taylor’s expansion,
we have

√
N0 z(p) ≈ D(p)

√
N0(Ŵ (p)−W (p)) (53)

for largeN0, whereD(p) = 1√
4W (p)(1−W (p))

. In other

words, we require to find the distribution ofDM · ŴM

where

ŴM ≡
√

N0 (Ŵ (p1)−W (p1), Ŵ (p2)−W (p2),
. . . , Ŵ (pM )−W (pM ))T (54)

is an M -dimensional vector andDM is the diagonal
matrix with the (m,m)-th entry given byD(pm). We
introduce some notation before stating the main results.
For m = 1, 2, . . . ,M , defineξm and ξ̂m to be thepm-th
upper quantiles ofG1 and Ĝ1, respectively, that is

ξm ≡ G−1
1 (pm) and ξ̂m ≡ Ĝ−1

1 (pm). (55)
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Fig. 7. Nine level curves (at levels0.1, 0.2, . . . , 0.9) indicating a good match between the empirical copula (black lines) and the estimated
bivariate Gaussian copula (red lines) along dimensionsk andk′ for the genuine scores.
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Fig. 8. Nine level curves (at levels0.1, 0.2, . . . , 0.9) indicating a good match between the empirical copula (black lines) and the estimated
bivariate Gaussian copula (red lines) along dimensionsk andk′ for the intra-subject impostor scores.
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Fig. 9. Nine level curves (at levels0.1, 0.2, . . . , 0.9) indicating a good match between the empirical copula (black lines) and the estimated
bivariate Gaussian copula (red lines) along dimensionsk andk′ for the inter-subject impostor scores.

Since Ĝ1 − G1 converges almost surely to0, we
have ξ̂m − ξm → 0 as N0 → ∞. Also, denoting
Ĝ0,M ≡ √

N0 ( Ĝ0(ξ̂1) − G0(ξ̂1), Ĝ0(ξ̂2) −
G0(ξ̂2), . . . , Ĝ0(ξ̂M ) − G0(ξ̂M ) )T and Ĝ1,M ≡√

N0 ( G0(ξ̂1) − G0(ξ1), G0(ξ̂2) − G0(ξ2), . . . ,
G0(ξ̂M )−G0(ξM ) )T , we have

ŴM = Ĝ0,M + Ĝ1,M . (56)

Lemmas 1 - 4 in Appendix II can be used to show that
Ĝ0,M andĜ1,M are asymptotically independent, and the
limiting distributions ofĜ0,M andĜ1,M are multivariate
normals with means 0 and covariance matrices given by
Θ0 and N0

N1
Θ1, respectively; see Lemmas 2 and 3 for the

forms of Θ0 andΘ1, respectively. Thus, it follows that
for the M -partition C0 ≡ p1 < p2 < . . . pM ≡ C1, the
distribution of

√
N0 (z(pm), m = 1, 2, . . . , M) is given

by

DM · ŴM = DM · Ĝ0,M + DM · Ĝ1,M . (57)

SinceĜ0,M and Ĝ1,M are asymptotically independent,
it follows that DM · Ĝ0,M andDM · Ĝ1,M are also as-
ymptotically independent, and the limiting distributions
of DM · Ĝ0,M andDM · Ĝ1,M are multivariate normals
with means 0 and covariance matrices given by

Γ0 = DMΘ0D
T
M and Γ1 =

N0

N1
DMΘ1D

T
M ,

(58)
respectively. Since the covariance matrices above depend
on unknown parameters, they will, in practice, be de-
termined by plugging in parameter estimates in place
of the unknown parameters; for example, the(m,m)-th

entry of DM , DM (pm) = 1√
4W (pm)(1−W (pm))

, will be

estimated by plugging in̂W (pm) in place ofW (pm).

APPENDIX II
LEMMAS

We now state and prove the required lemmas. De-
fine G11(λ) = 1

K11

∑K11
k=1 P{s11(1, k) > λ} and

G12(λ) = 1
K12

∑K12
k=1 P{s12(1, k) > λ}. It follows

then, thatG1(λ) = N11K11
N1

G11(λ) + N12K12
N1

G12(λ).
For m = 1, 2, . . . ,M , define ξ12,m = G−1

12 (pm).
We introduce a few notations for the subsequent dis-
cussion: LetβH(k, m) = P{sH(1, k) > ξH,m} and
βH(k, k′,m, m′) = P{sH(1, k) > ξH,m, sH(1, k′) >
ξH,m′} for the setsH = {0, 11, 12}, respectively,
denoting the genuine, intra-subject impostor and inter-
subject impostor cases.

We state
Lemma 1:The M -dimensional vector

√
N12

(
g1(ξ1)( ξ̂1 − ξ1)√

p1(1− p1)
,
g1(ξ2)(ξ̂2 − ξ2)√

p2(1− p2)
, . . .

. . . ,
g1(ξM )(ξ̂M − ξM )√

pM (1− pM )

)T

→ ZM (59)

whereZM is a multivariate normal random variable with
zero means, unit variances and correlation matrix given
by

Θ12(m,m′) =
1

K2
12

K12∑

k=1

K12∑

k′=1

θ12(k, k′,m, m′) (60)

To appear in IEEE Trans. on PAMI, 2006.
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where

θ12(k, k′, m, m′) =
β12(k, k′, m, m′)− β12(k, m)β12(k

′, m′)√
pm(1− pm) ·

√
pm′(1− pm′)

.

(61)
Proof: Consider the expression

P

{√
N12

(g1(ξm)(ξ̂m − ξm))√
pm(1− pm)

≤ xm,

1 ≤ m ≤ M}

= P



ξ̂m ≤ ξm +

xm

g1(ξm)

√
pm(1− pm)

N12
,

1 ≤ m ≤ M}

= P



Ĝ1


ξm +

xm

g1(ξm)

√
pm(1− pm)

N12


 > pm,

1 ≤ m ≤ M }
= P {K11X11 + K12X12 > N12pm,

1 ≤ m ≤ M } ,

where XH is a Binomial random variable with para-
metersNH for the total number of trials andpm

H ≡
GH(ξm + xm

g1(ξm)

√
pm(1−pm)

N12
) as the probability of suc-

cess in each trial, forH = {11} and {12}. It follows
that the last expression above can be re-written as
P{K12 Zm

12 > Qm, m = 1, 2, . . . , M} where

Qm =
1√

N12pm
12(1− pm

12)

[
N1pm −

N1G1


ξm +

xm

g1(ξm)

√
pm(1− pm)

N12


−

K11Z
m
11

√
N11pm

11(1− pm
11)

]
,

Zm
11 = (X11 − N11p

m
11)/

√
N11pm

11(1− pm
11), and

Zm
12 = (X12 − N12p

m
12)/

√
N12pm

12(1− pm
12).

As n → ∞, using the Taylor’s expansion for

G1

(
ξm + xm

g1(ξm)

√
pm(1−pm)

N12

)
and the facts that

N11/N12 → 0, N1/N12 → K12 and pm
12 → pm, we

get Qm → −K12 xm. The limiting distributions of
eachZm

H is normal with mean 0 and variance 1, for
u = {11} and {12}. Further, a computation of the
covariance gives the expression (60) for the covariance
betweenZm

12 andZm′
12 . QED.

For the next lemma, defineθ0(k, k′,m,m′) by

θ0(k, k′,m, m′) = β0(k, k′,m, m′)−β0(k, m)β0(k′, m′),
(62)

and letΘ0 be theM×M matrix whose(m,m′)-th entry
is given by

Θ0(m,m′) =
1

K2
0

K0∑

k=1

K0∑

k′=1

θ0(k, k′,m, m′). (63)

We state

Lemma 2:Let t = (t1, t2, . . . , tM )T . If ϕ̂0(t) de-
notes the characteristic function of̂G0,M , andϕ0(t) ≡
exp

{− 1
2 tT Θ0 t

}
is the characteristic function of anM -

dimensional normal with mean 0 and covariance matrix
Θ0, then

|ϕ̂0(t)− ϕ0(t)| → 0 (64)

asn →∞.
Proof: The proof of Lemma 2 will first involve condi-
tioning on ξ̂m for m = 1, 2, . . . , M . Using the mul-
tivariate Central Limit Theorem [15], it follows that√

N0(Ĝ0(ξ̂m) − G0(ξ̂m)) converges to anM -variate
normal distribution with zero means and covariance
matrix given by Θ̂0, where Θ̂0 is the matrix Θ0 in
(63) with ξ̂m used in place ofξ12,m. But, note that,
ξ̂m → ξ12,m so thatΘ̂0 → Θ0. Lemma 2 follows. QED.

For the next lemma, letΘ1 denote theM ×M matrix
whose(m,m′)-th entry is given by

σ12(m,m′) = J(m) ·Θ12(m,m′) · J(m′), (65)

whereΘ12(m,m′) is as given in (60) and

J(m) ≡
√

pm(1− pm) · g0(ξm)
g1(ξm)

.

We state
Lemma 3:Let u = (u1, u2, . . . , uM )T . If ϕ̂1(u)

denotes the characteristic function of
√

N12
N0

Ĝ1,M and

ϕ1(u) ≡ exp
{− 1

2 uT Θ1 u
}

, then

|ϕ̂1(u)− ϕ1(u)| → 0 (66)

asn →∞.
Proof: The m-th component ofĜ1,M ,

√
N0(G0(ξ̂m)−

G0(ξm)), can be written as
√

N0g0(ξm)(ξ̂m−ξm) using
Taylor’s expansion for largen since ξ̂m − ξm → 0. We
can re-write this as
√

N0

N12

g0(ξm)
g1(ξm)

·
√

pm(1− pm)·
(√

N12
(ξ̂m − ξm)√
pm(1− pm)

)
.

(67)
Lemma 3 follows from applying Lemma 1 to (67). QED.

The next lemma is
Lemma 4:Let ϕ0,1 ( t , u ) ≡ E(eitT Ĝ0,M+iuT Ĝ1,M )

be the characteristic function of(Ĝ0,M , Ĝ1,M ). Then,

|ϕ0,1(t , u)− ϕ0(t) · ϕ1(
√

N0

N12
u)| → 0 (68)

as n → ∞, whereϕ0(t) and ϕ1(u) are as defined in
Lemmas 2 and 3, respectively.
Proof: We first condition on all the impostor similarity
scores. Thus, we have

ϕ0,1(t, u)

= E(eitT Ĝ0,M+iuT Ĝ1,M )

= E(eiuT Ĝ1,M E(eitT Ĝ0,M | S11 ∪ S12))

= E(eiuT Ĝ1,M ϕ∗0(t)),
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whereϕ∗0(t) is ϕ0(t) with Θ0 replaced byΘ̂0. Next, we
have

|ϕ0,1(t, u)− ϕ0(t)ϕ1(
√

N0

N12
u)|

= |M1 + M2| ≤ |M1|+ |M2|
where M1 = E(eiuT Ĝ1,M (ϕ0

∗(t) − ϕ0(t)) and

M2 = E(eiuT Ĝ1,M ϕ0(t))−ϕ0(t)ϕ1(
√

N0
N12

u). Note that
|M1| ≤ E|ϕ∗0(t)− ϕ0(t))| → 0 asn →∞ (sinceϕ∗0(t)
andϕ0(t) are bounded functions by Lemma 2, and point-
wise convergence implies convergence in expectation).

Also |M2| ≤ |ϕ̂1(
√

N0
N12

u) − ϕ1(
√

N0
N12

u)| → 0 using
Lemma 3. Lemma 4 follows. QED.
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