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1.1 Introduction
Biometric traits, such as palmprint (Duta et al. 2002) and fingerprint (Jain et al. 1997), refer
to distinctive anotomical and behavioral characteristics for automatic human identification.
Fingerprints, which are ridge and valley patterns on the tip of a human finger, are one of
the most important biometric traits due to their known uniqueness and persistence properties
(Maltoni et al. 2009). Since the advent of fingerprints for identifying and tracing criminals
in Argentina in 1893 (Hawthorne 2008), fingerprints have been primarily used as evidence
in law enforcement and forensics. After the first paper on automated fingerprint matching
was published by Mitchell Trauring (Trauring 1963) in Nature in 1963, the Federal Bureau
of Investigation (FBI) installed the first Automated Fingerprint Identification System (AFIS)
in the 1980. Now large scale fingerprint recognition systems are not only used worldwide
by law enforcement and forensic agencies, they are also beginning to be deployed in civilian
applications, such as (i) the OBIM (formerly the US-VISIT) program by the Department
of Homeland Security (Department of Homeland Security 2014), and (ii) India’s Aadhar
project (Planning Commission, Goverment of India 2014). In 2013, the TouchID system
(Apple, Inc. 2014) in the Apple iPhone 5s for authenticating mobile phone users launched
the application of fingerprint in mobile devices. Some major milestones in the history of
fingerprint recognition are illustrated in Fig.1.1.

The purported uniqueness of fingerprints is characterized in terms of three levels of
features (Maltoni et al. 2009) (see Fig. 1.2). Level 1 features include the general ridge
flow and pattern configurations such as pattern type, ridge orientation and frequency fields,
and singular points (core and delta points). While level 1 features are not sufficient for
individualization, they can be used for exclusion (the outcomes of comparing a fingerprint
pair are one of three possibilities: match, inconclusive and exclusion). Level 2 features mainly
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Figure 1.1: Some major milestones in fingerprint recognition.

refer to local ridge discontinuities, called minutia points; ridge endings and ridge bifurcations
are the two most prominent types of minutia points. Level 3 features cover all other attributes
at a fine level, such as width, shape, curvature and edge contours of ridges, pores, and
incipient ridges. Level 3 feature extraction requires that the fingerprint images be acquired at
a 1000 ppi resolution. Among all these fingerprint features, the set of minutia points (called
minutiae) is regarded as the most distinctive and hence, is the most commonly used feature
in fingerprint identification, both by human experts and AFIS.

Figure 1.2: Illustration of fingerprint features at three different levels. (a) A gray-scale
fingerprint image (NIST SD30, A002 01), (b) level 1 features: orientation field and singular
points (core point shown as a circle and delta point shown as a triangle), (c) level 2 features:
ridge ending minutiae (red squares) and ridge bifurcation minutiae (blue circles) and (d) level
3 features: pores and dots.

Based on the fingerprint image acquisition method and their source, fingerprints can be
classified into three types, namely rolled, plain and latent (see Fig. 1.3). Rolled fingerprints
are obtained by taking the impression from “nail to nail” in order to capture the complete
ridge details of a finger. Plain fingerprints are acquired by pressing a fingertip onto a flat
surface of either a paper for the inking method or a flatbed of a live-scan device (Maltoni
et al. 2009). Latent fingerprints (or simply latents) refer to fingerprints lifted from the
surfaces of objects, which are inadvertently touched or handled by a person. Compared
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Figure 1.3: Three types of fingerprint images. (a) Rolled fingerprint (from
NIST Special Database 4 (2014)), (b) plain fingerprint from (FVC2002 (2002)), and
(c) latent fingerprint (from NIST Special Database 27 (2014)) with foreground (friction
ridge pattern) highlighted by red curve.

(a) (b)

Figure 1.4: Examples of (a) rolled to rolled fingerprint matching and (b) latent to
rolled fingerprint matching. Features in the rolled fingerprints shown here are extracted
automatically by an AFIS, but features (minutiae, region of interest and singular points) in
the latent were manually marked.

to rolled and plain fingerprints (or collectively called exemplar fingerprints) which are
typically acquired in the presence of an officer or trained personnel, latents are generally
of poor quality with incomplete ridge structure, background noise and non-linear distortion.
Consequently, the accuracy of latent-to-exemplar matching is significantly lower than that of
exemplar-to-exemplar matching. In NIST evaluations, the best performing AFIS achieved a
true acceptance rate of 99.4% at a false acceptance rate of 0.01% for exemplar-to-exemplar
fingerprint matching (Wilson et al. 2004). The best performing commercial latent matcher
could only achieve a rank-1 identification rate of 63.4% in searching 1,114 latents against a
background database containing 100,000 exemplar prints (Indovina et al. 2012). The search
for the source of a latent is a challenging problem in terms of both the algorithmic efficiency
and identification accuracy, especially when the reference or exemplar database (rolled or
plain fingerprints) is extremely large. Fig. 1.4 shows examples of rolled-to-rolled fingerprint
matching and latent-to-rolled fingerprint matching.

Given the difficulty of automatic latent matching, human intervention is unavoidable in
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order to assess the value of latents as forensic evidence, mark features such as region of
interest (ROI) and minutiae, and make a decision whether the latent has a match in the
reference database given the candidate list (typically top 50 matches) generated by AFIS.
Hence, latent examiners and AFIS work collaboratively in a framework called Analysis,
Comparison, Evaluation and Verification (ACE-V) (Ashbaugh 1999). However, human
involvement in latent examination has raised some concerns related to repeatability and
reliability (Ulery et al. 2011, 2012). Furthermore, when the comparison time (between latent
and exemplar prints) is limited, latent examiners are more likely to make an inconclusive
matching decision (Dror et al. 2011). One of the priorities in the FBI’s Next Generation
Identification (NGI) program is to support the development of a lights-out1 capability for
latent identification (FBI- NGI 2014). An essential component necessary for achieving the
lights-out capability is automatic feature extraction from latent fingerprints, this is necessary
to (i) increase the throughput of latent matching systems, (ii) achieve repeatability of latent
feature extraction and, (iii) improve the compatibility between features extracted in the latents
and in the exemplar prints (Feng et al. 2013).

In order to achieve reliable feature extraction from latents, the latent images need to go
through two main preprocessing steps: (i) segmentation to separate friction ridges from
noisy background and (ii) fingerprint enhancement to enhance ridge and valley structures.
Directional filtering, such as Gabor filtering (Hong et al. 1998), can adaptively improve the
clarity of ridge and valley structures; the filters are tuned based on the local ridge orientation
and frequency. Therefore, for latent enhancement it is essential to first obtain a good estimate
of ridge orientation and frequency fields.

There is a rich body of literature on fingerprint segmentation (Chikkerur et al. 2007; Hong
et al. 1998), orientation field estimation (Chikkerur et al. 2007; Hong et al. 1998; Mardia et
al. 1997; Wang et al. 2007) and frequency field estimation (Chikkerur et al. 2007; Jiang 2000)
for exemplar fingerprints. But these approaches do not work well on latent fingerprints since
they did not consider (i) presence of structured noise, such as lines, markings, characters and
speckles (see Fig. 1.3 (c)), which break the friction ridge pattern and hinder reliable feature
extraction; and (ii) unclear fingerprint ridges in the foreground area. Some approaches have
been proposed to specifically address the problem of latent fingerprint segmentation (Karimi-
Ashtiani and Kuo 2008; Short et al. 2011; Zhang et al. 2013) and enhancement (Yoon et al.
2011). However, none of these approaches use the prior knowledge of ridge structure in
fingerprints, resulting in only a marginal improvement in latent matching.

A dictionary, which is a set of words (or vectors) used to sparsely and linearly represent
signals of the same dimension (called sparse coding), has been successfully applied to a
number of signal processing problems, such as image denoising (Elad and Aharon 2006;
Mairal et al. 2008b), classification (Lian et al. 2010; Mairal et al. 2008a), and face recognition
(Liao et al. 2013; Wright et al. 2009). The dictionary learned from a set of training data is a
collection of representative vectors of the training data. In this chapter, we investigate the use
of dictionaries for the challenging problems in latent fingerprint image analysis, namely latent
fingerprint segmentation and enhancement. Given that fingerprint patterns can be represented
at two different levels (i.e., coarse representation for fingerprint ridge flow or orientation
field, and fine representation for ridges and valleys), two dictionaries are developed: an

1Lights-out identification refers to an AFIS requiring minimal or no human assistance in which a query
fingerprint image is presented as input, and the output consists of a short candidate list (Indovina et al. 2009).
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orientation patch2 dictionary (Feng et al. 2013) and a ridge structure dictionary (Cao et al.
2014). An orientation patch dictionary, which contains only the orientation information in
patches, is proposed to estimate the orientation field for latent fingerprint enhancement. A
ridge structure dictionary, which contains ridge and valley patterns, is proposed for latent
fingerprint segmentation (locating friction ridge pattern) and enhancement by estimating
orientation and frequency fields. Experimental results on public domain latent fingerprint
databases show that the dictionaries, learned from a large number of fingerprints, capture a
domain-specific knowledge which is effective in improving the accuracy of latent fingerprint
matching.

The rest of the chapter is organized as follows. In section 1.2, the method of dictionary
construction for fingerprint patterns at orientation level and ridge level is described. The
orientation patch dictionary for orientation field estimation in latent fingerprints is presented
in section 1.3. The ridge structure dictionary for latent segmentation and enhancement is
introduced in section 1.4. Conclusions and future research directions are described in section
1.5.

1.2 Dictionary Construction
Orientation patch and ridge structure dictionaries are both constructed offline from high-
quality fingerprints to capture prior knowledge about fingerprint patterns.

1.2.1 Orientation Patch Dictionary Construction

To construct a dictionary of reference orientation patches, we used a set of 50 high
quality fingerprints (referred to as reference fingerprints) in the NIST SD4 database
(NIST Special Database 4 2014). All five major pattern types (plain arch, tented arch, left
loop, right loop, and whorl) are covered by the reference fingerprints. The high-quality
fingerprints are manually selected and their orientation fields (with block size 16× 16 pixels)
are estimated using VeriFinger 6.2 SDK (Neurotechnology Inc. 2012). A number of training
orientation patches are obtained by sliding a window (of size b× b blocks) across the
orientation field and its mirrored version for each reference fingerprint, where an orientation
patch consists of b× b orientation elements and an orientation element refers to the dominant
orientation in a block of size 16× 16 pixels. Each orientation patch is rotated by 21 different
angles {i · 5◦,−10 ≤ i ≤ 10} to generate additional training orientation patches to cover all
possible directions in the latent fingerprints.

Given the training orientation patches, the orientation patch dictionary (shown in Fig. 1.5)
is constructed by a greedy algorithm which is described below:

1. The first orientation patch in the training set is added to the dictionary, which is initially
empty.

2. The next orientation patch in the training set, which is sufficiently different from all
orientation patches in the dictionary, is added to the dictionary. The similarity measure
between two orientation patches of size b× b is computed as ns/b

2, where ns denotes
the number of orientation elements whose difference is less than 10 degrees.

2An orientation patch refers to the block-wise orientation field of a fingerprint patch.
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3. Repeat step 2 until all orientation patches have been considered.

Figure 1.5: Examples of orientation patches in the dictionary; an orientation patch contains
10× 10 orientation elements, and each orientation element corresponds to a block of 16× 16
pixels.

The number of reference orientation patches in the dictionary depends on the number
of reference fingerprints and the patch size. When the patch size is 10× 10 blocks and 50
reference fingerprints are used, the number of reference orientation patches in the dictionary
is around 23,000. While a larger size of the orientation patch is better for correcting errors
in the initial orientation field, it would require a larger dictionary, which takes more time
to search. To further demonstrate the impact of patch size, orientation fields corrected using
different patch sizes are compared in Fig. 1.6, where an initial orientation patch is directly
replaced by its closest orientation patch in the dictionary without considering compatibility
between neighboring patches. The performance of the dictionary based approach improves
with an increase in patch size. The estimation errors close to the fingerprint boundary are
due to border effect (these patches contain very few foreground blocks with a friction ridge
pattern).

1.2.2 Ridge Structure Dictionary Construction

The orientation patch dictionary characterizes ridge flow patterns of fingerprints which can
be used for correcting an initial orientation field. However, the structure of ridges and valleys
is ignored in the orientation patch dictionary. To remedy this, a ridge structure dictionary,
which is learned directly from the fingerprint image patches, is introduced in this section. A
large size of image patches will result in high dimensionality (a 4,096-dimensional vector
for a 64× 64 image patch, compared to 100-dimensional vector for a 10× 10 orientation
patch which covers a 160× 160 image patch) and hence, a large dictionary. On the other
hand, image patches of small size are not robust to structured background noise in the latent
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Figure 1.6: Orientation fields extracted from two latent fingerprint impressions ((a) and (b))
estimated using different patch sizes (increasing from left to right: 3× 3, 5× 5, 7× 7,
9× 9 and 11× 11). Only the nearest dictionary element of each initial orientation patch
is considered here. Image courtesy of Feng et al. (2013).

images. Hence, two levels of ridge structure dictionaries are constructed: (i) a coarse-level
dictionary with large patch size of 64× 64 pixels, and (ii) 16 fine-level (orientation specific)
dictionaries with small patch size of 32× 32 pixels. The patch size for fine-level dictionaries
is 32× 32 pixels which covers about two ridges and valleys for 500ppi fingerprints and is
robust to structured noise. The patch size for the coarse-level dictionary is twice the size of
the fine-level dictionary to cover additional ridge structures.

Training Set Selection

A large number of high quality fingerprint patches from rolled fingerprints in NIST SD4
(NIST Special Database 4 2014) are selected for the dictionary construction as follows:

1. High quality fingerprint selection: NIST Fingerprint Image Quality (NFIQ) (Tabassi et
al. 2004) is used to select 500 fingerprints of high quality3 (i.e., NFIQ < 3) in NIST
SD4.

2. High quality patch selection: The block-wise orientation field and ridge quality map
of the selected fingerprints are computed by MINDTCT (Garris et al. 2004). For the
coarse-level dictionary, an image patch of size 64× 64 pixels is included into the
training set P c if the average quality value of the image patch is larger than a predefined

3NFIQ ranges from 1 to 5, with 1 indicating the highest quality and 5 indicating the lowest quality fingerprint.



8 Fingerprint Image Analysis: Role of Orientation Patch and Ridge Structure Dictionaries

threshold T (T is set to 3.75, where the block ridge quality in MINDTCT ranges from 0
(the lowest quality) to 4 (the highest quality)). For the fine-level dictionary with the i-th
orientation (i = 1, · · · , 16) orientation specific dictionary, an image patch is included
in the training set P f

i if it satisfies the following two conditions: (i) average quality
value of the patch is larger than T , and (ii) average ridge orientation of the patch is
within the range

[
(i− 1)× π

16 , i×
π
16

)
.

3. Vector normalization: Each patch p in the training sets is converted to a vector by
concatenating the rows and normalized with mean of zero and standard deviation of
one.

Let P c = {pcj}N
c

j=1 be the training set with N c training patches for the coarse-level

dictionary, and P f
i = {pfi,j}

Nf
i

j=1, i = 1, · · · , 16, be the training set for the i-th fine-level
dictionary, where Nf

i denotes the number of training patches for the i-th fine-level dictionary
specified by ridge orientation. We then randomly select 80,000 image patches from P c and
10,000 image patches from each P f

i for dictionary learning.

Dictionary Learning

The goal of dictionary learning is to construct a dictionary D of size NP ×ND that provides
the best sparse representation for each patch in P = {pj}Nj=1, where NP is the dimensionality
of the patches in P , and ND is the number of elements in the dictionary D. After the ridge
dictionaries are constructed by K-SVD (Aharon et al. 2006), each dictionary element is
normalized with mean of zero and standard deviation of one.

(a) (b)

Figure 1.7: Examples of coarse and fine level dictionaries. (a) A subset of elements in the
coarse-level dictionary, and (b) a subset of elements in the 16 orientation-specific dictionaries.
The i-th row in (b) corresponds to the orientation range

[
(i− 1)× π

16 , i×
π
16

)
, i=1,...,16.

A total of 17 different dictionaries are constructed by taking subsets selected from P c

and P f
i , i = 1, · · · , 16 as the training sets. The number of elements N c

D in the coarse-level
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Figure 1.8: Flowchart of the orientation field estimation algorithm which consists of an off-
line dictionary construction stage and an on-line orientation field estimation stage. Image
courtesy of Feng et al. (2013).

dictionary is set to 1,024, and the total number of elements Nf
D in each fine-level dictionary

is set to 64. Fig. 1.7 (a) shows a subset of dictionary elements in the coarse-level dictionary
Dc and Fig. 1.7 (b) shows a subset of dictionary elements in the 16 fine-level dictionaries Df

i

.

1.3 Orientation Field Estimation Using Orientation Patch Dictionary
Given the orientation patch dictionary learned in section 1.2.1, the orientation field in the
latent foreground is estimated using the following three steps (see Fig. 1.8):

1. Initial estimation: The initial orientation field is obtained using a local orientation
estimation method, such as local Fourier analysis (Jain and Feng 2009).

2. Dictionary lookup: The initial orientation field is divided into overlapping patches. For
each initial orientation patch, its six nearest orientation patches in the dictionary are
selected as candidates for replacing the noisy initial orientation patch.

3. Context-based correction: The optimal combination of candidate orientation patches
is found by minimizing the energy function which includes the similarity between an
initial orientation patch and its selected reference orientation patch in the dictionary
and the compatibility between neighboring reference orientation patches.

Details of the orientation field estimation algorithm are presented in the following sections.

1.3.1 Initial Orientation Field Estimation

The initial orientation field (16× 16 pixel block size) is obtained by detecting a peak in
the magnitude spectrum of the local image (Jain and Feng 2009). Other local estimation
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approaches should also suffice for this initial estimation. Although the initial orientation field
is typically very noisy due to the poor quality of latents, it should not be smoothed at this
stage since the correct orientation elements may be degraded by noise in the neighboring
regions. The initial orientation field is updated in the later stages by utilizing prior knowledge
of fingerprints contained in the orientation patch dictionary.

1.3.2 Dictionary Lookup

Given an initial orientation patch that contains at least one foreground block, a number
of candidate reference orientation patches from the dictionary are retrieved based on their
similarity with the initial orientation patch. The similarity S(Θ,Φ) between an initial
orientation patch Θ and a reference orientation patch Φ is defined as

S(Θ,Φ) = ns/nf , (1.1)

where nf is the number of orientation elements in the initial orientation patch and ns is
the number of orientation elements whose differences are less than a predefined threshold
(empirically set as π/12). However, for many initial orientation patches, the top candidate
orientation patches of an initial orientation patch are quite similar to each other. In order
to increase the probability of including the correct reference orientation patches in a short
list, it is better to select a set of diverse candidates. A diverse set of nc (empirically set as
6) candidates is selected from the top 10nc initial candidates using the following greedy
strategy:

1. Choose the first initial candidate orientation patch.

2. The next candidate patch is compared to each of the chosen candidates. If its similarity
to all the chosen candidates is less than a predefined threshold (empirically set as 0.8),
it is included in the list. Note that similarity is computed using only the foreground
blocks in the initial orientation patch.

3. Repeat step 2 for all the initial candidates until nc candidates have been chosen or all
initial candidates have been checked.

As a result of the diversity heuristic, the correct orientation patch is more likely to appear in
the candidate list, even if the initial orientation patch is very noisy or incomplete.

1.3.3 Context-based Orientation Field Correction

After dictionary lookup, we obtain a list of ci (1 ≤ ci ≤ nc) candidate orientation patches,
Φi = {Φi,1,Φi,2, . . . ,Φi,ci}, for an initial orientation patch Θi. Let ri denote the index of the
selected candidate for the patch i, and r = {r1, r2, . . . , rnp} be the vector of the indices of
the selected candidates for all np foreground patches. Any combination of candidate indices
could be a solution for the orientation field estimation. But, this leads to a large solution
space, so we utilize contextual information to reduce the search space.

We address this problem by searching for optimal indices vector, r∗, which minimizes an
energy function E(r). Choice of a proper energy function is crucial for the success of this
method. We consider two factors in designing the energy function: (i) the similarity between
the reference orientation patches and the corresponding initial orientation patches, and (ii)
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the compatibility between neighboring reference orientation patches. The proposed energy
function E(r) is defined as

E(r) = Es(r) + wcEc(r) (1.2)

where Es(r) and Ec(r) denote the similarity term and compatibility term, respectively, and
wc (empirically set to 1 by the authors in (Feng et al. 2013)) is the weight of compatibility
term. The similarity term is defined as

Es(r) =
∑
i∈V

(1− S(Θi,Φi,ri)), (1.3)

where V denotes the set of foreground patches and S(·) is defined in Eq. (1.1). The
compatibility term is defined as

Ec(r) =
∑

(i,j)∈N

(1− C(Φi,ri ,Φj,rj )), (1.4)

where N denotes the set of adjacent foreground patches which are four-connected neighbors.
The compatibility between two neighboring orientation patches Φi,ri and Φj,rj is

measured by the similarity of orientations in the overlapping blocks. Let {αn}No
n=1 and

{βn}No
n=1 be the set of orientations in the No overlapping blocks of two orientation patches.

The compatibility is computed as

C(Φi,ri ,Φj,rj ) =
1

No

No∑
n=1

| cos(αn − βn)|. (1.5)

To minimize the energy function in Eq. (1.2), the well-known loopy belief propagation
algorithm (Blake et al. 2011) is used for optimization.

1.3.4 Experiments

The goal of an orientation field estimation algorithm is to obtain an accurate estimation of
fingerprint orientation field for fingerprint enhancement and feature extraction and then to
improve the fingerprint matching accuracy. The dictionary based algorithm is, therefore,
evaluated in terms of the accuracy of orientation field estimation and the accuracy of
fingerprint matching, respectively. The latent orientation field estimation and subsequent
matching experiments are conducted on NIST SD27 (NIST Special Database 27 2014),
which contains 258 latent fingerprint images (500 ppi). These latents have been classified
into three different qualities, namely “Good”, “Bad” and “Ugly” (very bad), and their
corresponding mated rolled fingerprints. The numbers of “Good”, “Bad” and “Ugly” latents
are 88, 85 and 85, respectively. Fig. 1.9 displays examples of latent with these three
qualities. To make the latent matching problem more realistic and challenging, 27,000
rolled fingerprints (file fingerprints) in the NIST SD14 database were also included in the
background database.

In addition to the proposed orientation field estimation algorithm, two other approaches
were included for comparison:

1. FOMFE: Combination of gradient-based local estimation and FOMFE-based global
model (Wang et al. 2007).
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2. STFT: Combination of STFT-based local estimation and low-pass filtering (Chikkerur
et al. 2007).

(a)

(b)

(c)

Figure 1.9: Examples of latents of different qualities. (a) Good, (b) bad and (c) ugly.

The accuracy of orientation field estimation algorithms is measured in terms of the average
Root Mean Square Deviation (RMSD) (Turroni et al. 2011). The ground truth orientation
fields were manually marked by one of the authors in Feng et al. (2013). Average RMSD of
the dictionary based algorithm, FOMFE and STFT are computed on all the 258 latents in the
NIST SD27 database and also on the three quality level subsets (Good, Bad and Ugly). Table
1.1 shows that the dictionary based algorithm outperforms FOMFE and STFT for all three
subsets of latent fingerprints in NIST SD27.

In order to evaluate the matching performance, latent fingerprints are enhanced using
a Gabor filter (Hong et al. 1998) whose frequency parameter is fixed at 1/9 cycles
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(a) (b)

(c) (d)

Figure 1.10: CMC curves of three orientation field estimation algorithms and the manual
markup of orientation field on the NIST SD27 latent database: (a) all (258 latents), (b) good
quality (88 latents), (c) bad quality (85 latents), and (d) ugly quality (85 latents). Images
courtesy of Feng et al. (2013).

Table 1.1 Average estimation error (in degrees) of the orientation field estimation
algorithm based on orientation patch dictionary and two competing algorithms on
the latent fingerprints in the NIST SD27 Database

Algorithm All Good Bad Ugly

Orientation Patch Dictionary (Feng et al. 2013) 18.44 14.40 19.18 21.88
FOMFE (Wang et al. 2007) 28.12 22.83 29.09 32.63

STFT (Chikkerur et al. 2007) 32.51 27.27 34.10 36.36

per pixel, orientation parameter is tuned to the estimated orientation field, and standard
deviations of the Gaussian envelope in x and y directions are fixed at 4. VeriFinger SDK
6.2 (Neurotechnology Inc. 2012) is used for feature extraction and matching.

Fig. 1.10 shows the Cumulative Match Characteristic (CMC) curves obtained from the
three orientation field estimation algorithms and the manual markup (ground truth). The
dictionary based algorithm consistently outperforms the other two algorithms (FOMFE and
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(a) Latent fingerprint                   (b) FOMFE                                (c) STFT                               (d) Proposed

Figure 1.11: Enhanced images of three latent fingerprints in (a) using orientation fields
estimated by (a) FOMFE, (b) STFT, and (c) the orientation patch dictionary based algorithm.
Images courtesy of Feng et al. (2013).

STFT) on latents of all three quality levels. Three examples given in Fig. 1.11 compare the
enhanced latent fingerprints using the orientation fields obtained by the dictionary based
algorithm, FOMFE and STFT.

For many latents of good quality, the dictionary based algorithm outperforms the manual
markup (see Fig. 1.10(b)). Our analysis of these examples demonstrates that the dictionary
based algorithm has smaller deviation from true ridge orientation for good quality latents
because it is difficult and time consuming for a fingerprint expert to accurately mark the
complete orientation field in a latent. Manual markup still performs better on bad and ugly
quality latents.

1.4 Latent Segmentation and Enhancement Using Ridge Structure
Dictionary

Given the learned ridge structure dictionaries (section 1.2.2), latent segmentation and
enhancement consists of the following steps (see Fig. 1.12):
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Figure 1.12: Overview of latent segmentation and enhancement algorithm based on ridge
structure dictionary. The offline dictionary learning (top and bottom) and online latent
segmentation and enhancement stage (middle) are shown.

1. Decomposition: Input latent is decomposed into cartoon and texture images using local
total variations (Buades et al. 2010); the cartoon image which primarily consists of
structured noise is discarded.

2. Coarse-level estimation: The coarse-level dictionary is used to estimate orientation and
frequency fields on the texture image and assess coarse-level quality of the latent.

3. Fine-level estimation: Using coarse-level orientation field, select one fine-level
dictionary out of the 16 fine-level dictionaries for each image patch in the texture
image; this gives fine-level orientation and frequency fields and ridge quality map.

4. Segmentation and enhancement: The coarse-level quality map and fine-level quality
map are fused for latent segmentation. In the foreground of texture image, a Gabor
filter tuned to the orientation and frequency fields obtained in steps 2 and 3 is applied
for latent enhancement.
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SSIM=0.522 SSIM=0.599 SSIM=0.630 SSIM=0.652

SSIM=0.175 SSIM=0.286 SSIM=0.333 SSIM=0.373

SSIM=0.005 SSIM=0.009 SSIM=0.013 SSIM=0.017

(a) (b) (c) (d) (e)

Figure 1.13: Patch reconstruction results (overlaid on orientation field) with different number
of dictionary entries, T1. (a) Texture component of a high quality fingerprint patch (top), low
quality fingerprint patch (middle), and non-fingerprint patch (bottom), (b), (c), (d) and (e) are
the reconstruction results when T1 = 1, 2, 3, 4, respectively. The SSIM indices between the
given patch (column (a)) and the reconstructed patch with different value of T1 are shown
above the reconstructed patches.

1.4.1 Latent Image Decomposition

A latent fingerprint image, f , is decomposed into a cartoon (piece-wise smooth) image and a
texture (oscillatory) image. The texture image primarily includes the ridge structure patterns,
so it is kept for further latent segmentation and enhancement, while the cartoon image, viewed
as structured noise, is discarded. We adopt the nonlinear decomposition method based on
local total variation (LTV) proposed by Buades et al. (2010). Fig. 1.14(b) shows the texture
component of three different latent images shown in Fig. 1.14(a); most of the structured noise
in latents has been successfully removed by excluding the cartoon image and only the friction
ridge pattern is retained in the texture image.

1.4.2 Coarse Estimates of Ridge Quality, Orientation and Frequency

Sparse Coding and Patch Quality

The texture image is divided into overlapping patches of size 64× 64 pixels (P c
L). Each

patch has 64× 48 or 48× 64 overlapping pixels, with each of its four-connected neighboring
blocks. Each patch p ∈ P c

L is converted to a vector by row concatenation and normalized with
mean of zero and standard deviation of one. The sparse code α of p with respect to coarse-
level dictionary Dc is obtained using orthogonal matching pursuit (Mallat and Zhang 1993).
In general, the reconstructed patch p̂ is close to p if p is a fingerprint patch. In order to measure
the similarity between p̂ and p, we have used the structural similarity index SSIM(p, p̂) (Wang
et al. 2004).



Fingerprint Image Analysis: Role of Orientation Patch and Ridge Structure Dictionaries 17

Fig. 1.13 compares the reconstructed patches using different values of dictionary elements
and SSIM indices for two fingerprint patches (top and middle rows) and one non-fingerprint
patch (bottom row). We observe that the value of SSIM indicates the quality of a patch in
terms of fingerprint ridges. The quality of patch p, Qp, is therefore defined by

Qp = SSIM(p, p̂). (1.6)

A single dictionary element is selected for each image patch for the reconstruction. This is
because (i) with just one element, the sparse code and SSIM index are easy to compute, and
(ii) the orientation and frequency fields of p̂ can be computed off-line since p̂ is simply one
of dictionary elements. Fig. 1.14(c) shows some examples of coarse-level quality maps when
a single dictionary element is retrieved for reconstruction.

(b) (c) (d)(a) (e)

Figure 1.14: Illustration of latent fingerprint segmentation. (a) Gray-scale latent images, (b)
texture component images, (c) coarse-level quality maps, (d) fine-level quality maps, and (e)
segmentation results shown overlaid on the gray-scale latent images. The top, middle and
bottom latent fingerprints in column (a) are of good, bad and ugly quality in NIST SD27.
The contrast of the middle and bottom latent fingerprints has been adjusted for better visual
quality.

Ridge Quality Map, and Orientation and Frequency Fields Estimation

As shown in Fig. 1.13, the reconstructed patches have better ridge quality. The orientation
field and frequency field of patch p in the latent image can be obtained from the reconstructed
patch p̂. For a block b (16× 16 pixels) in the latent covered by multiple patches, let



18 Fingerprint Image Analysis: Role of Orientation Patch and Ridge Structure Dictionaries

{qi, θi, fi} be the ridge quality, orientation and frequency of the i-th patch covering the block
b. The coarse estimates of ridge quality Qc

b, orientation θcb and frequency f c
b for block b are

computed as:

Qc
b =

1

nb

nb∑
i=1

qi, (1.7)

θcb =
1

2
tan−1

(
nb∑
i=1

qi sin 2θi,

nb∑
i=1

qi cos 2θi

)
, (1.8)

f c
b =

1∑nb

i=1 qi

nb∑
i=1

qifi, (1.9)

where nb is the number of patches covering the block b. In this case, a higher weight (qi)
is assigned to the patch with better ridge and valley structures. Other elaborate weighting
strategies may lead to better results.

1.4.3 Fine Estimates of Ridge Quality, Orientation and Frequency

While the coarse-level dictionary is robust to local noise, it cannot extract detailed ridge
information. Instead, small patch size dictionaries can be used to compute the fine-level
quality map and fine-level orientation and frequency fields. The texture image is divided into
smaller overlapping patches of size 32× 32 pixels (P f

L ). Each patch has 32× 16 or 16× 32

overlapping pixels with each of its four-connected neighboring blocks. All patches in P f
L

are normalized with mean of zero and standard deviation of one. For each patch p ∈ P f
L , a

dominant orientation θ is used to select the corresponding orientation specific dictionary Df
k ,

where k = ⌈ 16×θ
π ⌉ and ⌈·⌉ is the ceiling operator. The closest dictionary element p̂ to p in

Df
k is selected, and the quality of the patch p is determined by the SSIM index between p

and p̂. For each 16× 16 block b in the latent, the fine-level quality Qf
b , orientation θfb and

frequency ff
b are obtained from the covering patches using Eqs. (1.7), (1.8) and (1.9).

1.4.4 Segmentation and Enhancement

The final quality map Q is computed as the average of the coarse-level quality map and
fine-level quality map. Q is then normalized to the range [0,1] and a global threshold TQ,
determined by Otsu’s method (Otsu 1979), is used to binarize the normalized quality map.
The blocks with normalized quality less than TQ are regarded as background; otherwise
foreground. Morphological operations (dilation and opening) are then applied to remove
small foreground blocks and fill holes inside the foreground. Finally, the convex hull of the
set of foreground blocks determines the final segmentation result. Fig. 1.14(e) shows the
segmentation results for latent fingerprints in NIST SD27.

In the foreground region, the texture image of a latent obtained from the decomposition
is enhanced by Gabor filtering (Hong et al. 1998), where the orientation and frequency
parameters of the filter are tuned based on the fine-level orientation field (θf ) and the average
frequency of coarse-level frequency field and fine-level frequency field ( f

f+fc

2 ); the standard
deviations of the Gaussian envelope in x and y directions are set to 4.
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Figure 1.15: An example of latent segmentation and enhancement by the proposed algorithm.
(a) A latent fingerprint (U286 from NIST SD27); (b) fully automatic segmentation of (a)
by the proposed algorithm; (c) the true mate (rolled print) of (a) with the segmentation
boundary in (c) outlined on the mate. By feeding the original latent in (a) and the segmented
and enhanced latent in (b) into a commercial off-the-shelf (COTS) latent matcher (with a
background database of 31,997 reference prints), the mated print is retrieved at ranks 4,152
and 2, respectively.

1.4.5 Experimental Results

Two latent databases are used for performance evaluation: NIST SD27 and the West Virginia
University latent database (WVU DB) (iPRoBe 2014). The NIST SD27 contains 258
latent fingerprints with their mated rolled fingerprints. The WVU DB contains 449 latent
fingerprints with their mated rolled fingerprints and an additional 4,290 rolled fingerprints.
All these latent fingerprint images are 500 ppi images. The algorithm was implemented
in MATLAB and C/C++ and run on a dual-core 2.66GHz, 4GB RAM machine running
a Windows 7 operating system. The average computation time for segmentation and
enhancement per latent is about 2.6 seconds for latents in NIST SD27 and 1.6 seconds for
latents in WVU DB.

The ultimate goal of fingerprint segmentation and enhancement of latent images is to
improve the latent matching performance. To make the latent matching problem more
realistic and challenging, the background database size is expanded to 31,997 rolled
fingerprints by including 27,000 rolled fingerprints in the NIST SD14, 258 rolled fingerprints
in NIST SD27 and 4,739 rolled fingerprints in WVU DB.

The segmentation and enhancement algorithm based on ridge structure dictionary is
evaluated by a state-of-the-art latent matcher (COTS) to determine whether the proposed
algorithm is able to boost latent matching performance. The match scores from the two input
images (original latent image in Fig. 1.15 (a) and segmented and enhanced image in Fig. 1.15
(b)) are fused by a weighted sum method; the weights for original latent image template and
segmented and enhanced image templates are empirically set as 0.7 and 0.3, respectively.
The resulting CMC curves for the COTS latent matcher on NIST SD27 and WVU DB are
shown in Fig. 1.16. The fusion of match scores from these two inputs improves the rank-
1 identification rate of COTS latent matcher on both NIST SD27 and WVU DB. Fusing
outputs of diverse search templates extracted from different segmentation and enhancement
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(a) (b)

Figure 1.16: CMC curves of latent fingerprint identification with the COTS latent matcher on
(a) NIST SD27 and (b) WVU DB. Images courtesy of Cao et al. (2014).

algorithms appears to be a good strategy to boost latent matching performance.

1.5 Conclusions and Future Work

Automatic Fingerprint Identification Systems (AFIS) have achieved extremely high matching
accuracies in tenprint searches (rolled or plain fingerprints). For this reason, almost every law
enforcement agency in the world relies on the use of AFIS to identify suspects and criminals.
Further, there is a growing use of fingerprints to conduct background searches of applicants
for visa and other government issued secure documents. However, latent fingerprint search
is still a challenging problem due to the presence of complex background noise and poor
quality of friction ridge structure that is typical for latent fingerprint images found at crime
scene investigations. For this reason, human intervention, such as manual markup of minutiae
and singular points, is a common practice for latent fingerprint identification.

A fully automatic latent identification (“lights-out” mode) is highly desired to alleviate
the concerns about repeatability and reproducibility of latent examiners’ performance and
increase the throughput of the latent matching process. Automatic feature extraction is
one of the most crucial steps in “lights-out” latent identification. In this chapter, we
have summarized the role of two types of dictionaries, orientation patch dictionary and
ridge structure dictionary, as representations of prior knowledge about fingerprint patterns.
We show how these dictionaries can be used in latent segmentation and enhancement.
The orientation patch dictionary is used to update the initial orientation field in the
input region of interest. The ridge structure dictionary is used for region of interest
segmentation and enhancement. Experimental results on two different latent fingerprint
databases demonstrate the advantages of our dictionary-based approach for fingerprint
segmentation and enhancement.

In order to further improve the dictionary-based algorithms, we need to address the
following issues:
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1. Instead of simply using local orientation patch dictionary, global orientation field
dictionary may further improve the accuracy of orientation field estimation.

2. A multiresolution approach should be considered to construct orientation patch
dictionaries for both small and large friction ridge areas.

3. A robust ridge quality estimation for fingerprint images with low contrast (as in “dry”
fingerprints) and background line structure noise is needed.
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