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FVC2000: Fingerprint Verification Competition

Dario Maio, Member, IEEE, Davide Maltoni,
Raffaele Cappelli, J.L. Wayman, and
Anil K. Jain, Fellow, IEEE

Abstract—Reliable and accurate fingerprint recognition is a challenging pattern
recognition problem, requiring algorithms robust in many contexts. FVC2000
competition attempted to establish the first common benchmark, allowing
companies and academic institutions to unambiguously compare performance
and track improvements in their fingerprint recognition algorithms. Three
databases were created using different state-of-the-art sensors and a fourth
database was artificially generated; 11 algorithms were extensively tested on the
four data sets. We believe that FVC2000 protocol, databases, and results will be
useful to all practitioners in the field not only as a benchmark for improving
methods, but also for enabling an unbiased evaluation of algorithms.

Index Terms—Fingerprint verification, performance evaluation, biometric
systems.
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1 INTRODUCTION

IN the last decade, interest in fingerprint-based biometric systems
has grown significantly [9]. Activity on this topic increased in both
academia and industry as several research groups and companies
developed new algorithms and techniques for fingerprint recogni-
tion and as many new fingerprint acquisition sensors were
launched into the marketplace.

Nevertheless, to date only a few benchmarks have been
available for comparing developments in fingerprint verification.
Developers usually perform internal tests over self-collected
databases. In practice, the only public domain data sets are the
US National Institute of Standards and Technology (NIST) CD-
ROMs [20], [21] containing thousands of images scanned from
paper cards where fingerprints were impressed by rolling “nail to
nail” inked fingers. Since these images significantly differ from
those acquired by optical or solid state sensors, they are not well-
suited for testing “online” fingerprint systems [9], although they
constitute an excellent benchmark for AFIS (Automated Finger-
print Identification Systems) developments [11] and fingerprint
classification studies [4]. NIST recently released a database
containing digital videos of live-scan fingerprint data [22]; since
this database was specifically collected for studying plastic
distortion affecting the online acquisition process [5], [6] and the
impact of finger rotation, it models only certain fingerprint
variations and it is not recommendable for a general evaluation
of verification algorithms.

The lack of standards has unavoidably led to the dissemination
of confusing, incomparable, and irreproducible results, sometimes
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embedded in research papers and sometimes enriching the
commercial claims of marketing brochures.

The aim of this initiative was to take the first step towards the
establishment of a common basis, both for academia and industry, to
better understand the state-of-the-art and what can be expected
from the fingerprint technology in the future. Analogous efforts
have been recently carried out for other biometric characteristics
(e.g., face [15], [12]) and, in general, for other classical pattern
recognition tasks ([17], [1], [8], [18]). We decided to pose this effort as
an international open competition to boost interest and give our
results larger visibility. The 15th International Conference on
Pattern Recognition (ICPR 2000) was ideal for this purpose. Starting
in late spring 1999, when the FVC2000 Web site [7] was set up, we
broadly publicized this event, inviting all companies and research
groups we were aware of to take part.

From the beginning, we stated that the competition was not
meant as an official performance certification of the participant
biometric systems, as:

e  The databases used in this contest have not been acquired
in a real environment and according to a formal protocol
[23], [16], [19], [2] (also refer to [24] for an example of
performance evaluation on real applications).

e  Only parts of the participants software are evaluated by
using images from sensors not native to each system. In fact,
fingerprint-based biometric systems often implement pro-
prietary solutions to improve robustness and accuracy (e.g.,
quality control modules to reject poor quality fingerprints,
visual feedback to help the user in optimally positioning
his/her finger, using multiple fingerprint instances to build
more reliable templates, etc.) and these contributions are
here discounted.

e  According to the definition reported in [16], [19], FVC2000
should be conceived as a fechnology evaluation (with some
analogies with the FERET contest organized by Philips on
face recognition [15]). In fact, quoting [2]:

“The goal of a technology evaluation is to compare competing

algorithms from a single technology. Testing of all algorithms is

done on a standardized database collected by a “universal” sensor.

Nonetheless, performance against this database will depend upon

both the environment and the population in which it was collected.

Consequently, the “three bears” rule might be applied, attempting to

create a database that is neither too difficult nor too easy for the

algorithms to be tested. Although sample or example data may be
distributed for developmental or tuning purposes prior to the test,
the actual testing must be done on data which has not been
previously seen by algorithm developers. Testing is done using

“offline” processing of the data. Because the database is fixed,

results of technology tests are repeatable.”

In FVC2000, the “universal” sensor is actually a collection of
four different sensors/technologies to better cover the recent
advances in fingerprint sensing techniques and to avoid favoring
a particular algorithm through the choice of a specific sensor. In fact,
databases 1 and 2 were collected by using two small-size and low-
cost sensors (optical and capacitive, respectively). Database 3 was
collected by using a higher quality (large area) optical sensor.
Finally, images in database 4 were synthetically generated by using
the approach described in [3]. Each of the four databases contained
880 fingerprints from 110 different fingers, collected using the
“three bears rule” (not too easy, not too hard), based on our prior
subjective experiences with fingerprint recognition algorithms; in
particular, on the one hand, we discarded fingerprint images we
considered completely intractable even for a human expert, on the
other hand, we avoided collecting perfect fingerprints which will be
very easy for a matching algorithm; some internally developed
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TABLE 1
List of Participants
ID Organization Type
CETP CEFET-PR / Antheus Technologia Ltda (Brasil) Academic
CSPN Centre for Signal Processing, Nanyang Technological University (Singapore) Academic
CWALI Centre for Wavelets, Approximation and Information Processing, Department of | Academic
Mathematics, National University of Singapore (Singapore)
DITI Ditto Information & Technology Inc. (Korea) Commercial
FPIN FingerPin AG (Switzerland) Commercial
KRDL Kent Ridge Digital Labs (Singapore) Academic
NCMI Natural Sciences and Mathematics, Institute of Informatics (Macedonia) Academic
SAG1 SAGEM SA (France) Commercial
SAG2 SAGEM SA (France) Commercial
UINH Inha University (Korea) Academic
UTWE University of Twente, Electical Engineering (Netherlands) Academic
A four digit ID was assigned to each algorithm. (Sagem SA submitted two different algorithms).
TABLE 2
The Four FVC2000 Databases
Sensor Type Image Size | Set A (wxd) | Set B (wxd) | Resolution

DB1 Optical Sensor 300x300 100x8 10x8 500 dpi

DB2 Capacitive Sensor 256x364 100x8 10x8 500 dpi

DB3 Optical Sensor 448%x478 100x8 10x8 500 dpi

DB4 Synthetic Generator 240x320 100x8 10x8 About 500 dpi’

tIn the artifical generation,

algorithms helped us in accomplishing this task. Each database was
split into a sequestered “test” set of 800 images (set A) and an open
“training” set of 80 images (set B), made available to participants for
algorithm tuning. The samples in each set B were chosen to be as
much as possible representative of the variations and difficulties in
the corresponding set A; to this purpose fingerprints were
automatically sorted by quality as in [14] and samples covering
the whole range of quality were included in set B. A final visual
inspection of the obtained data sets was carried out to assure that

A

“dry,” “wet,” “scratched,” “distorted,” and “markedly rotated”
fingerprints were also adequately represented.

As initially specified in the call for participation “FVC2000
competition focuses only on fingerprint verification (1-1 matching) and
not on fingerprint identification (1-N matching)” [9]. Each participant
was required to submit two executable computer programs: the first
enrolling a fingerprint image and producing the corresponding
template, the second matching a fingerprint template against a
fingerprint image. Participants were allowed to submit four distinct
configuration files, to adjust the algorithms internal parameters
according to each specific database; configuration files could also
contain precomputed data, to save time during enrollment and
matching. For practical testing reasons, the maximum response time
of the algorithms was limited to 15 seconds for each enrollment and
five seconds for each matching (on a Pentium II—450 MHz
machine).

In March 2000, after several months of active promotion, we
had 25 volunteering participants (about 50 percent from academia
and 50 percent from industry), far more than our initial
expectation. By the end of April, the training sets were released
to the participants.

After the submission deadline (June 2000) for the executables,
the number of participants decreased to 11 (most of the initially
registered companies withdrew). In any case, the number of
participants (see Table 1) was more than anticipated, so we started

the resolution is controlled by the average ridge-line interdistance; this input parameter was estimated from a real 500 dpi fingerprint database.

working on the submitted executables to complete their evaluation
by August 2000.

Once all the executables were submitted, feedback was sent to
the participants by providing them the results of their algorithms
over training set B (the same data set they had previously been
given) to allow them to verify that neither run time problems nor
hardware-dependent misbehaviors were occurring on our side.

Section 2 describes the four databases used; in Section 3, we
present the criteria and the procedures used for performance
evaluation. Section 4 reports the overall performance of the
participating algorithms on each database and concludes with a
comparison of the average results. Finally, in Section 5, we draw
some concluding remarks and discuss how we intend to continue
supporting this initiative in the future.

2 DATABASES

Four different databases (hereinafter DB1, DB2, DB3, and DB4)
were collected by using the following sensors/technologies [10]:

DB1: optical sensor “Secure Desktop Scanner” by KeyTronic
DB2: capacitive sensor “TouchChip” by ST Microelectronics
DB3: optical sensor “DFR-90” by Identicator Technology"
DB4: synthetically generated based on the method pro-
posed in [3].

Each database is 110 fingers wide (w) and eight impressions per
finger deep (d) (880 fingerprints in all); fingers from 101 to 110 (set B)
were made available to the participants to allow parameter tuning
before the submission of the algorithms; the benchmark is then
constituted by fingers numbered from 1 to 100 (set A). For a system
evaluation, the size of the above four databases is certainly not
sufficient to estimate the performance with high confidence.

1. These sensors are identified in order to clearly specify the features of
the databases. None of the authors have any proprietary interests in these
companies or products.
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Fig. 1. Sample images taken from DB1, DB2, DB3, and DB4. In order to show the different image sizes of each database, the four images are displayed at the same

scale factor.

Fig. 2. Sample images from DB3; each row shows different impressions of the same finger.

However, in a technology evaluation (like, FVC2000), the aim is to
capture the variability and the difficulties of the problem at hand
and to investigate how the different algorithms deal with them. For
this purpose, the size of our databases are adequate.

Table 2 summarizes the global features of the four databases,
and Fig. 1 shows a sample image from each one of them.

It is worth emphasizing that the choice of providing more than
one database is not aimed at comparing different acquisition
technologies and devices; the results obtained by the algorithms on
the different databases should not be conceived as a quality
measure of the corresponding sensors, since the acquisition
conditions and the volunteer crew of each database are different.

To summarize, DB1 and DB2 have the following features:

e  The fingerprints are mainly from 20 to 30 year-old students
(about 50 percent male).

e Up to four fingers were collected for each volunteer
(forefinger and middle finger of both the hands).

e The images were taken from untrained people in
two different sessions and no efforts were made to assure
a minimum acquisition quality.

e  All the images from the same individual were acquired by
interleaving the acquisition of the different fingers (e.g.,

first sample of left forefinger, first sample of right fore
finger, first sample of left middle, first sample of right
middle, second sample of the left forefinger, ...).

The presence of the fingerprint cores and deltas is not
guaranteed since no attention was paid on checking the
correct finger position on the sensor.

The sensor platens were not systematically cleaned (as
usually suggested by the vendors).

The acquired fingerprints were manually analyzed to
assure that the maximum rotation is approximately in the
range [—15°, 15°] and that each pair of impressions of the
same finger has a nonnull overlapping area.

Database DB3 was collected as follows:

The fingerprints are from 19 volunteers between the ages
of five to 73 (55 percent male).

One-third of the volunteers were over 55 years of age.
One-third of the volunteers were under 18 years of age.
One-sixth of the volunteers were under seven years of age
(childrens fingerprints constitute an interesting case study,
since the usable image area is small and the ridge-line
density is high).

Two images of up to six fingers (thumb, fore, and middle
on left and right hands) were taken without interleaving
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Fig. 3. Images from DB3; all the samples are from different fingers and are roughly ordered by quality (top-left: high quality, bottom-right: low quality).

from each volunteer at each session and no efforts were
made to assure a minimum acquisition quality.

Each volunteer was seen at four sessions, with no more
than two sessions on any single day.

The time gap between the first and last sessions was at
least three days and as long as three months, depending
upon volunteer.

The sensor plate was systematically cleaned between
image acquisitions.

At one session with each volunteer, fingers were cleaned
with rubbing alcohol and dried.

Some part of the core was apparent in each image, but care
was taken to avoid a complete overlap between consecu-
tive images taken during a single session.

The acquired fingerprints were manually analyzed to
assure that the maximum rotation is approximately in the
range [—15°, 15°] and that each pair of impressions of the
same finger has a nonnull overlapping area.

Figs. 2 and 3 show some sample images taken from DB3.
The collection of DB4 requires some explanation. In general, the

use of artificial images for testing biometric systems is not

considered to be the “best practice” [19]. Although, this may be

the case for performance evaluation in real applications, we believe

that in a technology evaluation event such as FVC2000, the use of

synthetic images has three main advantages:

It supplies images which are native to none of the
participant algorithms, thus providing a fair comparison.
Synthetic fingerprint databases can be created at a very
low cost. Acquiring a large number of fingerprints for
testing purposes may be problematic due to the great

amount of time and resources required and to the privacy
legislation which in some countries prohibits the diffusion
of such personal information. Furthermore, once a data-
base has been “used,” its utility is limited since, for
successive testing of algorithms, a new unknown database
should be used.

It is possible to adjust the database difficulty by tuning
different kinds of perturbations (e.g., maximum amount of
rotation and translation, and the amount of skin distortion).

If the generated artificial images were not a suitable simulation

of real

error

fingerprint patterns, the comparisons on the synthetic

FMR(?) FNMR()

ZeroFMR

t, ty t.  threshold ¢

Fig. 4. An example of FMR/FNMR curves, where the points corresponding to
EER, ZeroFMR, and ZeroFNMR are highlighted.
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TABLE 3
Algorithm Performance over DB1 Sorted by EER

Algorithm EER REJgnroLL REJvatcn Avg Enroll | Avg Match

(%) (%) (%) Time (sec.) | Time (sec.)
Sagl 0.67 0.00 0.00 2.48 0.96
Sag?2 1.17 0.00 0.00 0.88 0.88
Cetp 5.06 0.00 0.00 0.81 0.89
Cwai 7.06 3.71 3.90 0.22 0.32
Cspn 7.60 0.00 0.00 0.17 0.17
Utwe 7.98 0.00 0.00 10.40 2.10
Krdl 10.66 6.43 6.59 1.00 1.06
Fpin 13.46 0.00 0.00 0.83 0.87
Uinh 21.02 |74 | 5.08 0.53 0.56
Diti 23.63 0.00 0.00 0.65 0.72
Nemi 49.11 0.00 0.12 1.13 1.34

TABLE 4
Algorithm Performance over DB2 Sorted by EER

Algorithm EER REJinroLL REJmarcn Avg Enroll | Avg Match

(%) (%) (%) Time (sec.) | Time (sec.)
Sagl 0.61 0.00 0.00 2.63 1.03
Sag2 0.82 0.00 0.00 0.93 0.93
Cspn 2.75 0.00 0.00 0.17 0.17
Cwai 3.01 1.29 1.29 0.23 0.30
Cetp 4.63 0.00 0.09 0.85 0.98
Krdl 8.83 3.29 441 1.16 2.88
Utwe 10.65 0.00 0.00 10.42 2.12
Fpin 11.14 0.00 0.00 1.16 1.24
Diti 13.83 0.00 0.00 1.21 1.28
Uinh 15.22 0.86 4.08 0.60 0.65
Nemi 46.15 0.00 0.00 1.28 1.57

database would be misleading. Furthermore, in order to improve
the performance, ad hoc algorithms could be designed/tuned
according to the same assumptions which model the synthetic
generation. However, the presence of three real databases in
FVC2000 provides a natural way to check the validity of the results

on DB4.
The parameters of the synthetic generator were tuned to

emulate a low-cost sensor with a small acquisition area; the
maximum rotation and displacement and skin-distortion are
adjusted to roughly reproduce the perturbations in the three
previous databases.

3 PERFORMANCE EVALUATION

For each database, we will refer to the jth fingerprint sample of the
ith finger as Fjj, i =1...100,and j = 1...8, and to the correspond-
ing template (computed from Fj;) as Tj;.

For each database and for each algorithm:

e The templates T;;, i=1...100, and j=1...7 are com-
puted from the corresponding F;; and stored on a disk; one
of the following three kinds of rejection can happen for
each image F;:

1. F (Fail): the algorithm declares that it cannot enroll
the fingerprint image.

2. T (Timeout): the enrollment exceeds the maximum
allowed time (15 seconds).

3. C (Crash): the algorithm crashes during fingerprint
processing.

The three types of rejections are added and stored in

REJgxroLL-

e Each fingerprint template 7;; is matched against the
fingerprint images Fj;. (j < k < 8) and the corresponding
Genuine Matching Scores gms; ;. are stored.” The number of
matches (denoted as NGRA - Number of Genuine
Recognition Attempts) is ((8 x 7)/2) x 100 = 2,800 in case
REJgnroLr = 0. The failed, timeout (five seconds) and
crash rejections are accumulated into REJxgra; no gms; is
stored in this case.

e FEach fingerprint template Tj;, ¢=1...100 is matched
against the first fingerprint image from different fingers
Fj1(i < k £ 100) and the corresponding Impostor Matching
Scores ims;;, are stored. The number of matches (denoted as
NIRA - Number of Impostor Recognition Attempts) is
((100 X 99)/2) = 4, 950 in case REJENROLL = 0. The failed,
timeout (5 seconds) and crash rejections are accumulated
into REJNra; no ims;;, is stored in this case.

e  The genuine matching score distribution and the impostor
matching score distribution are computed (actually, the

2. If g is matched with %, the symmetric match (i.e., 4 against g) is not
executed.
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TABLE 5
Algorithm Performance over DB3 Sorted by EER

Algorithm EER REJinrOLL REJvatcn Avg Enroll | Avg Match

(%) (%) (%) Time (sec.) | Time (sec.)
Sagl 3.64 0.00 0.00 5.70 2.13
Sag? 4.01 0.00 0.00 1.94 1.94
Cspn 5.36 0.57 1.24 0.35 0.36
Cetp 8.29 0.00 0.00 1.49 1.66
Cwai 11.94 12.86 8.00 0.46 0.57
Krdl 12.20 6.86 5.12 1.48 1.60
Uinh 16.32 10.29 7.64 1.28 1.36
Utwe 17.73 0.00 0.00 10.44 231
Diti 22.63 0.00 0.00 2.59 2.67
Fpin 23.18 0.00 0.00 2:13 2.19
Nemi 47.43 0.00 0.01 2.25 2.75

TABLE 6
Algorithm Performance over DB4 Sorted by EER

Algorithm EER REJENROIJ, REJMAT(;H Avg Enroll Avg Match

(%) (%) (%) Time (sec.) | Time (sec.)
Sagl 1.99 0.00 0.00 1.90 0.77
Sag2 3.11 0.00 0.00 0.69 0.69
Cspn 5.04 0.00 0.00 0.11 0.11
Cwai 6.30 0.00 0.00 0.16 0.20
Cetp 7.29 0.00 0.00 0.65 0.72
Krdl 12.08 10.86 10.24 0.70 0.79
Fpin 16.00 0.00 0.00 0.77 0.80
Diti 23.80 0.00 0.00 0.52 0.60
Urwe 24.59 0.00 0.00 10.42 4.17
Uinh 24.77 2.14 4.28 0.42 0.45
Nemi 48.67 0.00 0.25 1.08 1.19

term “distribution” denotes a histogram) and graphically e A ROC (Receiving Operating Curve) is obtained, where

reported to show how the algorithm “separates” the two
classes. In fingerprint verification, higher scores are
associated with more closely matching images.

e The FMR(t) (False Match Rate) and FNMR(t) (False
NonMatch Rate) curves are computed from the above
distributions for ¢ ranging from 0 to 1.> Given a threshold ¢,
FMR(t) denotes the percentage of ims; >1¢, and
FNMR(t) denotes the percentage of gms; ;. < t. Actually,
since FMR and FNMR are used in the contest to compare
the performance of different algorithms, FMR and
FNMR are “corrected” to keep into account rejections
stored in REJnrA and REJnGRA:

_card{imsy, | ims;, >t}

FMR(t) = NIRA ’

B card{gms,; | gms,; <t} + REJNgrA
B NGRA ’
where card denote the cardinality of a given set. This

correction assumes that a failure to match is always treated
by the system as a “nonmatch” (matching score < 0).

FNMR(?)

3. FMR and FNMR are often referred as FAR (False Acceptance Rate)
and FRR (False Rejection Rate) respectively, but the FAR/F RR notation is
misleading in some applications. For example, in a welfare benefits system,
which uses fingerprint identification to prevent multiple payments under
false identity, the system “falsely accepts” an applicant if his/her
fingerprint is “falsely rejected”; otherwise, a “false acceptance” causes a
“false rejection.”

pairs (FMR(t), FNMR(t)) are plotted for the same value of
t; in particular, for t = 0, FMR = 1, and FNMR = 0, while
fort > 1, FMR = 0, and FNMR = 1. The ROC curve is
drawn in log-log scales for better comprehension.

The Equal Error Rate EER is computed as the point where
FNMR(t) = FMR(t) (see Fig. 4); in practice, the matching
score distributions (histograms) are not continuous and a
crossover point might not exist. In this case, we report the
interval [EER,,, EERy;g,]. In Appendix A, an operational
definition of EER is given.

ZeroFMR is defined as the lowest FNMR at which no
False Matches occur and ZeroFNMR is defined as the
lowest FMR at which no False NonMatches occur (Fig. 4):

ZeroFMR(t) = mtin tH{FNMR(t) | FMR(t) = 0}
ZeroFNMR(t) = Intin t{FMR(t) | FNMR(t) = 0}

Both ZeroFMR and ZeroFNMR may not exist; in such a
case, we assign to them the value 1.

The average enroll time is calculated as the average
CPU time for a single enrollment operation, and average
match time as the average CPU time for a single match
operation between a template and a test image.

4 RESULTS

This section reports the performance of the tested algorithms on
each of the four databases (Tables 3, 4, 5, and 6) and the average
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TABLE 7
Average Performance over the Four Databases Sorted by Avg EER
Algorithm | Avg EER Avg Avg Avg Enroll | Avg Match
(%) REJgnrorr (%) | REJyarcn (%) | Time (sec.) | Time (sec.)
Sagl 1.73 0.00 0.00 3.18 1.22
Sag2 2.28 0.00 0.00 111 Ll
Cspn 5.19 0.14 0.31 0.20 0.20
Cetp 6.32 0.00 0.02 0.95 1.06
Cwai 7.08 446 3.14 0.27 0.35
Krdl 10.94 6.86 6.52 1.08 1.58
Utwe 15.24 0.00 0.00 10.42 2.67
Fpin 15.94 0.00 0.00 1.22 127
Uinh 19.33 3.75 5.23 0.71 0.76
Diti 20.97 0.00 0.00 1.24 1.32
Nemi 47.84 0.00 0.09 1.44 1.71

results over the four databases (Table 7). Fig. 5 shows the ROC for
DB3, which proved to be the most difficult data set. The notation
introduced in Section 3 is used in both the graphics and tables, with
the only exception of reporting REJgxrorr, as a percentage value
and to collapse both REJxcra and REJyra into a single value
REJyarom:

NIRA - REJypa + NGRA - REJygra

REJyatcn = NIRA - NGRA

For a correct interpretation of the results, EER alone is not a
sufficient metric; REJgxrorr, should be also taken into account.

For each algorithm, detailed results (including genuine and
impostor distributions, FMR and FNMR curves, NGRA,
NIRA, ...) are reported in [13]. Due to lack of space, Appendix
B of this paper presents only detailed results of the SAGI

algorithm which had the best accuracy in our competition.

5 CONCLUSIONS

Most of the algorithms submitted to the competition performed

well, if we take into account the difficulty of adapting a given

FNMR

1

10

102

1038

105 104 10-3

102

101 FMR

Fig. 5. ROC curves on DB3. Each point denotes a pair (FMR(t), FNMR(t)) for a given value of t.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 3, MARCH 2002 409

g

_[ -

_I FMR(1)) —1 —'[ FMRi1,)

FNMR(i;) FNMR(i:) ) i FNMR(12)
9 estimated FNMR(1))

| 59 FMR(.)  EER _l—o " EER

Y

estimated

L
F o

h s 1 s

Y
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and the corresponding intervals are highlighted.

Average enroll time: 2.48 seconds
Average match time: 0.96 seconds

REJenroLL NGRA NIRA REJnGra REJnmra
0.00% (F:0 T:0 C:0) 2800 4950 0.00% (F:0 T:0 C:0) 0.00% (F:0 T:0 C:0)
EER EER* ZeroFMR ZeroFNMR
0.67% (0.67%-0.68%) 0.67% (0.67%-0.68%) 2.11% 53.13%
[ Gonuines FMA FNMR FNMR
e BC%\ ; 1
405 100

2075

| 2t
[ e N

v] threshold 1 0 threshoid 1 105 104 103 102 10 FMR

Score distributions FMR(t) and FNMR(t) ROC curve

Fig. 7. Performance of algorithm Sagl on database DB1_A.

algorithm to new types of images. In particular, algorithms Sagl and ~ and on what we learned from this experience, we can make the

Sag2 showed the best accuracy and C'spn exhibited a good trade-off ~ following observations:

between accuracy and efficiency. e A coarse analysis of the errors on genuine attempts

Table 7 highlights a significant gap in the performance of the showed that most of the errors were made by the
different algorithms and it would be extremely interesting to algorithms on about 15-20 percent poor-quality finger-
understand the reasons for such differences. To this purpose, after prints in each database. In other words, we could claim

that a 20-80 rule is valid: that is, 20 percent of the database
is responsible for 80 percent of the errors.

e  The most accurate algorithm (Sagl) takes a lot of time for
of them responded (the responses can be found at the FVC2000 enrollment (3.18 sec with respect to a median enrollment

the presentation of the results, we asked the participants to

provide some technical details about their methods, but only a few

Web site [7]); in any case, on the basis of the participant responses time of 1.08 sec). This suggests that an accurate image
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Average enroll time: 2.63 seconds
Average match time: 1.03 seconds

REJgnroLL NGRA NIRA REJnGra REJnmra
0.00% (F:0 T:0 C:0) 2800 4950 0.00% (F:0 T:0 C:0) 0.00% (F:0 T:0 C:0)
EER EER* ZeroFMR ZeroFNMR
0.61% 0.61% 1.36% 50.69%
e Gonuines FMRA FNMR F:"MH
m.
2% 107 __-__lh-«l‘\‘
0 /k I"'J - \’/// 102 \h
o fhreshokd 1 (1] threshold 1 105 104 103 102 1ot FMR
Score distributions FMR(t) and FNMR(t) ROC curve
Fig. 8. Performance of algorithm Sagl on database DB2_A.
Average enroll time: 5.70 seconds
Average maltch time: 2.13 seconds
REJgnrorL NGRA NIRA REJnGra REJnira
0.00% (F:0 T:0 C:0) 2800 4950 0.00% (F:0 T:0 C:0) 0.00% (F:0 T:0 C:0)
EER EER* ZeroFMR ZeroFNMR
3.64% 3.64% 6.82% 100.00%
- Genuines s MR FNMA F:\IMF‘
50 \
AP \ J 10

A

2P

1] thresshold

o threshold

FMR

Score distributions

FMR(t) and FNMR(t)

Fig. 9. Performance of algorithm Sagl on database DB3_A.

enhancement and feature extraction is really important for °
improving the matching accuracy. Furthermore, feature
extraction seems to perform asymmetrically, since the
average matching time (which also includes the feature
extraction time for the test image) is substantially lower

than a single enrollment time.

ROC curve

The fastest algorithms (Cspn) extracts minutiae by an
adaptive tracing of the gray-level ridges, without a priori
binarization and thinning (which are time consuming
tasks) [14], [25] and exploits local minutiae arrangement to
speed-up the initial steps of minutiae matching [26].
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Average enroll time: 1.90 seconds
Average match time: 0.77 seconds

REJF.NROI.L NGRA NIRA REJNGR;\ REJNIR;\
0.00% (F:0 T:0 C:0) 2800 4950 0.00% (F:0 T:0 C:0) 0.00% (F:0 T:0 C:0)
EER EER* ZeroFMR ZeroFNMR
1.99% (1.98%-2.00%) 1.99% (1.98%-2.00%) 6.71% 100.00%
e Impostors Genuines i FMR FNMA F:“IMR
SFa
AP 10
e
2% 102
10%
CD threshold 1 ‘PG threshold 1 1o .‘105 104 103 102 101 FMR
Score distributions FMR(t) and FNMR(t) ROC curve

Fig. 10. Performance of algorithm Sagl on database DB4_A.

Databases DB1 and DB2 proved to be “easier” than DB3, even
though the sensor used for DB3 is of higher quality. This means
that the acquisition conditions and the volunteer population can
have a stronger impact on the performance than sensor quality.

The synthetically-generated database (DB4) was demonstrated
to be adequate for FVC2000 purposes: in particular, from Tables 3, 4,
5, and 6, it is evident that the algorithm ranking on DB4 is quite
similar to the other databases, proving that no algorithm was
favored or penalized by the synthetic images. In particular, if an
algorithm performs well on real fingerprints, then it also performs
well on synthetic fingerprints and vice versa. The visual analysis of
impostor and genuine distributions (see [13]) definitely supports
this claim, since no significant differences are seen between the DB4
graphics and the others.

Once again we would like to remark that the results reported here
do not necessarily reflect the performance that the participating
algorithms would achieve in a real environment or when embedded
into a complete biometric system. In any event, we believe that
FVC2000 results:

e  provide a useful overview of the state-of-the-art in this field,

e allow researchers and companies to test their algorithms
over common databases collected using state-of-the-art
sensors, and

e provide guidance to the participants for improving their
algorithms.

In future, we intend to continue supporting this initiative as follows:

e  The existing FVC2000 Web site [7] will be maintained to
diffuse FVC2000 results and to promote FVC2000 testing
protocol as a standard for technological evaluations.

e Companies and academic research groups will be allowed
to test new algorithms or improved versions of existing

algorithms on the FVC2000 benchmark databases and to
add their results to the FVC2000 Web site. New entries will
be kept isolated from the original entries, since hereafter,
the full databases are known, in advance, which could
allow algorithm tuning to give unfair advantage to new
participants.

e  Thesecond Fingerprint Verification Competition (FVC2002)
has been scheduled and its results will be presented at the
16th International Conference of Pattern Recognition.

e  Generating synthetic fingerprint databases for future
evaluations will be further investigated.

APPENDIX A

An operational procedure for computing EER (interval), given a
finite number of genuine and impostor matching scores, is reported
in the following. Let

max
b= t | FNMR(t) < FMR(t
' te {gmsi]‘k} U {lmszk}{ | (t) < ( )}’
and
min
to

Tte {gms,j;} U {ims; } {t | FNMR(t) > FMR(t)}.

The EER interval is defined as:

[EER o, EER ;i) =
{ [FNMR(t) FMR(t;)]  if FNMR(t;)+FMR(t;) SFMR((t,) - FNMR(t,)

[FMR(t;), FNMR(t;)]  otherwise

and EER is estimated as (EER;,, + EERy,;,)/2 (see Fig. 6).

APPENDIX B
Please see Figs. 7, 8, 9, and 10.
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A Feature-Based Technique for Joint,
Linear Estimation of High-Order
Image-to-Mosaic Transformations:
Mosaicing the Curved Human Retina

Ali Can, Charles V. Stewart, Member, IEEE,
Badrinath Roysam, Member, IEEE, and
Howard L. Tanenbaum

Abstract—An algorithm for constructing image mosaics from multiple,
uncalibrated, weak-perspective views of the human retina is presented and
analyzed. It builds on a previously described algorithm for registering pairs of
retinal images using a noninvertible, 12-parameter, quadratic image
transformation model and a hierarchical, robust estimation technique. The major
innovation presented here is a linear, feature-based, noniterative method for jointly
estimating consistent transformations of all images onto the mosaic “anchor
image.” Constraints for this estimation are derived from pairwise registration both
directly with the anchor image and indirectly between pairs of nonanchor images.
An incremental, graph-based technique constructs the set of registered image
pairs used in the joint solution. The joint estimation technique allows images that
do not overlap the anchor frame to be successfully mosaiced, a particularly
valuable capability for mosaicing images of the retinal periphery. Experimental
analysis of the algorithm on data sets from 16 eyes shows the average overall
median transformation error in final mosaic construction to be 0.76 pixels. Overall,
the technique is simpler, more accurate, and offers broader coverage than
previously published methods.

Index Terms—Robust estimation, image mosaic, image montage, transformation
estimation, retinal imaging, joint estimation.
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1 INTRODUCTION

BUILDING a mosaic image from a sequence of partial views is a
powerful means of obtaining a broader view of a scene than is
available with a single view. Research on automated mosaic
construction has been underway for at least 25 years (see early
work in [17], [18], [20], [29]). The range of applications includes
panoramic image formation [22], [21], virtual reality [8], [28], image
compression [15], [14], change detection, superresolution [7],
tracking [10], navigation [11], indexing and key frame identifica-
tion [15], document compositing [31], and cartography [30]. One
application domain in which mosaics are particularly valuable is in
the diagnosis and treatment of diseases of the retina [1], [3], [9],
[16]. A seamless mosaic formed from multiple fundus camera
images aids in diagnosis, provides a means for monitoring the
progression of diseases, and may be used as a spatial map during
surgical treatment [1], [3].

Several issues must be addressed in designing a mosaic
construction technique. First, the coordinate system in which to
build the mosaic must be established. Second, an appropriate
mathematical model of the image-to-mosaic transformation must be
developed. Most work in mosaic construction uses low-order,
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