IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.29, NO. 1,

JANUARY 2007 15

Pores and Ridges: High-Resolution Fingerprint
Matching Using Level 3 Features

Anil K. Jain, Fellow, IEEE, Yi Chen, Student Member, IEEE, and
Meltem Demirkus, Student Member, IEEE

Abstract—Fingerprint friction ridge details are generally described in a hierarchical order at three different levels, namely, Level 1
(pattern), Level 2 (minutia points), and Level 3 (pores and ridge contours). Although latent print examiners frequently take advantage of
Level 3 features to assist in identification, Automated Fingerprint Identification Systems (AFIS) currently rely only on Level 1 and Level 2
features. In fact, the Federal Bureau of Investigation’s (FBI) standard of fingerprint resolution for AFIS is 500 pixels per inch (ppi), which is
inadequate for capturing Level 3 features, such as pores. With the advances in fingerprint sensing technology, many sensors are now
equipped with dual resolution (500 ppi/1,000 ppi) scanning capability. However, increasing the scan resolution alone does not necessarily
provide any performance improvement in fingerprint matching, unless an extended feature set is utilized. As a result, a systematic study
to determine how much performance gain one can achieve by introducing Level 3 features in AFIS is highly desired. We propose a
hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans. Level 3 features,
including pores and ridge contours, are automatically extracted using Gabor filters and wavelet transform and are locally matched using
the lterative Closest Point (ICP) algorithm. Our experiments show that Level 3 features carry significant discriminatory information. There
is a relative reduction of 20 percent in the equal error rate (EER) of the matching system when Level 3 features are employed in
combination with Level 1 and 2 features. This significant performance gain is consistently observed across various quality fingerprint

images.

Index Terms—Fingerprint recognition, high-resolution fingerprints, minutia, Level 3 features, extended feature set, pores, ridge

contours, hierarchical matching.

1 INTRODUCTION

FINGERPRINT identification is based on two properties,
namely, uniqueness and permanence. It has been
suggested that no two individuals (including identical
twins) have the exact same fingerprints. It has also been
claimed that the fingerprint of an individual does not
change throughout the lifetime, with the exception of a
significant injury to the finger that creates a permanent scar.
In an article published in Nature in 1888 [1], Galton stated
that “personal characteristics exist in much more minute
particulars... Perhaps the most beautiful and characteristic of all
superficial marks are the small furrows with the intervening
ridges and their pores that are disposed in a singularly complex
yet even order on the under surfaces of the hands and the feet.”
The early work of Galton and Henry [2] forms the basis of
the fingerprint identification approach as practiced today,
especially in the forensic community.

Characteristic fingerprint features are generally categor-
ized into three levels. Level 1 features, or patterns, are the
macro details of the fingerprint such as ridge flow and pattern
type. Level 2 features, or points, refer to the Galton
characteristics or minutiae, such as ridge bifurcations and
endings. Level 3 features, or shape, include all dimensional
attributes of the ridge such as ridge path deviation, width,

e The authors are with the Department of Computer Science and
Engineering, Michigan State University, 3115 Engineering Building,
East Lansing, MI 48824-1226.

E-mail: {jain, chenyil, demirkus}@cse.msu.edu.

Manuscript received 5 Mar. 2006; revised 16 June 2006; accepted 20 [une
2006; published online 13 Nov. 2006.

Recommended for acceptance by H. Wechsler.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0206-0306.

0162-8828/07/$20.00 © 2007 IEEE

shape, pores, edge contour, incipient ridges, breaks, creases,
scars, and other permanent details (see Fig. 1). Statistical
analysis has shown that Level 1 features, though not unique,
are useful for fingerprint classification (e.g., into whorl, left
loop, rightloop, and arch classes), while Level 2 features have
sufficient discriminating power to establish the individuality
of fingerprints [5], [6]. Similarly, Level 3 features are also
claimed to be permanent, immutable, and unique according
to the forensic experts, and if properly utilized, can provide
discriminatory information for human identification [7], [8].

In latent (partial) print examination, both Level 2 and
Level 3 features play important roles in providing quantita-
tive as well as qualitative information for identification. As
stated by latent print examiner Ashbaugh, “It is not the points,
but what’s in between the points that matters” [7]. Unfortunately,
commercial Automated Fingerprint Identification Systems
(AFIS) barely utilize Level 3 features. This is because, in order
to extract fine and detailed Level 3 features, we need high-
resolution (> 1,000 pixels per inch (ppi)) images. Since
current AFIS systems are based only on 500 ppi images, the
matchers used in these systems have been developed
primarily based on Level 1 and Level 2 features.

With the advent of high-resolution fingerprint sensors
and growing demand and requirements for accurate and
robust latent print examination, there is a need to quantify
the discriminating power of Level 3 features. In the 2005
ANSI/NIST fingerprint standard update workshop [9], the
Scientific Working Group on Friction Ridge Analysis, Study
and Technology (SWGFAST) [10] proposed a minimum
scanning resolution of 1,000 ppi for latent, tenprint, and
palm print images and the inclusion of Level 3 fingerprint
features in the FBI standard. This proposal was strongly
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Fig. 1. Fingerprint features at Level 1 (upper row), Level 2 (middle row), and Level 3 (lower row) [3], [4].

endorsed by the forensic community and initiated the
establishment of an ANIS/NIST committee, named
CDEFFS, to define an extended fingerprint feature set
[11]. To our knowledge, this is the first attempt to quantify
some of the Level 3 features that are being defined in the
“extended feature set” for fingerprint matching [12].

The rest of the paper is organized as follows: Section 2
gives a brief introduction to the history of fingerprint
identification, the formation of fingerprints, and the finger-
print sensing technology. Section 3 summarizes previous
work done in the domain of automatic fingerprint matching
using Level 3 features. Section 4 introduces the proposed
automatic feature extraction algorithms for Level 3 features,
namely, pores and ridge contours. Section 5 describes in
detail the proposed hierarchical matching system with an
emphasis on Level 3 matching. Experimental results are
provided in Section 6, with summary and future work
presented in Section 7.

2 BACKGROUND

2.1 History of Fingerprint Identification

The history of using fingerprints as a scientific method for
identification traces back to the 1880s, when Faulds suggested
that latent fingerprints obtained at crime scenes could
provide knowledge about the identity of offenders [7]. In
1892, Galton published the well-known book entitled
Fingerprints, in which he discussed the basis of contemporary
fingerprint science, including persistence, uniqueness, and
classification of fingerprints [13]. Galton introduced Level 2
features by defining minutia points as either ridge endings or
ridge bifurcations on a local ridge. He also developed a
probabilistic model using minutia points to quantify the
uniqueness of fingerprints [13]. Although Galton discovered
that sweat pores can also be observed on the ridges, no
method was proposed to utilize pores for identification.

In 1912, Locard introduced the science of poroscopy, the
comparison of sweat pores for the purpose of personal
identification [14]. Locard stated that like the ridge char-
acteristics, the pores are also permanent, immutable, and
unique, and are useful for establishing the identity,
especially when a sufficient number of ridges is not
available. Locard further studied the variation of sweat
pores and proposed four criteria that can be used for pore-
based identification: the size of the pores, the form of the
pores, the position of the pores on the ridges, and the number
or frequency of the pores [15]. It was observed that the
number of pores along a centimeter of ridge varies from 9 to
18, or 23 to 45 pores per inch and 20 to 40 pores should be
sufficient to determine the identity of a person [7]. In
particular, pores provide essential information for fragmen-
tary latent print examination since the number of minutia
points in latent fragment prints is often too few. One such
example is given in Fig. 2, where only one minutia is present
in each fragmentary fingerprint, yet the attributes of about

(b)

(a)

Fig. 2. Role of pores in fragmentary latent print examination. (a) and (b)
are fingerprint segments from different fingers. The two figures show a
bifurcation at the same location on similar patterns. Normal examination
would find them in agreement, but their relative pore locations differ
(adopted from [7]).
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Fig. 3. Characteristic features of friction ridges (adopted from [7]).

20 pores in these images are sufficient to successfully
determine a disagreement (nonmatch) between the two
prints.

In 1962, Chatterjee proposed the use of ridge edges in
combination with other friction ridge formations to establish
individualization, which is referred to as “edgeoscopy” [7].
Chatterjee discovered that some shapes on the friction ridge
edges tend to reappear frequently and classified them into
eight categories, namely, straight, convex, peak, table, pocket,
concave, angle, and others (see Fig. 3). Subsequent research
established that all the edge characteristics along friction
ridges can be placed into one of these categories. Itis believed
that the differences in edge shapes are caused by the effects of
differential growth on the ridge itself or a pore that is located
near the edge of the friction ridge. In theory, the density of
ridge edge features can be very large, e.g., given the average
width of a ridge to be approximately 0.48 mm, a ridge 5 mm
long would contain approximately 20 edge characteristics.
However, in practice, the flexibility of the friction skin tends
to mask all but the largest edge shapes [7].

Over the last 10 years, poroscopy and edgeoscopy have
received growing attention and have been widely studied by
scientists of ridgeology, a fundamental and essential resource
for latent print examiners [7]. It has been claimed that shapes
and relative positions of sweat pores and shapes of ridge
edges are as permanent and unique as traditional minutia
points. And when understood, they add considerable weight
to the conclusion of identification [7].

2.2 Fingerprint Formation

Human fingers are known to display friction ridge skin (FRS)
that consists of a series of ridges and furrows, generally
referred to as fingerprints. The FRS is made of two major
layers: dermis (inner layer) and epidermis (outer layer). The
ridges emerge on the epidermis to increase the friction
between the volar (hand or foot) and the contact surface (see
Fig. 4a). A typical young male has, on an average, 20.7 ridges
per centimeter while a female has 23.4 ridges per centimeter.

2

(a)

Epidermis

Sweat Gland

It is suggested that friction ridges are composed of small
“ridge units,” each with a pore, and the number of ridge units
and their locations on the ridge are randomly established. As
a result, the shape, size, alignment of ridge units, and their
fusion with an adjacent ridge unit are unique for each person.
Although there exist certain cases when ridge units fail to
compose aridge, also known as dysplasia, independent ridge
units still exist on the skin [7].

Pores, on the other hand, penetrate into the dermis starting
from the epidermis. They are defined as the openings of
subcutaneous sweat glands that are placed on epidermis. The
study in [16] showed that the first sweat gland formations are
observed in the fifth month of gestation while the epidermal
ridges are not constructed until the sixth month. This implies
that the pores are stabilized on the ridges before the process of
epidermis and dermis development is completed, and are
immutable once the ridge formation is completed. Due to the
fact that, each ridge unit contains one sweat gland, pores are
often considered evenly distributed along ridges and the
spatial distance between pores frequently appears to be in
proportion to the breadth of the ridge, which, on an average,
is approximately 0.48 mm [7]. A pore can be visualized as
either open or closed in a fingerprint image based on its
perspiration activity. A closed pore is entirely enclosed by a
ridge, while an open pore intersects with the valley lying
between two ridges (see Fig. 5). One should not expect to find
two separate prints of the same pore to be exactly alike, as a
pore may be open in one and closed in the other print.

Occasionally, narrow and often fragmented ridges, also
known as incipient ridges, may appear between normal
friction ridges. It has been suggested that incipient ridges
are normal forming ridges that remained “immature” at the
time of differentiation when primary ridge formation
stopped. Because pores are formed during the early growth
of the ridges, it is observed that some incipient ridges also
have pore formations [17]. It has also been observed that
incipient ridges occur in about 45 percent of the people and
13.5 percent of the fingers [4]. The incipient ridges are also
permanent and repeatable friction ridge characteristics.

A recent study on the microcirculation of human fingers
reveals the complexity and characteristics of fingerprints
from a microvascular point of view. It has been found that the
regular disposition of capillaries on the palmar side of a finger
“sharply followed the cutaneous sulci of the fingerprint,
reproducing an identical vascular fingerprint with the same
individual architecture of the cutaneous area” (see Fig. 4b).

(b)

Fig. 4. Friction ridge skin. (a) A three-dimensional representation of the structure of ridged skin. The epidermis is partly lifted from the dermis, to
expose the dermal papillae (adopted from [2]). (b) A finger seen during the maceration process shows (A) the linear disposition of vessels along the
fingerprints and (B) superimposition of a scanning electron microscopy (SEM) image of the same area, revealing perfect correspondence with the

fingerprints (adopted from [18]).
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Fig. 5. Open and closed pores in a 1,000 ppi live-scan fingerprint image
obtained using a CrossMatch 1000ID sensor.

The capillaries around the sweat glands also formed a very
specialized tubular-shaped structure and the concentration
of these structures decreases from the palmar to the dorsal
side of the finger [18]. This study provides further scientific
evidence of the uniqueness of fingerprints.

2.3 Fingerprint Sensing Technology

There are many different sensing methods to obtain the
ridge-and-valley pattern of finger skin or fingerprint [19].
Historically, in law enforcement applications, fingerprints
were mainly acquired offline. Nowadays, most commercial
and forensic applications accept live-scan digital images
acquired by directly sensing the finger surface with a
fingerprint sensor based on optical, solid-state, ultrasonic,
and other imaging technologies.

The earliest known images of fingerprints were impres-
sionsin clay and later in wax (see Fig. 2.3in [7]). Starting in the
late 19th century and throughout the 20th century, the
acquisition of fingerprint images was mainly performed by
using the so-called “ink-technique:” the subject’s finger is
coated with black ink and pressed and rolled against a paper
card; the card was then scanned, producing the digital image.
This kind of process is referred to as rolled offline fingerprint
sensing, which is still being used in forensic applications and
background checks of applicants for sensitive jobs.

Direct sensing of fingerprints as electronic signals started
with optical “live-scan” sensors with Frustrated Total
Internal Reflection (FTIR) principle. When the finger
touches the top side of a glass prism, one side of the prism
is illuminated through a diffused light. While the finger-
print valleys that do not touch the glass platen reflect the
light, ridges that touch the platen absorb the light. This
differential property of light reflection allows the ridges
(which appear dark) to be discriminated from the valleys.

Solid-state fingerprint sensing technique uses silicon-
based, direct contact sensors to convert the physical informa-
tion of a fingerprint into electrical signals. The solid-state
sensors are based on capacitance, thermal, electric field, radio
frequency (RF), and other principles. The capacitive sensor
consists of an integrated two-dimensional array of metal

(a)
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electrodes. Each metal electrode acts as one capacitor plate
and the contacting finger acts as the second plate. A
passivation layer on the surface of the device forms the
dielectric between these two plates. A finger pressed against
the sensor creates varying capacitance values across the array
which are then converted into an image of the fingerprint.
Some solid-state sensors can deal with nonideal skin
conditions (wet or dry fingers) and are suited for use in a
wide range of climates. However, the surface of solid-state
sensors needs to be cleaned regularly to prevent the grease
and dirt from compromising the image quality.

New fingerprint sensing technologies are constantly being
explored and developed. For example, Multispectral Finger-
print Imaging (MSI) has been introduced by Lumidigm, Inc.
[20]. Unlike conventional optical fingerprint sensors, MSI
devices scan the subsurface of the skin by using different
wavelengths of light (e.g., 470 nm (blue), 574 nm (green), and
636 nm (red)). The fundamental idea is that different features
of skin cause different absorbing and scattering actions
depending on the wavelength of light. Fingerprint images
acquired using the MSI technology appear to be of signifi-
cantly better quality compared to conventional optical
sensors for dry and wet fingers. Multispectral fingerprint
images have also been shown to be useful for spoof detection
[21]. Another new fingerprint sensing technology based on
multicamera system, known as “touchless imaging,” has
been introduced by TBS, Inc. [22]. As suggested by the name,
touchless imaging avoids direct contact between the sensor
and the skin and, thus, consistently preserves the fingerprint
“ground truth” without introducing skin deformation during
image acquisition. A touchless fingerprint sensing device is
also available from Mitsubishi [23].

One of the most essential characteristics of a digital
fingerprint image is its resolution, which indicates the
number of dots or pixels per inch (ppi) (see Fig. 6). Generally,
250 to 300 ppi is the minimum resolution that allows the
feature extraction algorithms to locate minutiae in a finger-
print image. FBI-compliant sensors must satisfy the 500 ppi
resolution requirement. However, in order to capture pores
in a fingerprint image, a significantly higher resolution (>
1,000 ppi) of image is needed. Although it is not yet practical
to design solid-state sensors with such a high resolution due
to the cost factor, optical sensors with a resolution of 1,000 ppi
are already commercially available. More excitingly, optical
sensors with resolutions of 4,000-7,000 ppi are being devel-
oped (see Fig. 7), which not only allow capturing Level 3
features for identification, but also pore activities (opening
and closing) for spoof detection.

(b)

Fig. 6. Fingerprint image resolution. The same fingerprint captured at three different image resolutions (a) 380 ppi (Identix 200DFR), (b) 500 ppi

(CrossMatch ID1000), and (c) 1,000 ppi (CrossMatch ID1000).
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Fig. 7. Two consecutive touchless fingerprint images from a video
sequence captured using a very high resolution sensor (=~ 7,000 ppi).
The perspiration activities of the pores are clearly seen. (courtesy: TBS
(http://www.tbsinc.com/)).

(a) (b)

Fig. 8. Pore detection based on skeletonization. (a) A fingerprint image
(2,000 ppi) with detected pores (in square boxes). (b) The raw skeleton
image, where end points and branch points are tracked for pore
extraction (adopted from [6]).

3 PRevious WORK

The use of Level 3 features in an automated fingerprint
identification system has been studied by only a few
researchers. Existing literature is exclusively focused on
the extraction of pores in order to establish the viability of
using pores in high resolution fingerprint images to assist in
fingerprint identification.

Stosz and Alyea [6] proposed a skeletonization-based pore
extraction and matching algorithm [6]. Specifically, the
locations of all end points (with at most one neighbor) and
branch points (with exactly three neighbors) in the skeleton
image are extracted and each end point is used as a starting
location for tracking the skeleton. The tracking algorithm
advances one element at a time until one of the following
stopping criteria is encountered: 1) another end point is
detected, 2) a branch point is detected, and 3) the path length
exceeds a maximum allowed value. Condition 1) implies that
the tracked segment is a closed pore, while Condition 2)
implies an open pore. Finally, skeleton artifacts resulting
from scars and wrinkles are corrected and pores from
reconnected skeletons are removed. The result of pore
extraction is shown in Fig. 8. During matching, a fingerprint
image is first segmented into small regions and those that
contain characteristic features, such as core and delta points,
are selected. The match score between a given image pair is
then defined as a ratio of the number of matched pores to the
total number of pores extracted from template regions,

Fig. 9. Pore detection in fingerprint fragments. (a) Detection of open
pores. (b) Extraction of open pores (in white) and closed pores (in black)
(adopted from [25]).

N1 N1
S, = (Z N[\IPJ)/(Z NP,i)v (1)
i=0 =0

where N is the total number of regions in the template, Np; is
the number of pores detected in template region ¢, and Nyp;
is the number of matching pores in region i. Note alignment
is first established based on maximum intensity correlation
and two pores are considered matched if they lie within a
certain bounding box. Finally, experimental results based on
a database of 258 fingerprints from 137 individuals showed
that by combining minutia and pore information, a lower
FRR of 6.96 percent (compared to ~ 31 percent for minutiae
alone) can be achieved at a FAR of 0.04 percent [6].

Based on the above algorithm, Roddy and Stosz [24] later
conducted a statistical analysis of pores and presented a
model to predict the performance of a pore-based automated
fingerprint system. One of the most important contributions
of this study is that it mathematically demonstrated the
uniqueness of pores, for example, 1) the probability of two
consecutive intraridge pores having the same relative spatial
position with another two pores is 0.04, 2) the probability of
occurrence of a particular combination of 20 consecutive
intraridge pores is 1.16 x 1074, and 3) the probability of
occurrence of a particular combination of 20 ridge-indepen-
dent pores is 5.186 x 107%. In general, this study provides
statistics about pores and demonstrates the efficacy of using
pores, in addition to minutiae, for improving the fingerprint
recognition performance.

More recently, Kryszczuk et al. [25] studied matching
fragmentary fingerprints using minutiae and pores. The
authors presented two hypotheses pertaining to Level 3
features: 1) the benefit of using Level 3 features increases as
the fingerprint fragment size, or the number of minutiae
decreases, and 2) given a sufficiently high resolution, the
discriminative information contained in a small fragment is
no less than that in the entire fingerprint image. Further,
Kryszczuk et al. point out that there exists an intrinsic link
between the information content of ridge structure, minutiae
and pores. As a result, the anatomical constraint that the
distribution of pores should follow the ridge structure is
imposed in their pore extraction algorithm, which is also
based on skeletonization. Specifically, an open pore is only
identified in a skeleton image when distance from an end
point to a branch point on the valley is small enough (see
Fig.9). Finally, an algorithm based on the geometric distance
was employed for pore matching.
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Although the hypotheses in previous studies by Stosz et al.
[6], [24] and Kryszczuk et al. [25] are well supported by the
results of their pilot experiments, there are some major
limitations in their approaches:

1. Skeletonization is effective for pore extraction only
when the image quality is very good. As the image
resolution decreases or the skin condition is not
favorable, this method does not give reliable results
(see Fig. 10).

2. Comparison of small fingerprint regions based on the
distribution of pores requires the selection of char-
acteristic fingerprint segments; which was performed
manually in [6].

W
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3. The alignment of the test and the qurey region is
established based on intensity correlation, which is
computationally expensive by searching through all
possible rotations and displacements. The presence of
nonlinear distortion and noise, even in small regions,
can also significantly reduce the correlation value.

4. Only custom built optical sensors (~ 2,000 ppi),
rather than commercially available live-scan sensors
(1,000 ppi) were used in these studies.

5. The database is generally small (e.g., only 12 genuine
and six impostor comparisons in [25]).

We propose a fingerprint matching system that is based
on 1,000 ppi fingerprint images, acquired using CrossMatch
1000ID, a commercial optical live-scan device. In addition to
pores and minutiae, ridge contours that contain discrimina-
tory information are also extracted in our algorithm. We
introduce a complete and fully automatic matching frame-
work by efficiently utilizing features at all three levels in a
hierarchical fashion. Our matching system works in a more
realistic scenario and we demonstrate that inclusion of
Level 3 features leads to more accurate fingerprint matching.

4 LeveL 3 FEATURE EXTRACTION

As suggested in [25], Level 1, Level 2, and Level 3 features in
a fingerprint image are mutually correlated. For example,
the distribution of pores is not random, but naturally
follows the structure of ridges [24]. Also, based on the
physiology of the fingerprint, pores are only present on the
ridges, not in the valleys. Therefore, it is essential that we
identify the location of ridges prior to the extraction of
pores. Besides pores, ridge contours are also considered as
Level 3 information. During image acquisition, we observe
that the ridge contour is often more reliably preserved at
1,000 ppi than the pores, especially in the presence of
various skin conditions and sensor noise (see Fig. 11). In

Fig. 11. Two impressions of the same finger at 1,000 ppi. It is observed here that ridge contours are more reliable Level 3 features, compared to

pores.
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Fig. 12. Pore extraction. (a) A partial fingerprint image at 1,000 ppi. (b) Enhancement of ridges in the image shown in (a) using Gabor filters. (c) A
linear combination of (a) and (b). (d) Wavelet response (s = 1.32) of the image in (a). (e) A linear combination of (d) and (b). (f) Extracted pores (red

circles) after thresholding the image in (e).

order to automatically extract Level 3 features, namely,
pores and ridge contours, we have developed feature
extraction algorithms using Gabor filters and wavelet
transform.

4.1 Pore Detection

Based on their positions on the ridges, pores can be divided
into two categories: open and closed. A closed pore is entirely
enclosed by a ridge, while an open pore intersects with the
valley lying between the two ridges. However, it is not useful
to distinguish between the two states for matching since a
pore may be open in one image and closed in the other image,
depending on the perspiration activity. One common
property of pores in a fingerprint image is that they are all
naturally distributed along the friction ridge. As long as the
ridges are identified, the locations of pores are also
determined, regardless of their being open or closed.

To enhance the ridges, we use Gabor filters [26], which
has the form

2 2
To Yo
82 65

G(l‘my:eaf) —exp{—%

cos(2mfxp) }, (2)

where f and f are the orientation and frequency of the filter,
respectively, 6, and ¢, are the standard deviations of the
Gaussian envelope along the x- and y-axes, respectively.
Here, (x4, yy) represents the position of a point (z,y) after it
has undergone a clockwise rotation by an angle (90° — 6).
The four parameters (0, f,0,,06,) of the Gabor filter are
empirically determined based on the ridge frequency and
orientation of the fingerprint image [26]. An example of
enhanced fingerprint image after Gabor filtering is shown
in Fig. 12b. It is clear that ridges are well separated from the
valleys after enhancement.

The above procedure suppresses noise by filling all the
holes (or pores) on the ridges and highlights only the ridges.

By simply adding it to the original fingerprint image, we
observe that both open and closed pores are retained as
they appear only on the ridges (see Fig. 12c). However, the
contrast between pores and ridges is low in Fig. 12c. In
order to enhance the original image with respect to pores,
we employ a band pass filter to capture the high negative
frequency response as intensity values change abruptly
from white to black at the pores. Wavelet transform is
known for its highly localized property in both frequency
and spatial domains. Hence, we apply the Mexican hat
wavelet transform [27] to the input image f(z,y) € R? to
obtain the frequency response w as follows:

wtat) =72 [ [ rwo(TEE a0

where s is the scale factor (= 1.32) and (a, b) are the shifting
parameters. Essentially, this wavelet is a band pass filter with
scale s. After normalizing the filter response (0-255) using
min-max normalization, pore regions that typically have high
negative frequency response are represented by small blobs
with low intensities (see Fig. 12d). By adding the responses of
Gabor and wavelet filters, we obtain the “optimal” enhance-
ment of pores while enforcing the constraint that pores lie
only on the ridges (see Fig. 12e). Finally, an empirically
determined threshold (= 58) is applied to extract pores with
blob size less than 40 pixels. An example of pore extraction is
shown in Fig. 12f, where ~ 250 pores, both open and closed,
are accurately extracted along the ridges.

Note that our proposed pore extraction algorithm is
simple and more efficient than the commonly used skeleto-
nization-based algorithm, which is often tedious and
sensitive to noise, especially when the image quality is poor.

4.2 Ridge Contour Extraction

As pointed out earlier, while pores are visible in 1,000 ppi
fingerprint images, their presence is not consistent (see
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(@)

Fig. 13. Ridge contour extraction. (a) Wavelet response (s = 1.74) of the image in Fig. 12a. (b) Ridge contour enhancement using a linear subtraction
of wavelet response in (a) and Gabor enhanced image in Fig. 12b. (c) Extracted ridge contours after binarizing (b) and convolving with filter H.

Fig. 11). On the other hand, ridge contours, which contain
valuable Level 3 information including ridge width and edge
shape, are observed to be more reliable features than pores.
Hence, we also extract ridge contours for the purpose of
matching.

The ridge contour is defined as edges of a ridge. However,
there is a fundamental difference between the use of ridge
contours and what is proposed in “edgeoscopy” [7]. In
“edgeoscopy,” the edge of a ridge is classified into seven
categories as shown in Fig. 3. In practice, however, the
flexibility of the friction skin and the presence of open pores
tend to reduce the reliability of ridge edge classification. In
contrast to edgeoscopy, our method utilizes the ridge contour
directly as a spatial attribute of the ridge and the matching is
based on the spatial distance between points on the ridge
contours. Classical edge detection algorithms can be applied
to fingerprint images to extract the ridge contours. However,
the detected edges are often very noisy due to the sensitivity
of the edge detector to the presence of creases and pores.
Hence, we again use wavelets to enhance the ridge contours
and linearly combine them with a Gabor enhanced image
(where broken ridges are fixed) to obtain enhanced ridge
contours.

The algorithm to extract ridge contours can be described
as follows: First, the image is enhanced using Gabor filters
as in (2). Then, we apply a wavelet transform to the
fingerprint image to enhance ridge edges (see Fig. 13a). It
needs to be noted that the scale s in (3) is now increased to
1.74 in order to accommodate the intensity variation of
ridge contours. The wavelet response is subtracted from the
Gabor enhanced image such that ridge contours are further
enhanced (see Fig. 13b). The resulting image is binarized
using an empirically defined threshold é(= 10). Finally,
ridge contours can be extracted by convolving the binarized
image f’(z,y) with a filter H, given by

r(z,y) = En,mfb(m, y)H(z — n,y —m), (4)

where filter H = (0,1,0;1,0,1;0,1,0) counts the number of
neighborhood edge points for each pixel. A point (z,y) is
classified as a ridge contour point if 7(z,y) = 1 or 2. Fig. 13c
shows the extracted ridge contours.

5 HIeERARCHICAL MATCHING AND FUSION

In latent print comparison, a forensic expert often investi-
gates Level 3 details when Level 1 or Level 2 features are
similar between the template and the query. That is, experts
take advantage of an extended feature set in order to
conduct a more effective latent matching. A possible
improvement of current AFIS systems is then to employ a
similar hierarchical matching scheme, which enables the
use of an extended feature set for matching at a higher level
to achieve robust matching decisions.

Fig. 14 illustrates the architectural design of our
proposed matching system. Each layer in the system utilizes
features at the corresponding level. All the features that are
used in the system are shown in Fig. 15.

Given two fingerprint images, the system first extracts
Level 1 (orientation field) and Level 2 (minutiae) features
and establishes alignment of the two images using a string-
matching algorithm [28]. Agreement between orientation
fields of the two images is then calculated using dot-
product. If orientation fields disagree (S; < t;), the matcher
rejects the query and stops at Level 1. Otherwise, the
matcher proceeds to Level 2, where minutia correspon-
dences are established using bounding boxes and the match
score S is computed as

1
SQ:w1><51+w2x§

Ny 9 =020 x (NF — Ny %) N;©—0.20 x (N — N, 9)
NI +1 ' Ny +1 ’

where w; and wy (=1 —w;) are the weights for combin-
ing information at Level 1 and Level 2, Ni¢ is the
number of matched minutiae and NI and NQQ are the
number of minutiae within the overlapping region of the
template (7) and the query (@), respectively. Note that
we require 0 < .S; < 100. Next, we set the threshold ¢, to
be 12, such that if NQT @S 12, the matching terminates at
Level 2 and the final match score remains as Ss.
Otherwise, we continue investigating Level 3 features.
The threshold t; is chosen based on the 12-point guideline
that is considered as sufficient evidence for making
positive identification in many courts of law [5].

Asthe matching proceeds to Level 3, the matched minutiae
at Level 2 are further examined in the context of neighboring
Level 3 features. For example, given a pair of matched
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Fig. 14. Hierarchical matching system flow chart. Fingerprint features at three different levels were utilized in a hierarchical fashion.
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Fig. 15. Different levels of fingerprint features detected in Fig. 6¢. (a) Orientation field (Level 1), (b) minutia points (Level 2), and (c) pores and ridge

contours (Level 3).

minutiae, we compare Level 3 features in the neighborhood
and recompute the correspondence based on the agreement
of Level 3 features. Assume an alignment has been estab-
lished atLevel 2, let (x;,vy;),i = 1,2,. .., NQTQ be the location of
the ith matched minutia and (z, y) be the mean location of all
matched minutiae. The associated region of each matched
minutia (z;,y;) is defined as a rectangular window R; with
size 60 x 120, centered at (3£, 2%) Note that it is possible for
the minutiae to be outside of its associated region, but the
selection ensures a sufficiently large foreground region for
Level 3 feature extraction. To compare Level 3 features in each
local region, we need to take into consideration the fact that
the numbers of detected features (pores and ridge contour
points), in practice, will be different between query and
template, due to degradation of image quality (e.g., skin

deformation). The Iterative Closest Point (ICP) algorithm [29]
is a good solution for this problem because it aims to
minimize the distances between points in one image to
geometric entities (as opposed to points) in the other without
requiring 1:1 correspondence. Another advantage of ICP is
that when applied locally, it provides alignment correction to
compensate for nonlinear deformation [30], assuming that
the initial estimate of the transformation is reasonable.

For each matched minutia set (z;,;),i=1,2,. NQT ©
we define its associated regions from 7' and Q to be RT
and RY, respectively, and the extracted Level 3 feature sets
PT = (a”,b”,t”) j=1,2,...N1, and P? = (ais, i tix),
k=1,2,. Nfi, accordingly. Each feature set includes
trlplets representing the location of each feature point
and its type (pore or ridge contour point). Note that we



24

avoid matching pores with ridge contour points. The
details of matching each Level 3 feature set P7 and PY

3

using the ICP algorithm (see Fig. 16) are given below:

1. Initialize iteration index k& = O;
2. Initialize P"° = P and rigid transformation W? = I;
3. Initialize convergence indicator Dif f = 10';

4. Set the stop criterion for distance D = 0.03;

5. Set the stop criterion for iteration [tr = 15;
6. While (Diff > D)

{

6.1. If (k > Itr) break;

6.2. k=k+1;

6.3. Apply W* ! to the query: P = wr-1pr+1,
6.4. For (j =1 to Ny)

{

Find index of the closest point for (a?j, b?j, tgj) :

. . Tk 3T,k Tk
Ck(]) = argmzng(d((ai,g 7bi,g ’ti,g )7 (a‘iQ,jv bic,zjv tgj)))v

g= 172,...,N37:i;
}

6.5. Compute the mean distance between R.T’k and PiQ

Ef (P PP) =

N&
1 3 Tk T,k Tk
N Ejzld .l : t

Q 10 Q.
((@; x5y 5.0y B (@ tis))

ijo Yigo Lig))s
6.6. Obtain new transformation W} that minimizes EF;
6.7. Estimate convergence at iteration %

Diff = BX(PM*, PR) - BF (P PR,
i

7. Obtain the match distance E; = EF(P/*, P?);

The initial transformation W} in Step 2 was set equal to
the identity matrix I as P! and P have been prealigned at
Level 2. In Steps 6.4 and 6.5, d(.,.) denotes the Euclidean
distance between point sets. Note that ICP requires N?%, the
number of Level 3 features in query region RZ.Q, be always
smaller than N7, the number of Level 3 features in R!. This
can be satisfied by choosing the feature set with the larger
size to be the template. Fast convergence of the ICP
algorithm is usually assured because the initial alignment
based on minutiae at Level 2 is generally good. When the
algorithm converges or is terminated when k=15, the
match distance E; is obtained.
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(@) (b)

Fig. 16. An example of using the ICP algorithm for Level 3 matching. After
k = 6 iterations, the mean match distance E; (per feature point) between
PI' and P,Q is reduced from 3.03 pixels in (a) to 1.18 pixels in (b).
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Fig. 17. The advantage of using Level 3 features. Curves correspond-
ing to NQTQ are based on Level 2 features alone and curves
correspond to N, are based on Level 2 and Level 3 features. Note
that NZTE < NQTQ. In general, the number of impostor minutia matches
decreases after Level 3 features are used, while the number of
genuine minutia matches remains almost unchanged. As a result, the
overlap region of the genuine and impostor distributions of matched
minutiae is reduced after Level 3 features were utilized.

Given N79 matched minutiae between T and Q at Level 2,
N;Q match distances E;,i =1,2,... ,Ng‘Q based on Level 3
features will be obtained using the above algorithm. Each
distance E; is then compared with a threshold t; and if
E; < tq, the associated minutia correspondence is ensured,
otherwise, the correspondence is denied. Let N; “ be the
updated number of matched minutiae, N; 9 < NI (Fig. 17).
The match score S3 is defined as

1
S3ZU)1X51+U}2X§

Ny§ —0.20 x (N — N, )
NI +1

Ny§ —0.20 x (N5 — N, §)
" N§ +1 7
where NI and N¢, as before, are the number of minutiae
within the overlapped region of the template and the query,
respectively. Note that 0 < .55 < 100.

The proposed hierarchical matcher utilizes a fusion
scheme that integrates the feature information at Level 2
and Level 3 in a cascade fashion. An alternative approach
that integrates match scores at Level 2 and Level 3 in a
parallel fashion was also proposed in [31], where min-max
normalization and sum rule were employed to fuse the two
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(EER = 3.43%)
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107 °
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Fig. 18. ROC curves for the individual Level 2 matcher and Level 3
matcher, score-level fusion of both matchers [31] and the proposed
hierarchical matcher.

match scores. Although the latter is a more commonly used
and straight-forward approach, it is more time-consuming
since matching at both Level 2 and Level 3 has to be
performed for every query. In addition, parallel score fusion
is sensitive to the selected normalization scheme and fusion
rule. On the other hand, the proposed hierarchical matcher
enables us to control the level of information or features to
be used at different stages of fingerprint matching.

6 EXPERIMENTAL RESULTS

To our knowledge, there is no 1,000 ppi resolution fingerprint
database available in the public domain. Hence, we collected
our own 1,000 ppi fingerprint database with 410 fingers
(41 subjects x 10 fingers per subject) using a CrossMatch
1000ID sensor. Each finger contributed four impressions
(2 impressions x 2 sessions with an interval of three days)
resulting in 1,640 fingerprint images in our database.

Experiments are carried out to estimate the performance
gain of utilizing Level 3 features in a hierarchical matching
system, and more importantly, across two different finger-
print image quality types. The average time of feature
extraction and matching at Level 3 are ~ 3.5 seconds per
image and ~ 45 seconds per match, respectively, when
tested on a PC with 1GB of RAM and a 1.6GHz Pentium 4
CPU. All programs are currently implemented in MATLAB
and we expect the computational costs to be significantly
reduced after optimization.

In the first experiment, we compare the matching
performance of the proposed hierarchical matcher to that
of the individual Level 2 and Level 3 matchers and their
score-level fusion [31] across the entire database. For each
matcher, the number of genuine and impostor matches are
2,460 (410 x 6) and 83,845 (12x409) respectively. Note that we
exclude symmetric matches of the same pair as well as
matches between the same image. As shown in Fig. 18, the
proposed hierarchical matcher results in a relative perfor-
mance gain of ~ 20 percent in terms of EER over the Level 2
matcher. It also consistently outperforms the score-level
fusion of individual Level 2 and Level 3 matchers [31],
especially at high FAR values. These results strongly suggest
that Level 3 features provide valuable complementary

10'
9
2
©
o
k1
2,
[}
o
3
©
w Lidaest :
—+— Level 2 matcher (PQ) ai A
- » -Proposed hierarchical matcher (PQ) o
0 Level 2 matcher (HQ)
107 |- - - Proposed hierarchical matcher (HQ)
T

10»1 0

False Accept Rate (%)

Fig. 19. ROC curves for the Level 2 matcher and the proposed matcher
across different quality, namely, high quality (HQ) and low quality (LQ)
images.

information to Level 2 features and can significantly improve
the current AFIS matching performance when combined
with Level 2 features using the proposed hierarchical
structure.

In the second experiment, our aim was to test whether
the performance gain of the proposed hierarchical matcher
is consistently observed across different image quality. We
divided the entire database into two equal-sized groups
with respect to image quality, namely, high quality (HQ)
and low quality (LQ) and applied both Level 2 matcher and
the proposed hierarchical matcher to each group exclu-
sively. The average number of genuine and impostor
matches for each quality group, respectively, are 820 and
20,961. The fingerprint image quality measure we employ is
based on spatial coherence, as proposed in [32]. Note that
this quality measure also favors large-sized fingerprints,
hence, images with small fingerprint regions are often
assigned low quality values. As shown in Fig. 19, consistent
performance gain of the proposed hierarchical matcher over
the Level 2 matcher is observed across different image
quality groups. This result contradicts the general assertion
that Level 3 features should only be used when the
fingerprint image is of high quality. In fact, high quality
fingerprint images typically contain a sufficiently large
number of Level 2 features for accurate identification. It is
often the fingerprint images with low quality, especially
prints of small size (mostly seen in latent prints), that gain
the most from matching using Level 3 features.

In general, our experiments show significant performance
improvement when we combine Level 2 and Level 3 features
in a hierarchical fashion. It is demonstrated that Level 3
features do provide additional discriminative information
and should be used in combination with Level 2 features. The
results of this study strongly suggest that using Level 3
features in fingerprint matching at 1,000 ppi is both practical
and beneficial.

7 SUMMARY AND CONCLUSIONS

We have presented an automated fingerprint matching
system that utilizes fingerprint features in 1,000 ppi images
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at all three levels. To obtain discriminatory information at
Level 3, we introduced algorithms based on Gabor filters
and wavelet transform to automatically extract pores and
ridge contours. A modified ICP algorithm was employed
for matching Level 3 features. Our experimental results
demonstrate that Level 3 features should be examined to
refine the establishment of minutia correspondences pro-
vided at Level 2. More importantly, consistent performance
gains were also observed in both high quality and low
quality images, suggesting that automatically extracted
Level 3 features can be informative and robust, especially
when the fingerprint region, or the number of Level 2
features, is small. The potential of improving AFIS match-
ing by utilizing Level 3 features at 1,000 ppi is promising
and should be further investigated. Currently, we are in the
process of optimizing our algorithm and acquiring a larger
database for testing. We are also exploring automatic
extraction of additional Level 3 feature types.
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