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Fig. 1: Face images (top row) and corresponding left thumb fingerprints (bottom row) of six different infants under 3 months of age.
Face images were captured by a Xiaomi MI A1 smartphone camera and fingerprint images were captured by the 1,900 ppi RaspiReader
designed by Engelsma et al. [1], [2] at the Saran Ashram Hospital, a charitable organization in Dayalbagh, Agra, India.

Abstract—In many of the least developed and developing countries, a
multitude of infants continue to suffer and die from vaccine-preventable
diseases and malnutrition. Lamentably, the lack of official identification
documentation makes it exceedingly difficult to track which infants have
been vaccinated and which infants have received nutritional supple-
ments. Answering these questions could prevent this infant suffering
and premature death around the world. To that end, we propose Infant-
Prints, an end-to-end, low-cost, infant fingerprint recognition system.
Infant-Prints is comprised of our (i) custom built, compact, low-cost (85
USD), high-resolution (1,900 ppi), ergonomic fingerprint reader, and
(ii) high-resolution infant fingerprint matcher. To evaluate the efficacy
of Infant-Prints, we collected a longitudinal infant fingerprint database
captured in 4 different sessions over a 12-month time span (December
2018 to January 2020), from 315 infants at the Saran Ashram Hospital,
a charitable hospital in Dayalbagh, Agra, India. Our experimental results
demonstrate, for the first time, that Infant-Prints can deliver accurate and
reliable recognition (over time) of infants enrolled between the ages of
2-3 months, in time for effective delivery of vaccinations, healthcare, and
nutritional supplements (TAR = 95.2% @ FAR = 1.0% for infants aged
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8-16 weeks at enrollment and authenticated 3 months later)1.

Index Terms—Infant Mortality, InfantID, Biometrics for Global Good,
High Resolution Fingerprint Reader, High Resolution Fingerprint
Matcher

1 INTRODUCTION

T Here are more than 600 million children living worldwide
between the ages of 0-5 (years) [3] with an additional

353,000 more newborns setting foot on the planet each and every
day [4]. A majority of these births take place in the poorest
regions of the world, where it is likely that neither the infants
nor their parents will have access to any official identification
documents2. Even if the infant has obtained an official ID, it may
be fraudulent or shared with others [5], [6], [7]. Without legitimate
and verifiable identification, infants are often denied access to
healthcare, immunization, and nutritional supplements. This is

1A preliminary version of this paper was present at CVPRW Computer
Vision for Global Challenges, Long Beach, CA, 2019.

2Selecting and assigning a name to the newborns can be a drawn out
process in developing countries in which parents consult immediate family
members or even an astrologer for a proper name. While deciding upon a
name, the infant is simply referred to as “baby” or “daughter of”, or “son of”.
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Fig. 2: Face images (top row) and corresponding left thumb fingerprints (bottom row) of an infant, Meena Kumari, acquired on (a)
December 16, 2018 (Meena was 3 months old), (b) December 18, 2018 (3 months, 2 days old), (c) March 5, 2019 (6 months old),
and (d) September 17, 2019 (12 months old) at Saran Ashram Hospital, Dayalbagh, India. Note that as Meena ages, fingerprint details
emerge such as visible pores. This level of detail is enabled by our 1,900 ppi reader.

especially problematic for infants3 (newborns to 12 months), given
that they are at their most critical stage of development.

The downstream problems caused by lack of proper infant
ID in the planet’s least-developed countries can be quantitatively
seen in the flat lining of global vaccination coverage. In particular,
from 2015 to 2018, the percentage of children who have received
their full course of three-dose diphtheria-tetanus-pertussis (DTP3)
routine immunizations remains at about 85% [18]. This falls short
of the GAVI Alliance (formerly Global Alliance for Vaccines and
Immunization4) target of achieving global immunization coverage
of 90% by 2020. According to UNICEF, 25 million children do
not receive proper annual vaccination, leading to 1.5 million child
deaths per annum from vaccine-preventable diseases5. The World
Health Organization (WHO) suggests that inadequate monitoring
and supervision and lack of official identification documents
(making it exceedingly difficult to accurately track vaccination
schedules) are key factors6.

Infant identification is also urgently needed to effectively
provide nutritional supplements. The World Food Program (WFP),
a leading humanitarian organization fighting hunger worldwide,
assists close to 100 million people in some of the poorest regions
of the world7. However, often the food never reaches the intended

3Infants are considered to be in the 0-12 months age range, whereas,
toddlers and preschoolers are within 1-3 and 3-5 years of age, respectively [8].

4https://bit.ly/1i7s8s2
5https://www.unicef.org/immunization
6https://bit.ly/1pWn6Gn
7https://evaw-un-inventory.unwomen.org/fr/agencies/wfp

beneficiaries because of fraud in the distribution system [5], [6],
[7]. For example, the WFP found that in Yemen, a country with 12
million starving residents, food distribution records are falsified
and relief is being given to people not entitled to it, preventing
those who actually need aid from receiving it [6], [7].

Accurate and reliable infant recognition would also assist in
baby swapping prevention8, identifying missing or abducted chil-
dren, and access to government benefits, healthcare, and financial
services throughout an infant’s lifetime.

As we show in the next section, fingerprint recognition [19],
is the only way to accurately and reliably establish an infant’s
identity. While fingerprint recognition is now a mature field and
billions of teenagers and adults have been using it to authenticate
themselves, children, particularly infants and toddlers, cannot yet
utilize fingerprint recognition to get a unique and verifiable digital
identity.

1.1 Fingerprints for Infant-ID
Conventional identification documents (paper records) are imprac-
tical for infant recognition in many of the least developed and
developing countries because they are not securely linked to a
specific infant. Furthermore, they may be fraudulent [5], lost, or
stolen. We posit that a more accurate, robust, and verifiable means
of infant recognition is through the use of biometric recognition.
Of the prominent biometric traits, we posit that fingerprint is the
most promising for infant recognition. This is because, (i) face

8https://bit.ly/2U5eAHn

https://bit.ly/1i7s8s2
https://www.unicef.org/immunization
https://bit.ly/1pWn6Gn
https://evaw-un-inventory.unwomen.org/fr/agencies/wfp
https://bit.ly/2U5eAHn


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE 1: Related work on child fingerprint recognition.

Study Year Fingerprint Resolution # Subjects Age at Enrolment Time Lapse Findings
Galton [9] 1899 Inked Impressions 1 0 year 0 - 4.5 years Recognition is feasible for children over 2.5 years
TNO [10] 2005 500 ppi 161 0 - 13 years N/A* Recognition is challenging for children below 4 years
BIODEV II [11] 2007 500 ppi 300 0 - 12 years N/A* Difficult to capture fingerprints for children < 12 years
UltraScan [12] 2006-2009 500 ppi 308 0 - 18 years 3 years No insight for children below 5 years
Aadhar [13] 2009 500ppi 1.25B Enrolled at 5 years of age N/A Recognition of children under 5 years of age is challenging

Re-enrolled at 15 years of age
JRC [14] 2013 500 ppi 2611 0 - 12 years 2 - 4 years Recognition of children under 6 years of age is difficult
Jain et al. [15] 2016 1,270 ppi 309 0 - 5 years 1 year Feasible to recognize children over 6 months
Saggese et al. [16] 2019 3,400 ppi 142 0 - 6 months variable length High authentication accuracy (TAR = 85%-96% @ FAR = 0.1%),

but unknown time lapse between enrollment and authentication1.
Infant-Prints [2] 2019 1,900 ppi 194 0 - 3 mos. 3 mos. TAR = 66.7%, 75.4%, and 90.2% @ FAR = 0.1% for infants enrolled

at ages [0-3 months], [1-3 months], and [2-3 months], respectively.
Preciozzi et al. [17] 2020 500 ppi 16,865 0 - 18 years 10 years TAR = 1.25%, 7.57%, and 15.61% @ FAR = 0.1% for infants enrolled

at ages [0-1 month], [1-2 months], and [2-3 months], respectively.
This study 2020 1,900 ppi 315 0 - 3 months 1 year TAR = 92.8% @ FAR = 0.1% for infants enrolled

at age of 2-3 months, respectively.

* No time span available for these studies.
1 Scores from across all time lapses (weeks or months) are aggregated when computing the fingerprint recognition error rates.

This inflates the true longitudinal recognition performance.

recognition is challenging due to the rapid aging of the infant’s
face from infanthood to childhood [20]. (ii) Iris recognition [21]
is impractical because the infant will often be sleeping or crying.
(iii) Footprint recognition [22], [23] requires removing socks and
shoes and cleaning the infant’s feet, and finally, (iv) palmprint
recognition [24] requires opening an infant’s entire hand where
the concavity of the palm makes it difficult to image. In contrast,
fingerprint recognition has already been shown to be practical for
young children [15]. Furthermore, fingerprints have been shown
to be (i) unique [25], [26], (ii) present at birth [27], [28], [29], (iii)
stable over time in terms of recognition accuracy [30], [31], and
(iv) a socially acceptable biometric trait to capture [15].

Fingerprint recognition of infants comes with its own chal-
lenges and requirements, including:

1) A compact, low-cost, ergonomic, high-resolution (to ac-
commodate small inter-ridge spacings), and high through-
put fingerprint reader.

2) A robust and accurate fingerprint matcher to accom-
modate low quality (distorted, dirty, wet, dry, motion
blurred), high-resolution fingerprint images.

As such, prevailing COTS fingerprint recognition systems, de-
signed primarily for an adult population, are not feasible for infant
fingerprint recognition. Our goal then is to develop an end-to-end
fingerprint recognition system, specifically designed for infants.

2 RELATED WORK

Table 1 summarizes prior work on infant and child fingerprint
recognition. These studies are summarized as follows:

• Beginning in 2004, the Netherlands Organization for Ap-
plied Scientific Research (TNO) conducted a study [10]
wherein they concluded that it was not possible to obtain
clear fingerprints from children under 4 years of age due
to low fidelity in the ridge pattern on their fingers.

• A pilot program called BIODEV II was initiated in 2007
for capture, storage and verification of biometric data
for Schengen visa applicants [11]. Experimental results
based on the fingerprints of 300 children acquired in
Damascus (Syria) and Ulan Bator (Mongolia), show that
it is challenging to acquire fingerprints of children below
12 years of age.

• UltraScan conducted a study from 2006 to 2009 which
modeled the growth of the fingerprints of children as they

grow into their adolescence [12]. However, no experimen-
tal results were provided on child fingerprint capture and
recognition.

• The Joint Research Center of the European Commission
published a technical report [14] in 2013 on fingerprinting
2,611 children between 0 to 12 years of age. Fingerprints
were acquired using 500 ppi fingerprint readers while
passport processing by the Portuguese government. The
report concluded that fingerprint recognition of children
younger than 6 years of age is challenging.

• In 2016, Jain et al. acquired fingerprints of 309 children
in the age range of 0 to 5 years via a 1,270 ppi fingerprint
reader [15]. They concluded that it is feasible to recognize
infants enrolled at the age of 6 months and authenticated
one year later.

• In 2019, Saggese et al. acquired fingerprint images of 500
newborns and infants (less than 6 months of age) at the
Tijuana General Hospital in Mexico using a custom built
3,400 ppi contactless fingerprint reader [16]. Although
the authentication results reported seem promising, the
study does not separate out the longitudinal recognition
performance.

• Perciozzi et al. reported extremely low authentication
performance of infants in a study published in 2020 [17].
The low performance can be attributed to the fact that the
infant’s fingerprints were captured with a standard 500 ppi
fingerprint reader.

• In our preliminary study [2], we collected fingerprints of
194 infants via a custom 1,900 ppi fingerprint reader. We
found that infants enrolled at ages 0-3 months can be
accurately and reliably recognized 3 months later with
TAR=90% @ FAR=0.1%.

Among the aforementioned studies, there are only three stud-
ies [2], [16], [17] which investigate the feasibility of recognizing
infants under the age of 3 months at enrollment. (i) While the
infant fingerprint recognition results reported in [16] by Saggese
et al. seem promising, they aggregate scores from all time lapses
(weeks or months) for computing the fingerprint recognition error
rates which inflates the true longitudinal recognition performance.
(ii) Preciozzi et al. report poor infant recognition results (TAR =
15.61% @ FAR=0.1% for 2-3 month old age group). (iii) Our
preliminary study on infant fingerprint recognition [2] utilized a
custom 1,900 ppi infant fingerprint reader, however, the matcher
was not designed to fully utilize the high-resolution imagery
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Fig. 3: Overview of the Infant-Prints system.

(instead using existing matchers designed for 500 ppi images).
Furthermore, the matcher did not incorporate any enhancement or
aging of the friction ridge pattern. Finally, our preliminary study
was conducted for 194 infants across a maximum time lapse of
3 months. In contrast, the current work includes 315 infants with
longitudinal data of up to a one year time lapse.

The key differences between the present and prior work
(specifically targeting infant recognition [2], [16], [17]) can be
concisely summarized as follows:

• The longitudinal infant authentication and search perfor-
mance has not been adequately addressed in prior works.
In [16], fingerprint pairs captured across time lapses of
different duration were lumped into the same evaluation.
In our preliminary study [2], we only assessed the longi-
tudinal performance for a time lapse of 3-months. In the
present study, we extend this longitudinal evaluation out
to a full 12 month time lapse (requiring further in-situ data
collection).

• Prior work proposed high-resolution fingerprint readers,
but did not exploit the high-resolution imagery. Instead,
the existing works utilize 500 ppi fingerprint matchers (de-
signed for the adult population). In the present work, we
design a high-resolution fingerprint matcher specifically
for infants to further improve the matching performance.
Extensive ablation studies show the impact of these algo-
rithmic improvements.

• This is the first comprehensive study to develop an entire,
end-to-end infant fingerprint recognition system (including
fingerprint reader, matcher, and mobile application), and
then rigorously evaluate the system on a longitudinal, in-
situ dataset to successfully demonstrate that infants can be
enrolled at ages of less than 3 months, and then recognized
after a time lapse of 12 months with acceptable accuracy.
The present study is more complete than any of the
existing studies targeting infant fingerprint recognition [2],
[16], [17].

The specific technical contributions of our approach are as
follows:

• Design and prototyping of a compact (1”×2”×3”), low-
cost (85 USD), high-resolution (1,900 ppi), ergonomic
fingerprint reader for infants (Fig. 4). This reader is much
smaller and better designed for infants than our earlier
open sourced fingerprint reader proposed in [1]. We also
prototype a contactless version of our fingerprint reader
(Fig. 6) in order to compare contact-based sensing tech-
nologies with contactless sensing technologies when used
for infants.

• Collection of a longitudinal infant fingerprint database
comprised of 315 infants (0-3 months) over 4 separate
sessions separated by 13 months (between December 2018
and January 2020). The data was collected at the Saran
Ashram hospital, Dayalbagh, India.

• A first-of-its-kind, high resolution fingerprint matcher for
infants which incorporates infant fingerprint aging and en-
hancement modules together with high resolution texture
and minutiae matchers.

• The experimental results evaluated on our
longitudinal infant dataset indicate that indeed,
it is possible to enroll infants at ages younger
than 3 months and accurately recognize them
months later based only upon their fingerprints
TAR=95.2%@FAR=1.0%,TAR=92.8%@FAR=0.1%
(for infants enrolled at 2-3 months of age, and
authenticated 3 months later), TAR=85%@FAR=1.0%
for infants enrolled at 2-3 months of age, and authenticated
a full year later.

3 HIGH-RESOLUTION FINGERPRINT READER

Almost all the fingerprint readers used in government and com-
mercial applications capture images at a resolution of 500 ppi.
This resolution is sufficient to resolve adult fingerprint ridges
that have an inter-ridge spacing of about 8-10 pixels. However,
500 ppi resolution is not adequate for infant fingerprint capture
since infant fingerprints have an inter-ridge spacing of 4-5 pixels
(sometimes the width of a valley may be less than 1 pixel for an
infant fingerprint captured at 500 ppi).

Some cheaper readers (50 USD) reach 1,000 ppi only after
upsampling the fingerprint image [32]. However, Jain et al. [15]
showed that even at a native resolution9 of 1,270 ppi, finger-
print recognition of young infants (0-6 months) was much lower
than infants 6 months and older. The lack of an affordable,
compact and high resolution fingerprint reader motivated us to
construct a first-of-a-kind, 1,900 ppi fingerprint reader, called
RaspiReader (Fig. 4), enabling capture of high-fidelity infant fin-
gerprints (Fig. 5), particularly those in the age range 0-3 months.
Unlike our prior efforts to build a compact and cheap reader for
adults [1], [33], both the cost and size of the infant fingerprint
reader has been significantly reduced (from 180 USD to 85 USD
and 4”× 4”× 4” to 1”× 2”× 3”). Furthermore, the fingerprint
reader is now more ergonomic for infant fingerprints since it has a
glass prism towards the front of the reader (Fig. 4) rather than flush
with the top of the reader (as is the case with commercial readers).

9Native resolution is the resolution at which the sensor is capable of
capturing (no upsampling or downsampling).
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Fig. 4: Prototype of the 1,900 ppi compact (1” x 2” x 3”), ergonomic fingerprint reader. An infant’s finger is placed on the glass prism
with the operator applying slight pressure on the finger. The capture time is 500 milliseconds. The prototype can be assembled in less
than 2 hours. See the video at: https://www.youtube.com/watch?v=f8tYbE9Cwd0.

(a) 500 ppi commercial reader (b) 1,900 ppi RaspiReader

(c) (d)

Fig. 5: An infant’s fingerprints are acquired via (a) a 500 ppi
commercial reader (Digital Persona U.are.U 4500) and (b) our
custom 1,900 RaspiReader. The captured fingerprint images of
the right thumb from the commercial reader and the Infant-Prints
reader for a 13 day old infant are shown in (c) and (d), respectively.
Manually annotated minutiae are shown in red circles (location)
with a tail (orientation). Blue arrows denote pores on the ridges.

Since infants frequently clench their fists and have very short
fingers, placing the prism out front significantly eases placement
of an infant’s finger on the platen (Fig. 5 (b)).

The entire design and 3D parts for the reader casing along with

step by step assembly instructions are open sourced.10 Figure 5
shows that this custom 1,900 ppi fingerprint reader is able to
capture (500 millisecond capture time) the minute friction ridge
pattern of a 13 day old infant (both minutiae and pores) with
higher fidelity than the 500 ppi Digital Persona U.are.U. 4500
reader.

We also prototype a contactless variant of our contact-based
infant fingerprint reader. Similar to [16], we adopt a different size
finger rest for different size thumbs. In this manner, we are able
to compare contact-based high resolution fingerprint readers with
the high resolution contactless sensing technology. Figure 6 shows
an example infant fingerprint captured by both our contactless and
contact-based fingerprint reader.

4 LONGITUDINAL FINGERPRINT DATASET

To effectively demonstrate the utility of an infant fingerprint
recognition system for the applications we have highlighted above,
we must be able to show its ability to recognize a child based on
fingerprints acquired months after the initial enrollment. Such an
evaluation requires a longitudinal fingerprint dataset which con-
tains fingerprint images of the same infant over time at successive
intervals. Collecting such a dataset is a significant challenge as it
requires the cooperation of an infant’s parents in returning to the
clinic multiple times for participation in the study. It also requires
working with uncooperative infants who may become hungry
or agitated during the data collection (our ergonomic fingerprint
reader alleviated some of these challenges).

We have collected a dataset comprised of longitudinal finger-
print images of 315 infants (all enrolled at 0-3 months of age)
at the Saran Ashram hospital in Dayalbagh, India across four
sessions (see Fig. 7)11:

1) Session 1: December 12-19, 2018
2) Session 2: March 3-9, 2019

10https://github.com/engelsjo/RaspiReader
11Our dataset collection was approved by the Institutional Review Board

(IRB) of Michigan State University and ethics committee of Dayalbagh Edu-
cational Institute and Saran Ashram Hospital. The fingerprint dataset cannot
be made publicly available per the IRB regulations and parental consents.

https://www.youtube.com/watch?v=f8tYbE9Cwd0
https://github.com/engelsjo/RaspiReader
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(a)

(b) Contactless image (c) Contact-based image

Fig. 6: (a) Prototype of our 1,900 ppi contactless fingerprint reader.
During capture, an infant’s finger is placed on top of a small,
contactless, rectangular opening (annotated in red) on the reader
(the size of this opening can be adjusted with different sized
slots). A camera captures the infant’s fingerprint from behind
the rectangular opening. Examples of a processed (segmented,
contrast enhanced), contactless infant thumb-print (2 months old)
is shown in (b) and the same infant’s thumb-print acquired via
contact-based fingerprint reader in (c).

3) Session 3: September 12-21, 2019
4) Session 4: January 17-24, 2020

The infants were patients of the pediatrician, Dr. Anjoo Bhatnagar
(Fig. 7). Prior to data collection, the parents were required to sign
a consent form (approved by authors’ institutional review board
and the ethics committee of Saran Ashram hospital).

In a single session, we attempted to acquire a total of two
impressions per thumb (sometimes we captured more (e.g. 4 im-
pressions) or less (e.g. 1 impression) depending on the cooperative
nature of the infant). Although a modest incentive was offered
to parents for their data collection efforts, it was often difficult
for them to meet our fingerprint capture schedule because of
festivals, vacations, moving to a different city or loss of interest
in the project. For this reason, out of the 315 total infants that we
encountered, 25 infants were present in all four sessions, 54 infants
came to only three sessions, 109 infants came to only two sessions,
and 127 infants came to only one session. During collection, a dry
or wet wipe was used, as needed, to clean the infant’s finger prior

TABLE 2: Infant Longitudinal Fingerprint Dataset Statistics

# Sessions 4
# Infants 315
Total # images 3,071
Age at enrollment 0 - 3 mos.
# Subjects with no time lapse* 127
# Subjects with 3 months lapse* 121
# Subjects with 6 months lapse* 29
# Subjects with 9 months lapse* 101
# Subjects with 12 months lapse* 41
Male to Female Ratio 43% to 57%
* Time lapse between enrollment and authentication image.

Fig. 7: Infant fingerprint collection at Saran Ashram hospital,
Dayalbagh, India. Pediatrician, Dr. Anjoo Bhatnagar, explaining
longitudinal fingerprint study to the mothers while the authors are
acquiring an infant’s fingerprints in her clinic. Parents also sign a
consent form approved by the Institutional Review Board (IRB)
of our organizations.

to fingerprint acquisition. On average, data capture time, for 4
fingerprint images (2 per thumb) and a face image per infant, was
3 minutes12. This enabled a reasonably high throughput during the
in-situ evaluation, akin to the operational scenario in immunization
and nutrition distribution centers. Longitudinal fingerprint dataset
statistics are given in Table 2.

5 INFANT FINGERPRINT MATCHING

State-of-the-art fingerprint feature extractors and matchers are
designed to operate on 500 ppi adult fingerprint images. This
limitation forced the authors in [15] to down-sample the finger-
print images captured at 1,270 ppi to enable compatibility with
COTS (Commercial Off The Shelf) matchers. The authors in [16]
also had to down-sample images captured at 3,400 ppi in order to
make them compatible with adult fingerprint matching systems. In
our preliminary study [2], we developed a custom Convolutional
Neural Network (CNN) based texture-matcher which directly
operates on 1,900 ppi fingerprint images so that we did not have
to down-sample images and discard valuable discriminative cues
available in high resolution images. The final matching score in [2]
was based on the fusion of (i) our CNN-based custom texture
matcher and (ii) two state-of-the-art COTS matchers.

In this work, we (i) incorporate an enhancement and fingerprint
aging preprocessing module, (ii) improve our high-resolution tex-
ture matcher from [2], and (iii) propose a high-resolution minutiae
extractor trained on manually annotated infant fingerprint images.

12Data capture time includes parents signing the consent forms, record-
keeping, and pacifying non-cooperative infants.
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Combining these algorithmic improvements with two state-of-
the-art fingerprint matchers (a latent fingerprint matcher, and a
minutiae matcher) enables us to improve our recognition accuracy
over that which was reported in our preliminary study [2]. In the
following subsections, we discuss in more detail each of these
algorithmic improvements.

5.1 Minutiae Matcher
Our high resolution minutiae matcher is comprised of (i) a high-
resolution minutiae extractor, (ii) a minutiae aging model, and
(iii) the Verifinger v10.0 ISO minutiae matcher. In the following
subsections, we describe each of these algorithmic components.

5.2 Minutiae Extraction
Recent approaches to minutiae extraction in the literature have
found that deep networks are capable of delivering superior
minutiae extraction performance in comparison to traditional ap-
proaches [34], [35], [36], [37]. Furthermore, the authors in [38]
showed that deep learning based minutiae extractors are particu-
larly well suited for low quality fingerprint images. Since infant
fingerprints can also be regarded as a “low-quality” fingerprint
(heavy non-linear distortion, motion blur from uncooperative sub-
jects, small inter-ridge spacing, very moist or dry fingers, dirty
fingers), we choose to adopt the deep learning based minutiae
extraction approach from [38] (with modifications to the architec-
ture and training procedure) for high-resolution infant minutiae
extraction. In our experiments, we demonstrate that the high-
resolution minutiae extractor is capable of boosting the infant
fingerprint recognition performance.

The core of the minutiae extraction algorithm proposed in [38]
is a fully-convolutional auto-encoder M(.) which is trained to
regress from an input fingerprint image I ∈ Rn×m to a ground
truth minutiae map H ∈ Rn×m×12 via Ĥ = M(I), where Ĥ is
the predicted minutiae map. The spatial locations of hot spots
in the minutiae map indicate the locations of minutiae points,
and the 12 different channels of the minutiae map encode the
orientation of the minutiae points. The parameters of M are
trained in accordance with Equation (1).

Lminutiae = ||Ĥ−H||22 (1)

This estimated 12-channel minutiae map Ĥ can be sub-
sequently converted into a variable length minutiae set
{(x1, y1, θ1), ..., (xN , yN , θN )} with N minutiae points via an
algorithm which locates local maximums in the channels (loca-
tions) and individual channel contributions (orientations) followed
by non-maximal suppression to remove spurious minutiae [38].

To obtain ground truth minutiae maps H for computing
Lminutiae, we encode a ground truth minutiae set for a given
infant fingerprint following the approach of [38] for latent fin-
gerprints. In particular, given a ground truth minutiae set T =
{m1,m2, ...,mN} with N minutiae and mt = (xt, yt, θt), H at
position (i, j, k) is given by:

H(i, j, k) =
N∑
t=1

Cs((xt, yt), (i, j)) · Co(θt, 2kπ/12) (2)

where Cs(.) is the spatial contribution and Co(.) is the orientation
contribution of minutiae point mt to the minutiae map at (i, j, k).
Note, Cs(.) is based upon the euclidean distance of (xt, yt) to

TABLE 3: Minutiae Extraction Network

Type Output Size Filter Size, Stride

Convolution 256× 256× 64 4× 4, 1

Convolution 128× 128× 64 4× 4, 2

Convolution 64× 64× 128 4× 4, 2

Convolution 32× 32× 256 4× 4, 2

Convolution 16× 16× 384 4× 4, 2

Convolution 8× 8× 512 4× 4, 2

Convolution 8× 8× 1024 4× 4, 1

Convolution 4× 4× 1024 4× 4, 2

Deconvolution 4× 4× 1024 4× 4, 1

Deconvolution 8× 8× 512 4× 4, 2

Deconvolution 16× 16× 384 4× 4, 2

Deconvolution 32× 32× 256 4× 4, 2

Deconvolution 64× 64× 128 4× 4, 2

Deconvolution 128× 128× 64 4× 4, 2

Deconvolution 256× 256× 32 4× 4, 2

Deconvolution 256× 256× 12 4× 4, 1
† During training, input patches are 256 × 256. During

testing, the input can be of any size (the network is fully
convolutional).

(i, j) and Co(.) is based on the orientation difference between θt
and 2kπ/12 as follows:

Cs((xt, yt), (i, j)) = exp(−||(xt, yt)− (i, j)||22
2σ2

s

) (3)

Co(θt, 2kπ/6) = exp(−dφ(θt, 2kπ/12)

2σ2
s

) (4)

where σ2
s is a parameter controlling the width of the gaussian, and

dφ(θ1, θ2) is difference in orientation between angles θ1 and θ2:

dφ(θ1, θ2) =

{
|θ1 − θ2| −π ≤ θ1 − θ2 ≤ π
2π − |θ1 − θ2| otherwise.

(5)

An example infant fingerprint patch, and a few channels of its
12 channel ground truth minutiae map are shown in Figure 9. An
overview of our end-to-end minutiae extraction algorithm is shown
in Figure 8. In contrast to the 500 ppi latent fingerprint minutiae
extractor in [38], we directly train our minutiae extractor on infant
fingerprint patches at 1,900 ppi resolution. In this manner, we do
not remove any discriminative cues (via down-sampling) from the
input infant fingerprint images prior to performing minutiae ex-
traction. Operating at a high resolution requires a deeper network
architecture than that which was utilized in [38]. Our network
architecture is shown in detail in Table 3. Note that while we
train our auto-encoder on infant fingerprint patches, during test
time, we input a full size infant fingerprint (of varying width and
height) since our architecture is fully-convolutional and as such, is
amenable to different size inputs.

5.2.1 Manual Minutiae Markup for Training
As seen in the previous section from Equations 2-5, obtaining
ground truth minutiae maps H for training our minutiae map
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Fig. 8: Overview of the minutiae extraction algorithm. An input fingerprint of any size (n ×m) is passed to the minutiae extraction
network (Table 3). The network outputs a n×m× 12 minutiae map H which encodes the minutiae locations and orientations of the
input fingerprint. Finally, the minutiae map is converted to a minutiae set {(x1, y1, θ1), ..., (xN , yN , θN )} of N minutiae.

(a) (b)

Fig. 9: An example infant fingerprint patch (a) and the correspond-
ing minutiae map (b). Note, we only show 3 channels of the 12
channel minutiae map here for illustrative purposes (red channel
is the first channel, green is the fifth channel, and blue is the ninth
channel). Given the full 12 channels of the minutiae map in (b),
we can compute the minutiae locations (x, y) and orientations θ
of the 1,900 ppi fingerprint patch in (a).

extraction networkM(.) requires a ground truth minutiae set T for
each input infant fingerprint. To obtain these ground truth minutiae
sets for training, we manually annotate the minutiae locations and
orientations of 610 infant fingerprints in our dataset for which
we had limited longitudinal data (i.e. the infant only visited 1 or
2 sessions). These fingerprints are separated from our evaluation
dataset. We manually annotated the infant fingerprints using the
GUI tool shown in Figure 10. The tool enables the addition of
new minutiae and the removal of spurious minutiae. To make the
markup task easier, we first automatically annotate the minutiae
points on the 610 infant fingerprints using the Verifinger v10.0
minutiae extraction SDK. Then, we manually refine the Verifinger
annotations with our markup GUI. Each manually annotated
fingerprint was reviewed multiple times by one of 4 experts in
the field of fingerprint recognition.

While the 610 manually annotated infant fingerprints pro-
vide an accurate ground truth dataset for training our minutiae
extraction network, it is still small for training a deep network
(Table 3). Therefore, rather than training our minutiae extraction

Fig. 10: View of the manual minutiae markup/editing software
used to markup minutiae locations on a subset of infant fingerprint
images. These markups were later used as ground truth to train our
high resolution infant minutiae extractor. The fingerprint on the
left (blue annotations) is coarsely annotated with Verifinger v10
SDK to help speed up the annotation process. The fingerprint on
the right (red annotations) shows the manually edited minutiae.

network from scratch on the 610 manually annotated infant
fingerprints, we first pretrain our minutiae extraction network
on 9, 508 infant/child fingerprints collected in [30] and coarsely
annotated with minutiae using the Verifinger v10.0 minutiae
extractor. After pretraining our minutiae extraction network on
these 9, 508 coarsely annotated (using Verifinger) fingerprints, we
finally fine-tune all parameters of our network (Table 3) using
our more accurate 610 manually annotated ground truth infant
fingerprint images (560 used for training, 50 used for validation).
We optimize our network parameters using the Adam optimizer
and weight decay set to 4 × 10−5. When training the network
on the 9, 508 coarsely annotated training data, we use a learning
rate of 0.01. When fine-tuning our network (all parameters fine-
tuned) on our manually annotated fingerprint images, we reduce
the learning rate to 0.0001. We use the minutiae detection ac-
curacy on our 50 manually annotated validation fingerprints as a
stopping criteria for the training. Finally, our network is trained
on 256× 256 patches to increase the number of training samples,
and we employ data augmentations such as random rotations,
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(a) (b) (c) (d)

Fig. 11: Effects of aging. (a) Acquired 3 month old enrollment image (orange) is overlaid on a 1 year old probe image (blue). (b) An
aged 3 month old enrollment image (orange) is overlaid on a 1 year old probe image (blue). (c) 3 month old enrollment minutiae set
(green) is overlaid on a 1 year old probe minutiae set (red). (d) An aged 3 month old enrollment minutiae set (green) is overlaid on a
1 year old probe minutiae set (red). Following aging (b, d), the enrollment image and probe image (and corresponding minutiae sets)
overlap better.

cropping, translations, and flipping.
The efficacy of our high-resolution minutiae extraction al-

gorithm is shown in Fig. 12. In comparison to Verifinger, our
algorithm extracts significantly fewer spurious minutiae, while
detecting nearly all of the true minutiae locations. We show
in subsequent experiments that this results in a boost in infant
fingerprint recognition performance.

5.2.2 Minutiae Aging
After extracting a minutiae set from an infant fingerprint with our
high-resolution minutiae extractor, we further process the minutiae
set via a minutiae aging model (Fig. 11). The authors in [17]
showed that by linearly scaling an infant’s fingerprint image, it
could be better matched to an older fingerprint impression of the
same infant. Note, that although the aging model in [17] was
shown to be beneficial for infant recognition, it did not result in
desired levels of recognition accuracy due in part to the fact that
the infant fingerprint images were captured at 500 ppi.

Rather than scaling an infant’s fingerprint image as was done
in [17], we directly scale the already extracted minutiae set.
More formally, given a scale factor λ and a minutiae set T of
N minutiae, where T = {(x1, y1, θ1), ..., (xN , yN , θN )}, our
scaled minutiae set T̂ is given by:

T̂ = {(λx1, λy1, θ1), ..., (λxN , λyN , θN )} (6)

To determine the scale factor λ at which an infant’s fin-
gerprint pattern grows as they age, we select 82 pairs of our
610 manually annotated infant fingerprints for which we have
longitudinal impressions. The range of the time lapse ∆T (in
weeks) for these 82 pairs of fingerprints is 12 ≤ ∆T ≤ 40
(mean ∆T = 34.3 ± 10.3). We then empirically evaluated
different scalar factors in increments of 0.05 such that the minutiae
matching accuracy (as computed by Verifinger v10 SDK) on these
validation images was maximized. We found that applying a scalar
factor of λ = 1.1 to infant images enrolled at less than 3 months
provided the best recognition performance.

We also tried an adaptive aging model where the scalar factor
was dependent upon the enrollment age and the elapsed time,
but found no improvement in performance (likely because the

majority age group in our experiments is infants enrolled between
2-3 months and recognized 3 months later, where the simple scalar
value of λ = 1.1 suffices). Given similar performance, we kept
the simpler static scalar aging model as opposed to the adaptive
aging model.

An example of an infant minutiae set T and its corresponding
aged minutiae set T̂ is shown in Figure 11. In our experiments,
we quantitatively demonstrate that this scaling of the enrollment
minutiae points provides a boost to our recognition performance.

5.2.3 Minutiae Match Score
After extracting a minutiae set T (via our high-resolution minutiae
extractor) and aging T into T̂ , we compute a minutiae matching
score sm between a probe infant fingerprint and an enrolled infant
fingerprint using the Verifinger v10 ISO minutiae matcher.

5.3 Texture Matcher

Similar to latent fingerprints, infant fingerprints are often of poor
quality and as such are difficult to accurately extract minutiae
from (even with our high resolution minutiae extractor). Therefore,
in addition to a minutiae match score, we also incorporate a
texture matching score st using a state-of-the-art texture finger-
print matcher [39] 13. Engelsma et al. [39] proposed a CNN
architecture, called DeepPrint, embedded with fingerprint domain
knowledge for extracting discriminative fixed-length fingerprint
representations. Inspired by the success of DeepPrint to learn
additional textural cues that go beyond just minutiae points, we
adopt this matcher for infant fingerprint recognition. In particular,
we modify the DeepPrint network architecture as follows: (i) the
input size of 448× 448 is increased to 1024× 1024 (through the
addition of convolutional layers) to support 1,900 ppi images and
(ii) the parameters of the added convolutional layers and the last
fully connected layer are re-trained on the 1,270 ppi (upsampled
to 1,900 ppi) longitudinal infant fingerprints acquired by Jain et
al. in [15] combined with 610 of our 1,900 ppi images which

13Although DeepPrint also incorporates minutiae domain knowledge into
the fixed-length representation, we refer to it as a texture matcher since
minutiae points are not explicitly used for matching.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 12: Top row: Verifinger minutiae detections; Bottom row: Minutiae detections from our high-resolution minutiae extractor.
Manually marked minutiae are annotated in red. Note that Verifinger detects many of the true minutiae, but also extracts a significant
number of spurious minutiae. Our proposed minutiae extractor has slightly lower detection accuracy (of true minutiae) than Verifinger,
however, it extracts significantly fewer spurious minutiae. We further compare the two approaches quantitatively in our experimental
results.

Fig. 13: Overview of the Infant-Prints texture matcher. We modify DeepPrint [39] to accept 1,900 ppi high resolution infant fingerprint
images. The network is pretrained on adult fingerprint images and then fine-tuned (red layers) with the infant dataset collected in [15].

we set aside for training. In total, we re-train the network with
9,683 infant fingerprint images from 1,814 different thumbs. An
overview of our modifications to DeepPrint is shown in Figure 13.

During the authentication or search stage, the CNN accepts a
1,900 ppi infant fingerprint as input and outputs a 192-dimensional
fixed-length representation of the fingerprint. This representation
can be compared to previously enrolled representations via the

cosine distance between two given representations at 10 million
comparisons/second on an Intel i9 processor with 64 GB of RAM.
More formally, given an enrollment representation e ∈ R192 and
a probe representation p ∈ R192, a texture matching score st is
computed as the inner product between e and p:

st = eTp (7)
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Note, in our preliminary study [2], we also used a deep
learning based texture matcher similar to DeepPrint, however,
we did not incorporate minutiae domain knowledge into the
texture matcher as is done in DeepPrint (shown in Fig. 13).
Adopting the strategy of DeepPrint in incorporating minutiae
domain knowledge into the deep network further improves the
infant recognition performance. We show this quantitatively in the
experimental results.

5.4 Latent Fingerprint Matcher
Finally, in addition to a state-of-the-art minutiae matcher (sup-
plemented by our high resolution minutiae extractor) and the
fine-tuned texture matcher, we include a state-of-the-art latent
fingerprint matcher14 to the final infant fingerprint recognition
algorithm. Before using the latent fingerprint matcher to enroll
a template, we first include two preprocessing steps: (i) en-
hancement, and (ii) aging. These preprocessing steps are further
described in the following subsections.

5.4.1 Enhancement
Due to the low quality of the infant fingerprints (motion blur,
wet, dry), we incorporate an enhancement module to improve
the sharpness and clarity of the infant friction ridge pattern. In
particular, we incorporate a state-of-the-art image super resolution
model, Residual Dense Network (RDN) [41]. To retrain RDN for
infant fingerprint enhancement, we first add random noise (random
kernel) to the training dataset (9,683 images from [15]), followed
by a gaussian blur to simulate various types of noise in the
infant fingerprint images. Then, we retrain the RDN network (8x
version with a modified stride length) to regress to the clean infant
fingerprint images. An example of an infant fingerprint before and
after enhancement is shown in Figure 14.

5.4.2 Image Aging
In a similar manner to the strategy we used to age our extracted
minutiae sets, we age the enhanced fingerprint images prior to
passing them to the latent fingerprint matcher. The COTS latent
matcher SDK does not accept a minutiae set and as such, we
must directly age the images prior to passing them to the matcher.
Therefore, if an infant’s fingerprint image is captured at an age of
less than 3 months, we resize the image with bicubic interpolation
by a scalar factor of λ = 1.1. The scalar factor is the same as
that used to scale our minutiae sets. Finally, after enhancement
and image aging, we finish the latent preprocessing by resizing
all images by a scalar of 0.5 in order to bring the 1,900 ppi
fingerprint images to similar size as the adult fingerprint images
the latent matcher is designed to operate on (this same procedure
was utilized in [15]).

After preprocessing the infant fingerprint images via enhance-
ment and aging, we can enroll the infant images via the latent
SDK, and subsequently compute a match score sl.

5.5 Final Match Score
Our final match score sf is a fusion of a minutiae matcher, texture
matcher, and latent matcher. In particular, given our minutiae
matching score of sm, our texture match score st as defined
in Equation 7, and our latent match score sl, our final match

14We cannot release the name of the matcher because of a NDA, but it is
one of the top performing algorithms in the NIST ELFT evaluation [40].

(a) (b)

Fig. 14: Infant fingerprint (a) before enhancement and (b) after
enhancement. Looking inside the small window (red square) we
can see that the enhanced infant fingerprint (b) has noticeably im-
proved sharpness and clarity throughout the friction ridge pattern
when compared to (a).

score sf is computed by first normalizing each score (min-max
normalization) to a range of (0, 1) and then performing sum score
fusion via:

sf = λm · sm + λt · st + λl · sl (8)

where λm, λt, and λl are set to 0.6, 0.1, 0.3 using our validation
set of 610 manually marked fingerprint images in conjunction with
a grid search.

6 EXPERIMENTAL RESULTS

In our experimental results, we first show the authentication
and search performance for all the infants in our dataset where
enrollment occurs during 0-3 months of age, and authentication
or search commences 3 months later. We first focus on a 3 month
time lapse for the following reasons. (i) Most of our longitudinal
data (121 subjects) has a time lapse of 3 months. (ii) Jain et al.
already show that once infants reach the age of 6 months, they
can be enrolled and recognized a year later. In this work, our
primary aim is to bridge the gap between 0-3 months (when first
time vaccinations commence) and 6 months. If we can effectively
recognize the infants enrolled at 2-3 months and authenticated or
searched at 5-6 months, we can re-enroll the infants and continue
to recognize the infants longitudinally as shown in [15].

We conclude the experiments by showing the authentication
and search performance of Infant-Prints when the time lapse
between the enrollment and probe images is extended to a year.
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TABLE 4: Infant Authentication Accuracy (0−3 months at enrollment with 3 month time lapse between enrollment and authentication)

Algorithm
Enrollment Age: 0-1 months

(17 subjects)
TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 1-2 months
(36 subjects)

TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 2-3 months
(83 subjects)

TAR @ FAR=0.1%, FAR=1.0%

DeepPrint [39] 17.6%, 29.4% 27.8%, 58.3 45.8%, 68.7%

Verifinger1 41.2%, 58.8% 47.2%, 55.6% 79.5%, 86.7%

Latent Matcher2 41.2%, 47.1% 50.0%, 61.1% 84.3%, 91.6%

DeepPrint + Verifinger 52.9%, 64.7% 55.6%, 75.0% 86.7%, 89.2%

DeepPrint + Latent Matcher 41.2%, 58.8% 52.8%, 72.2% 85.5%, 91.6%

Verifinger + Latent Matcher 52.9%, 64.7% 58.3%, 75.0% 91.6%, 92.8%

DeepPrint + Verifinger +
Latent Matcher 64.7%, 70.6% 63.9%, 83.3% 92.8%, 95.2%

1 Minutiae are extracted with our high-resolution minutiae extractor, then aged and fed into the Verifinger v10 ISO Matcher.
2 Images are enhanced, aged, and then fed into a state-of-the-art COTS Latent Matcher.

TABLE 5: Infant Search Accuracy (0− 3 months at enrollment with 3 month time lapse between enrollment and search)

Algorithm
Enrollment Age: 0-1 months

(17 subjects)
Rank 1, Rank 5

Enrollment Age: 1-2 months
(36 subjects)

Rank 1, Rank 5

Enrollment Age: 2-3 months
(83 subjects)

Rank 1, Rank 5

DeepPrint [39] 52.9%, 58.8% 63.9%, 75.0 90.4%, 92.8%

Verifinger1 58.8%, 64.7% 69.4%, 77.8% 90.4%, 91.6%

Latent Matcher2 52.9%, 58.8% 63.9%, 75.0% 90.4%, 92.8%

DeepPrint + Verifinger 58.8%, 64.7% 69.4%, 77.8% 90.4%, 91.6%

DeepPrint + Latent Matcher 52.9%, 58.8% 63.9%, 75.0% 90.4%, 92.8%

Verifinger + Latent Matcher 58.8%, 58.8% 72.2%, 80.6% 90.4%, 91.6%

DeepPrint + Verifinger +
Latent Matcher 58.8%, 58.8% 72.2%, 77.8% 90.4%, 91.6%

1 Minutiae are extracted with our high-resolution minutiae extractor, then aged and fed into the Verifinger v10 ISO Matcher.
2 Images are enhanced, aged, and then fed into a state-of-the-art COTS Latent Matcher.

6.1 Experimental Protocol

To boost the infant recognition performance, we fuse scores from
both of the infant’s thumbs and also across the multiple impres-
sions captured during the enrollment session and authentication
or search session. For example, if we successfully captured 2
fingerprint images of each thumb in the enrollment session and
authentication session, we would compute a total of 8 scores using
Equation 8. These 8 scores are then fused using average fusion.

We also utilize the gender of the infant to further improve
the recognition performance. In particular, if two infants have a
different gender, we set the matching score to 0.

All imposter scores are computed by comparing impressions
from one subject (both thumbs) in a particular session to im-
pressions from another subject (both thumbs) in another session
(making sure to only compare impressions if they belong to the
same thumb).

6.2 Infant Authentication

Table 4 shows the authentication performance of the different
matchers (as well as the fused matchers) on infants enrolled
between the ages of 0-3 months, and authenticated 3 months
later. From these results, we observe that none of the individual
matchers perform particularly well on any of the age groups when
run standalone. However, after fusing the 3 matchers together, we
start to get reliable authentication results when the enrollment age
is 2-3 months. While the longitudinal authentication results are

not yet robust for the age groups of 0-1 months and 1-2 months,
we note that vaccinations commence by the age of 3 months.
By obtaining promising authentication results at enrollment ages
of less than 3 months, we show that fingerprint authentication
of infants is indeed a potential solution for providing infants an
identity for life.

6.3 Infant Search

Table 5 shows the Rank 1 search accuracy of Infant-Prints on
infants enrolled between the ages of 0-3 months, and searched 3
months later. The gallery size for our search experiment includes
every infant which was enrolled in our study (315 infants). We
acknowledge that this gallery size is small, however, we note that
(i) obtaining a large gallery of infants would require significant
resources, man-hours, and IRB regulations and approvals, and (ii)
in several applications, it is very possible that the gallery size
would be of similar size to ours. For example, if the clinic which
we collected our data at were to use Infant-Prints, they would only
need to manage a gallery of 315 infants, since that is the total
number of infants visiting the clinic in a 1 year time period.

We note from the results of Table 5 that Infant-Prints is able to
enroll infants at an age of 2-3 months, and search them 3 months
later with a Rank 1 search accuracy of 90.4%. While work remains
to be done to further improve the performance to say 99%, we note
that this is the first study to show promising longitudinal search
performance for infants enrolled at ages as young as 2 months.
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TABLE 6: Ablated Infant Authentication Accuracy (0 − 3 months at enrollment with 3 month time lapse between enrollment and
authentication)

Algorithm†
Enrollment Age: 0-1 months

(17 subjects)
TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 1-2 months
(36 subjects)

TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 2-3 months
(83 subjects)

TAR @ FAR=0.1%, FAR=1.0%

w/o High Resolution
Minutiae Extractor 35.3%, 70.6% 63.9%, 83.3% 90.4%, 95.2%

w/o Aging and
Enhancement 47.1%, 64.7% 50.0%, 72.2% 86.7%, 92.8%

w/o Finetuning
DeepPrint 58.8%, 64.7% 58.33%, 69.4% 90.4%, 95.2%

w/o Gender 58.8%, 64.7% 52.8%, 80.6% 89.2%, 94.0%

w/o All1 35.3%, 47.1% 44.4%, 66.7% 86.7%, 92.8%

with All2,3 64.7%, 70.6% 63.9%, 83.3% 92.8%, 95.2%
1 Algorithm used in our preliminary study [2].
2 Minutiae are extracted with our high-resolution minutiae extractor, then aged and fed into the Verifinger v10 ISO Matcher.
3 Images are enhanced, aged, and then fed into a state-of-the-art COTS Latent Matcher.
† Each row removes only the modules mentioned in that row.

TABLE 7: Ablated Verifinger Performance

Algorithm
0-1

months2

(17 subjects)

1-2
months

(36 subjects)

2-3
months

(83 subjects)

Verifinger 17.6%1 36.1% 74.7%

Verifinger + Aging 23.5% 44.4% 74.7%

Verifinger + Aging
+ Enhancement

29.4%
(35.3%)4

52.8%
(63.9%)

85.5%
(90.4%)

Verifinger + Aging
+ Enhancement
+ HR Minutiae3

41.2%
(64.7%)

47.2%
(63.9%)

79.5%
(92.8%)

1 TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment
age.

2 Indicates enrollment ages (authentication occurs 3 months later).
3 HR Minutiae denotes a minutiae set extracted by our high-resolution,

infant minutiae extractor, and fed into Verifinger’s matcher.
4 Performance when fused with other matchers (shown in parenthesis)

demonstrates that although HR Minutiae does not help the stand-
alone performance of Verifinger, it does help when fusing with the
other matchers. This is explained further in the text.

TABLE 8: Ablated COTS Latent Matcher (LM) Performance

Algorithm
0-1

months2

(17 subjects)

1-2
months

(36 subjects)

2-3
months

(83 subjects)

COTS LM3 35.3%1 41.7% 77.1%

COTS LM + Aging 35.3% 44.4% 80.7%

COTS LM + Aging
+ Enhancement 41.2% 50.0% 84.3%

1 TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment
age.

2 Indicates enrollment ages (authentication occurs 3 months later).
3 COTS LM does not enable using our own HR minutiae set.

It can also be seen from Table 5 that each individual matcher
is able to obtain the same Rank-1 search performance (for the 2-3
month enrollment group) as the fused matcher. We acknowledge
that this can likely be explained by the small gallery size, i.e.
each individual matcher is sufficient to accurately retrieve the
fingerprints from the smaller gallery. Given a larger gallery, it
is likely that the fused matcher would be necessary to maintain

TABLE 9: Ablated DeepPrint Performance

Algorithm
0-1

months2

(17 subjects)

1-2
months

(36 subjects)

2-3
months

(83 subjects)

DeepPrint 11.8%1 22.2% 41.0%

DeepPrint
+ Finetuning 17.6% 27.8% 45.8%

1 TAR @ FAR = 0.1% after a time lapse of 3 months from
enrollment age.

2 Indicates enrollment ages (authentication occurs 3 months
later).

accurate search performance. Obtaining a large scale infant dataset
is an area of future research.

We also highlight that DeepPrint is able to obtain much higher
search performance than authentication performance (Table 4 vs.
Table 5). This can be attributed to DeepPrint often times outputting
high imposter scores (creating false accepts and reducing the
authentication accuracy, whereas in search high imposters are not
as problematic as long as the true mate gives the highest score).

6.4 Ablations
To highlight the hardware and algorithmic contributions of Infant-
Prints, we show an algorithmic ablation study in Tables 6, 7, 8,
and 9, and a hardware ablation study in Table 10.

From Table 6, we see the performance of the “fused matcher”
(Verifinger + COTS Latent Matcher + DeepPrint) following ev-
ery algorithmic improvement (high-resolution minutiae extraction,
aging, enhancement, finetuning DeepPrint, and gender meta-data).
Notably, each algorithmic improvement contributes to the overall
best performance shown in the final row. We also note that our
algorithm (last row of Table 6) is significantly improved over our
previous algorithm (second to last row of Table 6) used in our
preliminary study [2].

In Tables 7 and 8 we note that aging and enhancement both im-
prove the “stand-alone” performance of Verifinger and the COTS
latent matcher. Although our high-resolution minutiae extractor
does not improve the stand-alone performance of Verifinger (“HR
Minutiae” in Table 7), it does help when fusing Verifinger with
the other matchers (as shown in parenthesis). The reason for



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

(a)

(b)

Fig. 15: Flipping a False Reject case to a True Accept by using
our high-resolution minutiae extractor. (a) Minutiae are both
extracted and matched using Verifinger. The significant number
of spurious minutiae extracted by Verifinger render it impossible
for Verifinger to establish minutiae correspondences. (b) Minutiae
are extracted using our high-resolution minutiae extractor and
subsequently fed into Verifinger. Because our minutiae extractor is
much more resistant to spurious minutiae (on infant fingerprints)
than Verifinger’s minutiae extractor, the Verifinger matcher is able
to establish enough true minutiae correpondences to flip this False
Reject to a True Accept. Quantitatively speaking, the Verifinger
match score is improved from 23 to 48.

this is because the Verifinger minutiae extractor performs worse
than our HR minutiae extractor on low quality, noisy fingerprints,
but better than our minutiae extractor on higher quality images.
By improving Verifinger on the lower quality image pairs with
our HR minutiae extractor, we can improve the fused matching
performance, since the other matchers are already sufficient to
hold the matching performance on the higher quality pairs. This
can be seen visually in Figure 15. When extracting minutiae with
Verifinger (Fig. 15) (a)), many spurious minutiae are marked, and
Verifinger is unable to establish any true minutiae correspondences
between the enrollment image and the probe image. In contrast,
our minutiae extractor extracts the minutiae more reliably on this
low quality fingerprint pair (Fig. 15) (b)), enabling Verifinger to
establish enough minutiae correspondences to flip the example

pair from a False Reject to a True Accept.
Table 9 shows the ablated performance of DeepPrint. Fine-

tuning the model on infant fingerprints again boosts the perfor-
mance. Although the performance of DeepPrint is lower than
the other matchers stand-alone, it still boosts the overall match-
ing performance (Table 4) when fused with other matchers due
to the complementary texture features it extracts. We do not
age fingerprints prior to DeepPrint extraction since DeepPrint is
trained on images of varying scale as a data augmentation method
during training. Furthermore, we do not enhance images prior
to DeepPrint extraction as our goal is to have DeepPrint extract
complementary textural features which may be discarded post-
enhancement.

Finally, we show in our hardware ablation study in Ta-
ble 10 that our contact-based high-resolution (1,900 ppi) fin-
gerprint reader enables higher infant fingerprint authentication
performance than a COTS 500 ppi contact-based reader (Digital
Personna). We note that there are fewer subjects in Table 10 than
Table 4. This is because Table 10 only considers those subjects
which were collected on both the MSU RaspiReader and the
Digital Persona reader. The difference in subject counts on the
MSU RaspiReader and the Digital Persona reader can be attributed
to failure to captures on the Digital Persona (often times the
ergonomics of the Digital Persona reader (Fig. 5 (a)) prevented
us from imaging the infant’s fingerprints before the infant became
too distressed).

TABLE 10: Ablated Fingerprint Reader Authentication Results

Reader
0-1

months2

(12 subjects)

1-2
months

(31 subjects)

2-3
months

(73 subjects)

Digital Persona
(500 ppi) 0%1 35.5% 52.1%

MSU RaspiReader
(1,900 ppi) 58.3% 64.5% 93.2%3

1 TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment
age.

2 Indicates enrollment ages (authentication occurs 3 months later).
3 Differs from Table 4 because of a different number of subjects.

We also show in Figure 16 that the contact-based RaspiReader
genuine and imposter scores are much more separated than the
contactless-based RaspiReader (TAR=72.9% vs. TAR=35.6% @
FAR=1.0%). We show score histograms (of single finger compar-
isons) to compare these two readers since we only utilized the
contactless reader during our last collection session for a limited
number of subjects. Our findings of better separation between
the contact fingerprint pairs than the contactless fingerprint pairs
contradict the study of [16] which found that high-resolution, con-
tactless infant fingerprints outperformed high-resolution contact-
based infant fingerprints. We found it very difficult to match
contactless infant fingerprints since contactless fingerprints have
a perspective deformation (certain parts of the finger are further
from the camera than others), and the contrast is lower than FTIR
fingerprint images. Similar observations about the difficulty of
matching contactless fingerprint images have been noted in the
literature [42]. In an effort to improve the contactless matching
performance, we fine-tuned DeepPrint on 23, 416 contactless fin-
gerprints from 3, 276 fingers from contactless databases released
in [42], [43], [44], [45], [46], [47]. We also attempted to normalize
the ridge spacing of the contactless fingerprints as was done
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TABLE 11: Longitudinal Search Results

Time Lapse: 3 months Time Lapse: 9 months Time Lapse: 12 months

95%1, 2 90% 90%
1 Reporting Rank 1 Search Accuracy (Gallery of 315 Infants)
2 Differs from Table 5 because of a different number of subjects.

TABLE 12: Longitudinal Authentication Results

Time Lapse: 3 months Time Lapse: 9 months Time Lapse: 12 months

95%1,2 90% 85%
1 Reporting TAR @ FAR = 0.1%
2 Differs from Table 4 because of a different number of subjects.

in [16]. The fine-tuning did improve the contactless matching
performance, but did not bridge the gap to the contact fingerprint
matching performance.

Example of failure cases (False Accept, False Reject) are
shown in Fig. 17. These images highlight the difficulty and
challenges of doing accurate infant fingerprint recognition over
time (moisture, distortion, small inter-ridge spacing, fingerprint
aging).

6.5 Longitudinal Recognition

As a final study, we show the longitudinal search accuracy (Ta-
ble 11) and authentication accuracy (Table 12) for infants enrolled
at 2-3 months. For this experiment, we selected 20 infants from
our total of 315 which were present in all 4 sessions of the data
collection and were 2-3 months of age at the first time enrollment
(since our earlier studies showed that 2-3 months is the age at
which recognition first becomes feasible). Although we have more
subjects at individual time lapses, we chose the 20 infants which
were present in all 4 sessions so that we can observe the impact
that time has on the recognition performance whilst fixing the
subjects used in the experiments.

Tables 11 and 12 show that the authentication and search
performance stays relatively stable over time. In particular, from 3
months of elapsed time to 9 months of elapsed time, only one in-
fant drops off from being properly searched or authenticated. From
9 months to 12 months, the search accuracy remains unchanged,
while only one fewer infant is unable to be authenticated.

Notably, these are the first results to show that it is possible
to enroll infants at 2 months old and authenticate them or search
them a year later with relatively high accuracy. This highlights the
applicability of fingerprints to address the challenges of this paper.
Namely, can we recognize an infant from their fingerprints in
order to better facilitate accurate and fast delivery of vaccinations
and nutritional supplements to infants in need.

7 CONCLUSION

A plethora of infants around the world continue to suffer and die
from vaccine related diseases and malnutrition. A major obstacle
standing in the way of delivering the vaccinations and nutrition
needed to the infants most in need is the means to quickly and
accurately identity or authenticate an infant at the point of care. To
address this challenge, we proposed Infant-Prints, and end-to-end
infant fingerprint recognition system. We have shown that Infant-
Prints is capable of enrolling infants as young as 2 months of age,
and recognizing them an entire year later. This is the first ever

(a)

(b)

Fig. 16: Score Histograms comparing the contact-based
RaspiReader with the contactless RaspiReader (single finger
performance). Using a contact-based reader shows much better
score separation than the contactless reader (TAR=72.9% vs.
TAR=35.6% @ FAR=1.0%).

study to show the feasibility of recognizing infants enrolled this
young after this much time gap. It is our hope that this feasibility
study and Infant-Prints motivate a strong push in the direction of
fingerprint based infant fingerprint recognition systems which can
be used to alleviate infant suffering around the world. In doing
so, we believe that this work will make a major dent in Goal #3
of the United Nations Sustainable Development Goals, namely,
“Ensuring healthy lives and promoting well-being for all, at all
ages.”
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