Fingerprint Synthesis: Search with 100 Million Prints

Vishesh Mistry* Michigan State University East Lansing, MI, USA mistryvi@msu.edu

Joshua J. Engelsma Michigan State University East Lansing, MI, USA engelsm7@cse.msu.edu

Anil K. Jain Michigan State University East Lansing, MI, USA jain@cse.msu.edu

Supported by grant from the NIST Image Group

*Presenter

Need for a Large-scale Synthetic Fingerprint Dataset

- Automated Fingerprint Identification Systems (AFIS)
 - India's Aadhaar Project (1.26 billion ten-prints)
 - FBI's Next Generation Identification System (145.3 million ten-prints)

Person enrolling in Aadhaar

FBI's NGI system

Need for a Large-scale Synthetic Fingerprint Dataset

- Fingerprint search algorithms evaluated on small-scale datasets
- Evaluating against a gallery of 100 million fingerprints:
 - Collection of large-scale fingerprints
 - Obtain fingerprints from forensic/government agencies
 - Synthesize fingerprint images

Related Work in Fingerprint Synthesis Cappelli et al. Zhao et al. Johnson et al. Proposed: Rolled **BTAS 2012 CVPR 2013** IET 2018 Bontrager et al. Proposed: Plain Cao and Jain Attia et al.

SMC 2019

ICB 2018

BTAS 2018

Contributions of our Proposed Approach

- Fingerprint synthesis algorithm based on GANs
- Identity Loss to generate fingerprints of more unique identities
- Synthesis of 100 million fingerprint images
- Large-scale search evaluation against 100 million synthetic prints

Proposed Approach

Convolutional Autoencoder (CAE)

- Training CAE in an unsupervised fashion
- Reconstruction loss: $\mathcal{L}_{CAE} = ||x - x'||_2^2$
- Weights of G_{dec} used to initialize Generator
 G of I-WGAN

Improved-WGAN

Identity Loss

- Use DeepPrint (Engelsma *et al. PAMI 2019*) as F(x) to extract fixedlength representations
- For each latent pair (z_i, z_j) :

$$\mathcal{L}_{identity} = \frac{1}{\sum ||F(G(z_i)) - F(G(z_j))||}, (z_i \neq z_j)$$

Step 2: Training I-WGAN Adversarial Loss \mathcal{L}_{adv} **Real Fingerprints** Real D or Synthetic Fingerprints Fake? G Multivariate Input z ∈ R⁵¹² Normal Fixed-length Distribution Representations Identity Loss F(**x**) $\mathcal{L}_{identity}$

Training and Synthesis

- CAE and I-WGAN trained using 280,000 rolled fingerprint images
- Fine-tuned for synthesizing plain fingerprints using 84K plain prints
- Synthesis of 100 million rolled fingerprints using HPCC
 - 100 jobs in parallel, each job generating 1 million prints
 - Total time taken: 51 CPU hours; 1.8ms/image

Generated Fingerprints while Training

Step: 00049

Experimental Results

Fingerprint Realism

Metrics:

- Minutiae count template and block,
- Minutiae direction template and block
- Minutiae convex hull area
- Minutiae spatial distribution (2D minutiae histogram from Gottschlich et al. IET 2014)
- Block minutiae quality
- NFIQ 2.0 quality scores
- Statistical Test: Kolmogorv-Smirnov test (Massey JASA 1951) used to compute difference between the distributions of each metric

Fingerprint Realism

Datasets:

	Plain Fingerprint datasets	Rolled Fingerprint datasets	
Real	CASIA-Fingerprint v5 (2000 fingerprints)	NIST SD4 (2000 enrollment fingerprints)	
	NIST SD302L (1951 fingerprints)	NIST SD14 (last 2000 enrollment fingerprints)	
	NIST SD302M (1979 fingerprints)	NIST SD302U (2000 fingerprints)	
Synthetic	SFinGe (2000 fingerprints)	Cao and Jain ICB 2018 (2000 fingerprints)	
	Proposed Approach (2000 fingerprints)	Proposed Approach (2000 fingerprints)	

Fingerprint Realism

Comparison of synthetic plain (a) and rolled (b) fingerprints to real fingerprints using 8 metrics: minutiae count – block [A] and template [B], direction – block [C] and template [D], convex hull area [E], spatial distributions [F], block minutiae quality [G], and NFIQ 2.0 quality [H].

Imposter Scores Distribution

Imposter scores distribution computed using real rolled prints (NIST SD4) and synthetic rolled prints from Cao and Jain, and proposed approach

- 500K imposter scores computed using VeriFinger
- (Mean, STD):
 - (3.47, 2.13) Proposed
 - (3.48, 2.18) Cao and Jain
- Identity loss helped generate more diverse fingerprints

DeepPrint Search against 1 Million Fingerprints

Confidence interval for rank-N search accuracy on NIST SD4 using DeepPrint

- Gallery of 1 million synthetic fingerprints
- Confidence intervals for rank-N search accuracies
- Mean rank-1 search acc: 95.53% with conf. interval of [95.1, 95.8]

COTS Search against 1 Million Fingerprints

- Fingerprint search using NIST SD4 on synthetic rolled fingerprints
- Rank-1 search accuracies using Innovatrics SDK:

	Proposed Approach	Cao and Jain	
250K Gallery	91.45%	90.85%	
1M Gallery	90.35%	90.40%	

 Uniqueness of our synthetic rolled prints becomes more evident at large gallery sizes

Search against 100 Million Fingerprints

Rank-N fingerprint search accuracies on NIST SD4 for galleries of 100 million synthetic fingerprints using DeepPrint as the matcher

Challenges:

- Synthesis
- Search experiment

Rank-1 search accuracy on gallery:

- Proposed approach: 89.7%
- Cao and Jain: 93.55%

Conclusions

- Propose a fingerprint synthesis algorithm based on I-WGAN and an identity loss to generate diverse and realistic fingerprints
- Show fingerprint search performance at a scale of 100 million

Ongoing work:

- Scale search to a gallery of 1 billion fingerprints
- Further improve realism and diversity of prints

Thank you!