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Abstract—This paper is concerned with the performance evaluation of fingerprint verification systems. After an initial classification of

biometric testing initiatives, we explore both the theoretical and practical issues related to performance evaluation by presenting the

outcome of the recent Fingerprint Verification Competition (FVC2004). FVC2004 was organized by the authors of this work for the purpose

of assessing the state-of-the-art in this challenging pattern recognition application and making available a new common benchmark for an

unambiguous comparison of fingerprint-based biometric systems. FVC2004 is an independent, strongly supervised evaluation performed

at the evaluators’ site on evaluators’ hardware. This allowed the test to be completely controlled and the computation times of different

algorithms to be fairly compared. The experience and feedback received from previous, similar competitions (FVC2000 and FVC2002)

allowed us to improve the organization and methodology of FVC2004 and to capture the attention of a significantly higher number of

academic and commercial organizations (67 algorithms were submitted for FVC2004). A new, “Light” competition category was included

to estimate the loss of matching performance caused by imposing computational constraints. This paper discusses data collection and

testing protocols, and includes a detailed analysis of the results. We introduce a simple but effective method for comparing algorithms at

the score level, allowing us to isolate difficult cases (images) and to study error correlations and algorithm “fusion.” The huge amount of

information obtained, including a structured classification of the submitted algorithms on the basis of their features, makes it possible to

better understand how current fingerprint recognition systems work and to delineate useful research directions for the future.

Index Terms—Biometric systems, fingerprint verification, performance evaluation, technology evaluation, FVC.
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1 INTRODUCTION

THE increasing demand for reliable human identification
in large-scale government and civil applications has

boosted interest in the controlled, scientific testing and
evaluation of biometric systems. Just a few years ago, both
the scientific community and commercial organizations
were reporting performance results based on self-collected
databases and ad hoc testing protocols, thus leading to
incomparable and often meaningless results. Current
scientific papers on fingerprint recognition now regularly
report results using the publicly-available databases col-
lected in our previous competitions [17], [18].

Fortunately, controlled, scientific testing initiatives are not
limited within the biometrics community to fingerprint
recognition. Other biometric modalities have been the target
of excellent evaluation efforts as well. The (US) National
Institute of Standards and Technology (NIST) has sponsored
scientifically-controlled tests of text-independent speaker
recognition algorithms [22], [25] for a number of years and,
more recently, of facial recognition technologies as well [10].

NIST and others have suggested [28], [31] that biometric
testing can be classified into “technology,” “scenario,” and
“operational” evaluations. “Technology” evaluations test
computer algorithms with archived biometric data collected
using a “universal” (algorithm-independent) sensor; “Sce-
nario” evaluations test biometric systems placed in a
controlled, volunteer-user environment modeled on a pro-
posed application; “Operational” evaluations attempt to
analyze performance of biometric systems placed into real
applications. Tests can also be characterized as “online” or
“offline,” depending upon whether the test computations are
conducted in the presence of the human user (online) or after-
the-fact on stored data (offline). An offline test requires a
precollected database of samples and makes it possible to
reproduce the test and to evaluate different algorithms under
identical conditions.

We propose a taxonomy of offline tests with the
following classifications (Fig. 1):

. In-house—self-defined test: The database is internally
collected and the testing protocol is self-defined.
Generally, the database is not publicly released,
perhaps because of human-subject privacy concerns,
and the protocols are not completely explained. As a
consequence, results may not be comparable across
such tests or reproducible by a third party.

. In-house—existing benchmark: The test is performed
over a publicly available database, according to an
existing protocol. Results are comparable with others
obtained using the same protocol on the same
database. Besides the trustworthiness problem,1 the
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main drawback is the risk of overfitting the data—that
is, tuning the parameters of the algorithms to match
only the data specific to this test. In fact, even if the
protocol defines disjoint training, validation, and test
sets, the entire evaluation (including learning) might
be repeated a number of times to improve perfor-
mance over the final test set. Examples of recent
biometric evaluations of this type are [23] and [24].

. Independent—weakly supervised: The database is se-
questered and is made available just before the
beginning of the test. Samples are unlabeled (the
filename does not carry information about the
sample’s owner identity). The test is executed at the
testee’s site and must be concluded within given time
constraints. Results are determined by the evaluator
from the comparison scores obtained by the testee
during the test. The main criticism against this kind of
evaluation is that it cannot prevent human interven-
tion: visual inspection of the samples, result editing,
etc., could, in principle, be carried out with sufficient
resources. Examples of recent biometric evaluations
of this type are: [29], [22], and [9].

. Independent—supervised: This approach is very simi-
lar to the independent weakly supervised evalua-
tion but, here, the test is executed at the evaluator’s
site on the testee’s hardware. The evaluator can
better control the evaluation, but: 1) there is no way
to compare computational efficiency (i.e., different
hardware systems can be used), 2) some interesting
statistics (e.g., template size, memory usage) cannot
be obtained, and 3) there is no way to prevent score
normalization and template consolidation [20], [16]
(i.e., techniques where information from previous
comparisons are unfairly exploited to increase the
accuracy in successive comparisons). Examples of
recent biometric evaluations of this type are [10]
and [8].

. Independent—strongly supervised: Data are seques-
tered and not released before the conclusion of the
test. Software components compliant to a given
input/output protocol are tested at the evaluator’s
site on the evaluator’s hardware. The tested algo-
rithm is executed in a totally-controlled environ-
ment, where all input/output operations are strictly
monitored. The main drawbacks are the large
amount of time and resources necessary for the
organization of such events. Examples of recent
biometric evaluations of this type are [17], [18], [5],
and the FVC2004 evaluation discussed in this paper.

FVC2004 follows FVC2000 [11], [17] and FVC2002 [12],
[18], the first two international Fingerprint Verification
Competitions organized by the authors in the years 2000
and 2002 with results presented at the 15th International
Conference on Pattern Recognition (ICPR) and the 16th ICPR,
respectively. The first two contests received significant
attention from both academic and commercial organizations.
Several research groups have used FVC2000 and FVC2002
data sets for their own experiments and some companies not
participating in the original competitions later requested the
organizers to measure their performance against the
FVC2000 and/or FVC2002 benchmarks. Beginning with
FVC2002, to increase the number of companies and, there-
fore, to provide a more complete overview of the state-of-the-
art, anonymous participation was allowed. Table 1 compares
the three competitions from a general point of view, high-
lighting the main differences. Table 2 summarizes the main
differences between FVC2004 and the NIST Fingerprint
Vendor Technology Evaluation (FpVTE2003), an important
test recently carried out by the US National Institute of
Standards and Technology [8].

FVC2004 was extensively publicized starting in April 2003
with the creation of the FVC2004 Web site [13]. All companies
and research groups in the field known to the authors were
invited to participate in the contest. All participants in the
past FVC competitions were informed of the new evaluation.
FVC2004 was also announced through mailing lists and
biometric-related online magazines. Four new databases
were collected using three commercially available scanners
and the synthetic fingerprint generator SFinGe [2], [4], [1] (see
Section 2). A representative subset of each database (sets B:
80 fingerprints from 10 fingers) was made available to the
participants prior to the competition for algorithm tuning to
accommodate the image size and the variability of the
fingerprints in the databases.

Two different subcompetitions (Open category and Light
category) were organized using the same databases. Each
participating group was allowed to submit one algorithm in
each category. The Light category was intended for algo-
rithms characterized by low-computational resources, lim-
ited memory usage, and small template size (see Section 3.1).

By the 15 October 2003 registration deadline, we had
received 110 registrations. All registered participants re-
ceived the training subsets and detailed instructions for
algorithm submission. By the 30 November 2003 deadline for
submission, we had received a total of 69 algorithms from
45 participating groups. Since two algorithms were ultimately
not accepted due to their incompatibility problems with the
FVC protocol, the final number of evaluated algorithms was
67: 41 competing in the Open category and 26 in the Light
category (see Table SM-I in Appendix A.1 which can be found
at http://computer.org/tpami/archives.htm). Once all the
executables were submitted to the evaluators, feedback was
sent to the participants by providing them with the results of
their algorithms over sets B (the same data set they had
previously been given for algorithm tuning), thus allowing
them to verify that run-time problems were not occurring on
the evaluator side.

The rest of this paper is organized as follows: Section 2
describes data collection procedure and shows examples of
the fingerprints included in the four databases. Section 3
introduces the testing protocol with particular emphasis on
the test procedures, the performance indicators used, and the
treatment of failures. In Section 4, results are presented and
critically discussed by focusing not only on the matching
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Fig. 1. Classification of offline biometric evaluations.



accuracy but also on efficiency, template size, and computa-
tional requirements. Section 5 suggests a simple but effective
way to make scores produced by different algorithms directly
comparable and applies the method to the analysis of difficult
cases at the level of both fingerprint pairs and individual
fingers. In Section 6, score correlation is studied and a simple
fusion technique (i.e., the sum rule) is shown to be very

effective. Finally, Section 7 draws some conclusions and
suggests directions for future research.

2 DATABASES

Four databases created using three different scanners and
the SFinGe synthetic generator [2], [4], [1] were used in the
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The Three Fingerprint Verification Competitions: A Summary
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FVC2004 benchmark (see Table 3). Fig. 2 shows an example
image at the same scale factor from each database.

A total of 90 students (24 years old on the average),
enrolled in the computer science degree program at the
University of Bologna, kindly agreed to act as volunteers for
providing fingerprints for DB1, DB2, and DB3:

. Volunteers were randomly partitioned into three
groups of 30 persons, each group was associated to a
DB and, therefore, to a different fingerprint scanner.

. Each volunteer was invited to report to the collection
location in three distinct sessions, with at least two
weeks time separating each session, and received brief
training on using the scanner before the first session,

. Prints of the forefinger and middle finger of both the
hands (four fingers total) of each volunteer were
acquired by interleaving the acquisition of the
different fingers to maximize differences in finger
placement.

. No efforts were made to control image quality and
the sensor platens were not systematically cleaned.

. At each session, four impressions were acquired of
each of the four fingers of each volunteer.

. During the first session, individuals were asked to
put the finger at a slightly different vertical position
(in impressions 1 and 2) and to alternately apply low
and high pressure against the sensor surface
(impressions 3 and 4).

. During the second session, individuals were re-
quested to exaggerate skin distortion [3] (impres-
sions 1 and 2) and rotation (3 and 4) of the finger.

. During the third session, fingers were dried (im-
pressions 1 and 2) and moistened (3 and 4).

In case of failure to acquire, the user was allowed to retry,
until all the impressions required for each session were
collected. The sweeping sensor used for collection of DB3
exhibited a failure-to-acquire rate that was significantly
higher than the other two sensors (Table 4), due to the
difficulties volunteers had with its particular acquisition
procedure.

At the end of the data collection, we had gathered for each
scanned database (DB1, DB2 and DB3) a total of 120 fingers

and 12 impressions per finger (1,440 impressions) using
30 volunteers. As in our past competitions, the size of each
database actually used in the test was set at 110 fingers, eight
impressions per finger (880 impressions). The collection of the
additional data gave us a margin in case of collection/labeling
errors. To generate the synthetic DB4 to be of comparable
difficulty for the algorithms, the SFinGe synthetic generator
was tuned to simulate the main perturbations introduced
during the acquisition of the three scanned, real databases
(translation, rotation, distortion, wet/dry fingers [1]).

Figs. SM-1, SM-2, SM-3, and SM-4 in Appendix A.1 (see
http://computer.org/tpami/archives.htm) show sample
fingerprints from each database. The main sources of
difficulty are evident: small commonality of imaged area
between different images of the same finger, skin distortion,
artifacts due to noise and wet fingers, poor contrast due to
skin dryness or low contact pressure. FVC2004 databases
were collected with the aim of creating a benchmark more
difficult than FVC2002, in which the top algorithms achieved
accuracies close to 100 percent. To this end, more intraclass
variation was introduced, with particular emphasis on skin
distortion, a well-known difficulty in fingerprint recognition.

3 TEST PROTOCOL

3.1 Test Procedure

Participants submitted each algorithm in the form of two
executable programs: the first for enrolling a fingerprint
image and producing the corresponding template and the
second for comparing a fingerprint template to a fingerprint
image and producing a comparison score in the range [0, 1].
The executables take the input from command-line argu-
ments and append the output to a text file. The input includes
a database-specific configuration file. For each database,
participants were allowed to submit a distinct configuration
file to adjust the algorithm’s internal parameters (e.g., to
accommodate the different image sizes). Configuration files
are text or binary files and their I/O is the responsibility of the
participant’s code. These files can also contain precomputed
data to save time during enrollment and comparison.

Each algorithm is tested by performing, for each
database, the following comparisons:
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TABLE 3
Scanners/Technologies Used for Collecting the Databases

Fig. 2. A fingerprint image from each database, at the same scale factor.

TABLE 4
Failure-to-Acquire Rates for the Three Scanned Databases



. Genuine recognition attempts: The template of each
fingerprint image is compared to the remaining
images of the same finger, but avoiding symmetric
matches (i.e., if the template of image j is matched
against image k, template k is not matched against
image j);

. Impostor recognition attempts: The template of the first
image of each finger is compared to the first image of
the remaining fingers, but avoiding symmetric
matches.

Then, for each database:

. A total of 700 enrollment attempts are performed
(the enrollment of the last image of any finger does
not need to be performed).

. If all the enrollments are correctly performed (no
enrollment failures), the total number of genuine
and impostor comparison attempts is 2,800 and
4,950, respectively.

All the algorithms are tested at the evaluators’ site on

evaluators’ hardware: The evaluation is performed in a

totally-controlled environment, where all input/output

operations are strictly monitored. This enables us to:

. evaluate other useful performance indicators such as
processing time, amount of memory used, and
template size (see Section 3.2),

. enforce a maximum response time of the algorithms,

. implement measures that guarantee algorithms
cannot cheat (for instance matching filenames
instead of fingerprints), and

. ensure that, at each comparison, one and only one
template is matched against one and only one image
and that techniques such as template consolidation
[16] and score normalization [31] are not used to
improve performance.

The schema in Fig. 3 summarizes the testing procedure

of FVC2004.
In the Open category, for practical testing reasons, the

maximum response time of the algorithms was limited to

10 seconds for enrollment and 5 seconds for comparison; no

other limits were imposed.
In the Light category, in order to create a benchmark for

algorithms running on light architectures, the following

limits were imposed:

. maximum time for enrollment: 0.5 seconds,

. maximum time for comparison: 0.3 seconds,

. maximum template size: 2 KBytes, and

. maximum amount of memory allocated: 4 MBytes.

The evaluation (for both categories) was executed using
Windows XP Professional OS on AMD Athlon 1600+
(1.41 GHz) PCs.

3.2 Performance Evaluation

For each database and for each algorithm, the following
performance indicators were measured and reported:

. genuine and impostor score histograms,

. False Match Rate (FMR) and False Non-Match Rate
(FNMR) graphs and Decision Error Tradeoff (DET)
graph,

. Failure-to-Enroll Rate and Failure-to-Compare Rate,

. Equal Error Rate (EER), FMR100, FMR1000, Zer-
oFMR, and ZeroFNMR,

. average comparison time and average enrollment
time,

. maximum memory allocated for enrollment and for
comparison, and

. average and maximum template size.

Formal definitions of FMR (False Match Rate), FNMR
(False Non-Match Rate), and Equal Error Rate (EER) are given
in [17]. Note that, in single-attempt, positive recognition
applications, FMR (False Match Rate) and FNMR (False Non-
Match Rate) are often referred to as FAR (False Acceptance
Rate) and FRR (False Rejection Rate), respectively. ZeroFMR
is given as the lowest FNMR at which no False Matches occur
and ZeroFNMR is the lowest FMR at which no False Non-
Matches occur.

FMR100 and FMR1000 are the values of FNMR for FMR =
1/100 and 1/1000, respectively. These measures are useful to
characterize the accuracy of fingerprint-based systems,
which are often operated far from the EER point using
thresholds which reduce FMR at the cost of higher FNMR.

FVC2004 introduces indicators measuring the amount of
memory required by the algorithms and the template sizes.
Table 5 summarizes the performance indicators reported in
FVC2004 and compares them with those reported in the
previous two competitions.

3.3 Treatment of Failures

An enrollment or comparison attempt can fail, thus
resulting in a Failure-to-Enroll (FTE) or Failure-to-Compare
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(FTC) error, respectively. Failures can be reported by the
algorithm (which declares itself to be unable to process a
given fingerprint) or imposed by the test procedure in the
following cases:

. timeout: the algorithm exceeds the maximum proces-
sing time allowed,

. crash: the program crashes during its execution,

. memory limit: the amount of memory allocated by the
algorithm exceeds the maximum allowed,

. template limit (only for enrollment): the size of the
template exceeds the maximum allowed, and

. missing template (only for comparison): the re-
quired template has not been created due to
enrollment failure, such that the comparison
cannot be performed.

The last point needs an explanation: in FVC2000 [17],
Failure-to-Enroll (FTE) errors were recorded apart from the
FMR/FNMR errors. As a consequence, algorithms rejecting
poor quality fingerprints at enrollment time could be
implicitly favored since many problematic comparisons
could be avoided. This could make it difficult to directly
compare the accuracy of different algorithms. To avoid this
problem, in FVC2004 (as in FVC2002), FTE errors are
included into the computation of FMR and FNMR. In
particular, each FTE error produces a “ghost template,”
which cannot be matched with any fingerprint (i.e., any
comparison attempt involving a ghost template results in a
failure to compare). Although using this technique for
including Failure-to-Enroll errors in the computation of
FMR and FNMR is both useful and easy for the problem at
hand, this practice could appear arbitrary. In Appendix A.2,
(see http://computer.org/tpami/archives.htm) it is shown
that this operational procedure is equivalent to the
formulation adopted in [21], which is consistent with the
current best-practices [31].

4 RESULT ANALYSIS

Reporting results from all the participants on the four
databases would require too much space for inclusion into
this paper, due to the large number of algorithms evaluated.

Detailed results can be found on the competition Web site
[13], together with the “medal tables” for the two categories
(Open and Light) and the final rankings of the algorithms.
This section, after a structured overview of the algorithms
(Section 4.1), discusses: the results of the top algorithms
(Section 4.2), the main differences between the two
categories (Section 4.3), and efficiency, template size, and
memory usage (Sections 4.4, 4.5, and 4.6). Note that, in the
following graphs and tables, participant IDs (e.g., P001,
P002) are used to denote the different algorithms. For
instance, “P001” indicates the algorithm submitted by
participant P001, since most of the participants submitted
two algorithms (one for each category), the same participant
ID may refer to the Open category algorithm or to the Light
category algorithm, according to the context.

4.1 Overview of the Algorithms

Reporting low-level details about the approaches and
techniques adopted by the participating algorithms would
be unfeasible since most of the participants are commercial
entities and the details of their algorithms are proprietary.
For this reason, we asked all the participants to provide a
high-level structured description of their algorithms by
answering a few questions about:

. Preprocessing: Is segmentation (separation of the
fingerprint area from the background) and/or image
enhancement performed?

. Alignment: Is alignment carried out before or
during comparison? What kind of transformations
are dealt with (displacement, rotation, scale, non-
linear mapping)?

. Features: Which features are extracted from the
fingerprint images?

. Comparison: Is the algorithm minutiae-based? If so,
is minutiae comparison global or local [20]? If not,
what is the approach (correlation-based, ridge-
pattern-texture-based, ridge-line-geometry-based)?

A total of 29 participants kindly provided the above
information. Table 6 compares the corresponding algo-
rithms by summarizing the main information. The two
histograms in Fig. 4 highlight the distribution of the features
adopted and of the matching approaches, respectively.

4.2 Overall Results

In the following, results from the top algorithms in the
Open category are reported. Table 7 reports the average
performance indicators over the four databases for the top
10 algorithms (based on average EER).

In Fig. 5, algorithms are sorted by average EER (middle
curve): For each algorithm, the best and worst EER among
the four databases are plotted. In general, the best
algorithms tend to have more stable performance over the
different databases, with some noticeable exceptions: P039
is ranked fifth with an average EER of 2.90 percent, in spite
of a quite-high EER of 7.18 percent on DB1; P103, with an
average EER of 4.33 percent (the 13th in the ranking), shows
a performance more stable than most of the algorithms with
a lower average EER. The lowest average EER is exhibited
by P101 (with a value of 3.56 percent on DB2 and a value of
0.80 percent on DB4); the lowest individual EER is achieved
by P071 with 0.61 percent on DB4. Fig. 6 provides
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Performance Indicators Measured in the

Three FVC Competitions



complementary information to Fig. 5, by plotting, for each

algorithm, the EER on the four databases. DB1 has proven

to be the most difficult for most of the algorithms, mainly

due to the presence of a considerable number of distorted

fingerprints (skin distortion was encouraged during the
second acquisition session on all scanners, but the scanner
used for DB1 allowed more easily for the collection of prints
exaggerating this kind of perturbation).

The easiest database for most of the algorithms was DB4
(the synthetic one), but the behavior of the algorithms over
DB4 was, in general, comparable to that on the real
databases, thus confirming that the fingerprint generator
is able to emulate most of the perturbations encountered in
the real fingerprint databases.

The graphs in Figs. 5 and 6 are based on the EER, which
is an important statistic, indicating an equal trade-off
between false match and false nonmatch error rates. But
the EER threshold is just one of the possible decision points
at which the algorithms can operate. Comparing the
algorithms at the ZeroFMR operating point (Fig. 7) and
ranking them according to the average ZeroFMR value
confirms the excellence of the top two algorithms (P101
and P047 also in this case). Other algorithms show some
changes in ranking, the most noticeable being P039. This
algorithm shows a reasonable ZeroFMR on three databases
(DB1 = 18.00 percent, DB2 = 8.18 percent, and DB4 =
2.71 percent) and is the fifth best algorithm based on
average EER (Fig. 5), but it exhibits an extremely high
ZeroFMR on DB3 (99.61 percent). This poor performance is
caused by three impostor comparisons which resulted in a
very high score (i.e., the fingerprints are considered very
similar by the algorithm). Fig. SM-5 in Appendix A.1 (see
http://computer.org/tpami/archives.htm) shows one such
pair; this may have been caused due to the large, noisy area
in the middle of both the prints. A more comprehensive
view of the results for the top five algorithms is given in
Fig. SM-6 of Appendix A.1, (see http://computer.org/
tpami/archives.htm) reporting, for each database, the DET
curves (which show error rate trade-offs at all possible
operating points). The lines corresponding to EER, Zer-
oFMR, ZeroFNMR, FMR100, and FMR1000 are highlighted
in the graphs; the corresponding numerical values
are reported in Tables SM-II, SM-III, SM-IV, and
SM-V in Appendix A.1 (see http://computer.org/tpami/
archives.htm), together with the details of the other
nonaccuracy-related indicators (see Section 3.2).
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TABLE 6
High-Level Description of the Algorithms from 29 Participants

Notes about P071: Segmentation is performed only in the Light category;
alignment type is Displacement + Rotation in the Light category and
Nonlinear in the Open; Raw image parts and Correlation are used only in
the Open category. Note about P101: Segmentation is performed only on
DB1 images.

Fig. 4. Histograms of the (a) distribution of the different features exploited by the algorithms and of (b) the comparison approaches. Note that the
same algorithm usually exploits several features and often adopts several comparison approaches.



4.3 Open Category versus Light Category

Table 8 reports the top 10 participants in the Light category

based on average EER (see Table 7 for the corresponding

data in the Open category). Fig. 8 compares the perfor-

mance of the algorithms submitted by participants P101 and

P071 to the two categories.

The performance drop between the Open and Light
categories is significant: P101 average EER is about 2.07 per-
cent in the Open (overall best result) and 4.29 percent in the
Light category. The overall best average EER in the Light
category is 3.51 percent (P009, see Table 8), an error rate which
is significantly higher than the best result in the Open
category. Almost all the participants submitting two algo-
rithms showed poorer performance in the light category, with
the minor exception of P108 (average EER of 4.04 percent in
the Open and 3.96 percent in the Light). This means that:
1) most of the participants had to modify their algorithms (or
at least adjust some parameters) to meet the Light category
constraints and 2) such modifications heavily impacted
performance. Table 9 shows that the average performance
drop for the top 10 participants (selected according to the
average EER in the Open category) is more than 40 percent on
EER and more than 35 percent on ZeroFMR.

Such a general performance drop is higher than we
expected, considering that the constraints in the Light
category (Section 3.1) were not considered “strict” (maximum
time for enrollment: 0.5 seconds; maximum time for compar-
ison: 0.3 seconds; maximum template size: 2 KBytes; and
maximum amount of memory allocated: 4 MBytes). These are
typicalof thecurrentconstraintsonanembedded/standalone
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TABLE 7
Open Category—Average Results over the Four Databases: Top 10 Algorithms, Sorted by EER

Fig. 5. Open category: EER (average, best, and worst over the four
databases). Only algorithms with average EER less than 10 percent are
reported.

Fig. 6. Open category: Individual EER on each database and average
EER. Only algorithms with average EER less than 10 percent are
reported.

Fig. 7. Open category: ZeroFMR (average, best, and worst over the four
databases). Only algorithms with average ZeroFMR less than 40 percent
are reported.



solution running on a 50-200 MIPS CPU. Match-on-token and
match-on-card solutions [26], [30], currently receiving atten-
tion due to their privacy and security enhancing character-
istics, have much more stringent requirements (i.e., the
0.3 second comparison time limit in our Light category refers
to a CPU performing at more than 3000 MIPS, while a typical
smart card CPU performs at about 10 MIPS). What would be
the performance degradation of these algorithms ifadapted to
run on a smart card? New evaluation programs with specific

protocols for match-on-card algorithms are needed to answer

this question.

4.4 Matching Speed

Table 10 reports average comparison times in the Open
category. Note that a “comparison” operation consists of the
comparison of a given template with a fingerprint image (see
Section 3). Hence, the “comparison time” includes the feature
extraction time for one of the fingerprints. The overall average
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TABLE 8
Light Category—Average Results over the Four Databases: Top 10 Algorithms, Sorted by EER

Fig. 8. The two top participants in the Open category that also submitted an algorithm to the Light category: (a) Comparison of the average EER over
the four databases and (b) of the average ZeroFMR.

TABLE 9
Top 10 Algorithms in the Open Category and Corresponding Algorithms in the Light Category: Average EER, Average ZeroFMR,

and the Corresponding Percentage Variations Are Reported: The Last Row Shows the Overall Averages



times (bottom row in Table 10) reflect the different image sizes
(DB1: 307 KPixels, DB2: 119 KPixels, DB3: 144 KPixels, DB4:
108 KPixels, see Section 2). As can logically be expected,
algorithms generally take more time to process and compare
larger images. On the other hand, detailed analysis of the time
data reveals interesting exceptions with many algorithms (for
instance, P047, which took more time for comparison in DB3
and DB2 than in DB1, or P097, which exhibited a much lower
time on DB3 than on the other databases). This may indicate,
at least in some cases, that the database-specific adjustment of
the algorithms (allowed by the FVC protocol, see Section 3)
involved operations with a considerable impact on the
efficiency (e.g., different enhancement approaches or para-
meters, different degrees of freedom in the matching, etc.).

The most accurate algorithm (P101) shows a quite high
average comparison time: 1.48 seconds is its overall average,
about twice the average of all the algorithms in Table 10
(0.77 seconds). The high value is mostly due to the very high
comparison time in DB1 (3.19 seconds). It is worth noting
that the most accurate algorithm on DB1 was P047 (see
Table SM-II in Appendix A.1 http://computer.org/tpami/
archives.htm), which exhibits comparison times more
consistent across the different databases, but definitely
higher overall: an average of 2.07 seconds, which is the
highest among the most accurate algorithms. A look at
Table 6 shows that the low speed of P047 is probably due to
the large number of features it extracts and to the alignment
and matching techniques which appear computationally
intensive.

Algorithms exhibiting good tradeoffs between speed and
accuracy were P071 and P009: The former achieving the

third-best average EER, with an average comparison time of
0.67 seconds; the latter coupling a reasonable accuracy to a
quite low comparison time. Another interesting result was
obtained by P103, with an average time of 0.14 seconds. The
highest speed was achieved by P067, but at the cost of a
definitely lower accuracy. As shown in Table 6, it appears
that fast algorithms like P009, P067, and P103 owe their
speed mainly to an efficient implementation of minutiae-
based comparison techniques. Combining different com-
parison approaches, which exploit different features, can
definitely improve accuracy (see P047 or P101), but
obviously at the cost of lower efficiency.

4.5 Template Size Analysis

The histogram in Fig. 9 reports the distribution of average
template sizes among the four databases. Tables SM-II, SM-
III, SM-IV, and SM-V in Appendix A.1 (see http://
computer.org/tpami/archives.htm) report the per-database
averages for the top algorithms.

Template sizes less than 0.5KB are usually indicative of
algorithms based only upon minutiae. This is supported by
Table 6, where six of the nine algorithms in the left-most
column of the histogram are present. All of them adopt a
matching technique based only on minutiae (local, global,
or both), with the exception of P087, which compares ridge
geometry in addition to minutiae.

Template sizes in the range of 1KB to 2KB are likely to
contain not only minutiae points but also other features to
help the alignment of the two fingerprints and the
subsequent comparison process. The most commonly used
additional feature for this purpose is the orientation field
[20]. All of the algorithms for which there is information in
Table 6 (eight out of 12) extract both minutiae points and
the orientation field as input features.

Very large template sizes are probably due to the storage
of some portions of the fingerprint image itself (e.g., raw or
enhanced image blocks to be used for correlation). The
seven algorithms which are indicated in Table 6 as
exploiting a correlation-based comparison approach have
template sizes ranging from 5KB to about 50KB.

The two right-most columns of the histogram in Fig. 9
refer to three algorithms (P079, P109, and P118) with
extremely large templates (larger than the 170KB average
image size over the four databases). No information was
provided by the designers of these algorithms, so it is not
possible to understand the reasons for such a huge
utilization of storage space. We can speculate that, when
the template is larger than the image, it probably contains
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TABLE 10
Open Category: Average Comparison Time on Each Database

for Algorithms with Average EER Less than 8 Percent

The last row reports the averages of the above times.

Fig. 9. Open category: Histogram of average template sizes over the
four databases.



some redundant precomputed data useful in speeding up
the comparison process (e.g., rotations of the image).

Fig. 10 plots the average template size versus the average
EER over the four databases for all the algorithms. Although
correlation exists, the scattered cloud of points testifies that
storing more information does not necessarily translate to
achieving better performance. The overall best algorithm
based on average EER (P101) achieves an average EER of
2.07 percent, with an average template size of 24 KBytes. A
comparable result (2.10 percent) is obtained by P047, with a
much smaller average template size of 1.3KB. An interesting
result is also the 3.24 percent average EER with 0.5KB average
template size for algorithm P049. The smallest average
template size is exhibited by P087 (0.1KB), with an average
EER of 9.62 percent.

4.6 Amount of Memory Used

Table 7 reports the maximum amount of memory allocated
by the top performing algorithms over the four databases
during comparison and enrollment, respectively. Tables SM-
II, SM-III, SM-IV, and SM-V in Appendix A.1 (see http://
computer.org/tpami/archives.htm) report the statistics for
the top algorithms on each database. The amount of memory
considered is the total quantity reported by the Operating
System, which includes space allocated for both the code
and data.

Fig. 11 correlates the maximum amount of memory to the
accuracy (average EER over the four databases). Almost all
the algorithms with an average EER below 5 percent use more
than 2MB of memory; the only exception being P041, which
achieves an EER of 4.89 percent using about 1MB of memory.
The two most accurate algorithms (P101 and P047) show
fairly high memory usage (7.6MB and 5.7MB, respectively).
Judging by the data available in Table 6, almost all the
algorithms that use less than 3MB of memory perform
comparisons using only minutiae points. Matching techni-
ques based on multiple modalities require greater amounts of
memory, especially when image correlation is involved.

5 COMPARING ALGORITHMS AT SCORE LEVEL

5.1 Definitions

In general, comparison scores from different algorithms are
not directly comparable even if they are restricted to a

prescribed range (e.g., FVC protocol requires scores to be in
the range [0, 1], see Section 3.1). Moreover, it is not even
possible to directly compare scores of the same algorithm
on different databases.

A simple but effective a posteriori technique for the
comparison of the outputs of different algorithms is
proposed here:

. let ga and gb be the scores produced by algorithms a
and b, respectively, for the same genuine comparison
on a given database,

. let FMR(ga) be the False Match Rate of algorithm a (on
that database) when the threshold is set to ga (that is,
the minimum percentage of false match errors that the
algorithm would make if it were forced to accept as
genuine a comparison with score ga), and

. let FMR (gb) be the corresponding value for
algorithm b;

then, FMR(ga) and FMR(gb) are two directly-comparable
measures of how much the given genuine comparison is
difficult for algorithms a and b, respectively: The closer to
zero, the easier the genuine comparison.

Analogously, the corresponding values of FNMR can be
used to compare the difficulty of impostor comparisons. In
the following, for a generic algorithm p, we will denote the
above-defined difficulty values as:

DVGðp; x; yÞ, for a genuine comparison between fingerprints
x and y, and

DVIðp; w; zÞ, for an impostor comparison between finger-
prints w and z.
Some analyses performed exploiting the above approach

are described in the rest of this section.

5.2 Average “Difficulty” of Genuine and Impostor
Fingerprint Pairs

The average “difficulty” of each fingerprint pair can be
simply measured by averaging the difficulty values among
all the algorithms:

DVG x; yð Þ ¼

P

p2P
DVG p; x; yð Þ

#P
;
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Fig. 11. Open category: Correlation between the maximum amount of
memory allocated during comparison (x axis, using a logarithmic scale)
and average EER over the four databases (y axis); each point
corresponds to an algorithm.

Fig. 10. Open category: Correlation between average template size
(x axis, using a logarithmic scale) and average EER over the four
databases (y axis); each point corresponds to an algorithm.



DVI x; yð Þ ¼

P

p2P
DVI p; x; yð Þ

#P
;

where P is the set containing all the algorithms. Figs. SM-7,
SM-8, and SM-9 in Appendix A.1 report (see http://
computer.org/tpami/archives.htm), for the three real data-
bases, the number of genuine fingerprint pairs that the
algorithms found, on the average, to be the easiest and the
most difficult. Analogously, Figs. SM-10, SM-11, and SM-12
in Appendix A.1 report (see http://computer.org/tpami/
archives.htm)the impostor pairs. As predictable, the most
difficult impostor pairs always consist of two fingerprints
belonging to the same class/type (right loop in DB1, whorl
in DB2 and left loop in DB3).

5.3 Intrinsic Difficulty of Individual Fingers

From the average difficulty of fingerprint pairs, it is possible
to derive a measure of individual “difficulty” of a given
finger:

DG fð Þ ¼

P

a;bð Þ2FG
DVG a; bð Þ

#FG
;

where f is a given finger and FG is the set of all the genuine
comparisons involving impressions of f .

DI fð Þ ¼

P

a;bð Þ2FI
DVI a; bð Þ

#FI
;

where f is a generic finger and FI is the set of all the
impostor comparisons involving impressions of f .

A high value of DG fð Þ indicates that impressions of
finger f are likely to be falsely nonmatched against

impressions of the same finger (i.e., f is a finger more
difficult to be recognized than others); a high value of DI fð Þ
indicates that impressions of finger f are likely to be falsely
matched against impressions of other fingers (i.e., f is a
finger easier to be mistaken for another).

The previous analysis, performed at the level of
comparisons, showed that some genuine fingerprint pairs
are more/less difficult than others. This result was expected
because of the different perturbations introduced during
database collection (Section 2). On the other hand, since all
the volunteers were requested to introduce the same
perturbations, one could expect a certain amount of
uniformity when the difficulty is analyzed at finger level.
Actually, as Fig. 12 shows and as other studies have
highlighted [6], [27], it is evident that some fingers (whose
owners are affectionately referred to as “goats” [6]) are
more difficult to recognize than others. This may be
particularly marked, as in the case of two fingers in DB2
(Fig. 13 shows the eight impressions of the worst one).

Fig. 14 shows the histograms of finger difficulty with
respect to the impostor comparisons. In this case, finger
difficulties fall into a narrower interval and the distributions
do not exhibit outliers. Therefore, we can conclude that
FVC2004 databases do not include fingers (referred to as
“wolves/lambs” in [6]) that are more likely to be falsely
matched.

6 FUSING ALGORITHMS AT SCORE LEVEL

The matching difficulty values introduced in Section 5 can
be used to measure the correlation among different
algorithms on each database. A strong correlation of the
difficulty values of two algorithms means that they made
similar errors (i.e., they consistently found the same
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Fig. 12. Open category: Histograms of the DG fð Þ values on the four databases.



fingerprint pairs to be particularly difficult); a low correla-
tion indicates that they made different errors.

Tables 11, 12, and 13 report results from the five top
algorithms in the Open category for which the high-level
description has been provided in Table 6. Table 11 shows the
average correlation on genuine comparisons over the four
databases and Table 12 shows the average correlation on
impostor comparisons. A first observation is that the
correlation on impostor pairs is definitely lower than that
on genuine pairs. This result is not unexpected because
difficulty in genuine-pair comparisons is often caused by
well-identifiable perturbations (little commonality of imaged
finger area, distortion, severe noise, etc.), whereas difficulty
for impostor-pair comparisons is more algorithm-dependent

since it is more related to the specific features used and the
way they are processed.

The average correlation on genuine comparisons in

Table 11 is very low, which is quite surprising, considering

that the table reports the results of top algorithms. The

database where those algorithms are less correlated is DB3

(Table 13). This may be due to the particular nature of the

images, obtained by a sweeping sensor (see Fig. 2) for which

most of the algorithms are probably not optimized. Such a low

correlation suggests that combining some of the algorithms

could lead to improved accuracy [15]. Although studying

optimal combination strategies (e.g., using trained combiners

[7]) is beyond the aims of this paper, three very simple fusion
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Fig. 13. Database 2: The eight impressions of the finger corresponding to the rightmost bar in the DB2 histogram of Fig. 12.

Fig. 14. Open category: Histograms of the DI fð Þ values on the four databases. The scale of the horizontal axis is the same as in Fig. 12 to allow a

direct comparison. The intervals of interest are expanded in the inner graphs.



experiments have been performed by using the sum rule (i.e.,
the matching score of the combined system is defined as the
sum of the scores produced by the individual algorithms):
1) combination of P039 and P071 (the two least correlated),
2) combination of P047 and P101 (the two most accurate), and
3) combination of all the five algorithms. The results are
reported in Table 14, together with the individual perfor-
mance of the algorithms. As expected, performance greatly
benefits from the combination: For example, bycombining the
top five algorithms, the EER on DB3 decreased from
1.18 percent (top single algorithm) to 0.28 percent.

7 CONCLUSIONS

Performance evaluation is important for all pattern
recognition applications and particularly so for biometrics,
which is receiving widespread international attention for
citizen identity verification and identification in large-scale
applications. Unambiguously and reliably assessing the
current state of the technology is mandatory for under-
standing its limitations and addressing future research
requirements. This paper reviews and classifies current
biometric testing initiatives and assesses the state-of-the-art
in fingerprint verification through presentation of the
results of the third international Fingerprint Verification
Competition (FVC2004). Results are critically reviewed and
analyzed with the intent of better understanding the
performance of these algorithms. We can conclude that:

. The interest shown in the FVC testing program by
algorithm developers is steadily increasing. In this
third edition (FVC2004), a total of 67 algorithms have
been evaluated by the organizers. FVC2000 and
FVC2002 fingerprint databases, now available to the
scientific community, constitute the most frequently
used benchmarking databases in scientific publica-
tions on fingerprint recognition.

. Performance of top fingerprint algorithms is quite
good (best EER over the four databases is 2.07 percent),
particularly if we consider that the databases have

been intentionally made difficult (more difficult than
FVC2002) by exaggerating perturbations such as skin
distortion and suboptimal skin conditions (e.g., wet
and dry) known to degrade algorithm performance.

. Most of the algorithms tested are based on global
minutiae matching, which is still one of the most
reliable approaches for fingerprint recognition. How-
ever, the use of a larger variety of features (in addition
to minutiae) and alternative/hybrid matching tech-
niques is now common, especially for the best
performing algorithms. This needs to be carefully
considered when defining standards for template
storage [14].

. A fingerprint verification algorithm cannot be char-
acterized by accuracy indicators only. Computational
efficiency and template size could make an algorithm
appropriate or unsuitable in a given application.
Measuring and comparing such characteristics among
different algorithms is possible only for a strongly
supervised independent evaluation such as FVC.

. If restrictions are made on maximum response time,
template size, and memory usage, the resulting loss
in accuracy can be significant. The algorithm with
best EER (2.07 percent) on the Open category
exhibits a 4.29 percent EER in the Light category.

. Our results confirm that matching difficulty is not
equally distributed among fingerprint pairs, some
fingers being more difficult to match than others.

. Surprisingly, error correlation between best perform-
ingalgorithmsisverylow.That is,differentalgorithms
tend to make different errors. This indicates that there
is still much potential for algorithmic improvement.
Our experiments show that simply combining algo-
rithms at the score level allows accuracy to be
markedly improved. By combining the top five
algorithms, the EERon DB3dropped from1.18percent
(for the top single algorithm) to 0.28 percent (for the
combination).
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TABLE 11
Open Category, Genuine Comparisons: Average Correlation

of the Corresponding Difficulty Values for the
Top Algorithms over the Four Databases

TABLE 12
Open Category, Impostor Comparisons: Average Correlation

of the Corresponding Difficulty Values for the
Top Algorithms over the Four Databases

TABLE 13
Open Category, Genuine Comparisons on DB3:

Average Correlation of the Corresponding Difficulty
Values for the Top Algorithms

TABLE 14
Open Category—DB3: Results of Three Combination

Experiments Using the Sum Rule



We are currently planning a new testing initiative (FVC2006)
with the intention of leveraging our experience gained in
previous editions. We are considering the inclusion of two
new categories:

. With the aim of decoupling feature extraction and
feature comparison performance, participants will
be asked to produce templates in a standard format
(e.g., [14]). This would allow us to evaluate inter-
operability and interchange of templates across
algorithms.

. With the aim of better understanding the degrada-
tion in accuracy for “very-light” architectures, a
match-on-card category will be introduced, enabling
computational constraints typical of a smart card.

APPENDIX

Appendices A.1 and A.2 are included in the supplemental
material which can be found at http://computer.org/

tpami/archives.htm.
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