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Latent Fingerprint Matching

Anil K. Jain, Fellow, IEEE, and Jianjiang Feng, Member, IEEE

Abstract—Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent
fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and
rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger
area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint
matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement
databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge
wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background
database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline
rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the
relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent
experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in

improving the matching accuracy.

Index Terms—Fingerprint, minutiae, latent, descriptor, matching, forensics, extended features.

1 INTRODUCTION

UTOMATED Fingerprint Identification Systems (AFISs)

have played an important role in many forensics and
civilian applications. There are two main types of searches
in forensics AFIS: tenprint search and latent search [2]. In
tenprint search, the rolled or plain fingerprints of the
10 fingers of a subject are searched against the fingerprint
database of known persons. In latent search, a latent print
developed from a crime scene is searched against the
fingerprint database of known persons. It is the matching
between latents and rolled/plain fingerprints that is of the
utmost importance to apprehend suspects in forensics.
Fig. 1 shows fingerprint images of three categories, namely,
rolled, plain, and latent. Rolled fingerprint images are
obtained by rolling a finger from one side to the other
(“nail-to-nail”) in order to capture all of the ridge details of
a finger. Plain impressions are those in which the finger is
pressed down on a flat surface but not rolled. While plain
impressions cover a smaller area than rolled prints, they
typically do not have the distortion introduced during
rolling. Rolled and plain impressions are obtained either by
scanning the inked impression on paper or by using live
scan devices. Since rolled and plain fingerprints are
acquired in an attended mode, they are typically of good
quality and are rich in information content. In contrast,
latent fingerprints are lifted from surfaces of objects that are
inadvertently touched or handled by a person. This is
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achieved through a variety of means ranging from simply
photographing the print to more complex dusting or
chemical processing [3], [4].

Latent fingerprints obtained from crime scenes have
served as crucial evidence in forensic identification for more
than a century. While the wide deployment of AFIS in law
enforcement agencies has significantly improved the accu-
racy and throughput of fingerprint identification, manual
intervention is still necessary in latent feature extraction and
verification stages. The manual latent identification process
can be divided into four steps, namely, analysis, compar-
ison, evaluation, and verification. This process is commonly
referred to as the ACE-V procedure in latent fingerprint
literature [6].

1. Analysis refers to assessing the latent fingerprint to
determine whether sufficient ridge information is
present in the image to be processed and to mark the
features along with the associated quality informa-
tion. The latent print analysis is usually performed
manually by a human expert (without access to a
reference print).

2. Comparison refers to the stage where an examiner
compares a latent image to a reference print to
ascertain their similarity or dissimilarity. Fingerprint
features at all three levels (Level 1, Level 2, and
Level 3) are compared at this stage.

3. Evaluation refers to classifying the fingerprint pair
as individualization (identification or match), exclu-
sion (nonmatch), or inconclusive.

4. Verification is the process in which another exam-
iner independently reexaminations a fingerprint pair
in order to verify the results of the first examiner.

It is often argued that matching a latent fingerprint to a

rolled print is more of an “art” than “science” [7], [8]
because the matching is based on subjective appraisal of the
two fingerprints in question by a human examiner. More-
over, the decisions made by latent examiners are required to
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Fig. 1. Three types of fingerprint images: (a) rolled, (b) plain, and (c) latent fingerprints from the same finger in NIST SD27 [5].

be “crisp,” i.e., an examiner is expected to provide only one
of the three decisions, viz., individualization (identification
or match), exclusion (nonmatch), and inconclusive [3], [4].
This is different from DNA typing, which reports a random
match probability associated with the DNA evidence [9].

There are two types of errors a latent examiner can make:
erroneous exclusion and erroneous individualization. An
erroneous exclusion occurs when the mated fingerprint of
the latent print is in the candidate list reviewed by the latent
examiner, but the examiner fails to identify it. An erroneous
individualization occurs when a latent print is incorrectly
matched to the fingerprint of another subject by the latent
examiner. The consequence of erroneous exclusions is that
criminals may not be apprehended. On the other hand, the
consequence of erroneous individualizations is that wrong-
ful convictions of innocent people may occur. Erroneous
individualizations are generally deemed as serious mis-
takes, while erroneous exclusions are usually seen as less
critical. One of the most high-profile cases in which an
erroneous individualization was made involves Brandon
Mayfield, who was wrongly apprehended in the 2004
Madrid train bombing incident after a latent fingerprint
obtained from the bombing site was incorrectly matched
with his fingerprint in the FBI's IAFIS database [10]. Similar
cases have been brought to light by the Innocence Project
[11], [12]. These incidents and findings have undermined
the importance of latent fingerprints as forensic evidence.
This is evident from a recent ruling of a Baltimore court [13]
which excluded fingerprints as evidence in a murder trial
because the prosecutor was not able to justify the procedure
followed in latent fingerprint matching as being sufficiently
error free.

One of the causes for error is that latent examiners face a
huge backlog of cases and are usually under time pressure
to evaluate a fingerprint pair, particularly in high-profile
cases. Therefore, it is very important that the cases sent to a
latent examiner be carefully selected and prioritized so that
he/she can spend an adequate amount of time in matching

the fingerprint pairs. One way to achieve this goal is to
design an efficient and highly accurate automatic latent to
rolled print matching system that is able to provide a
quantitative estimate of the probability that two fingerprints
being compared belong to the same finger.

In order to deal with the throughput issue, the concept of
“Lights-Out Systems” for latent matching has been intro-
duced [14]. A Lights-Out System for fingerprint identifica-
tion is characterized by a fully automatic (no human
intervention) identification process. Such a system should
automatically extract features from query fingerprints
(latents) and match them with a gallery database (rolled,
plain, or even latent images) to obtain a set of possible
“hits” with high confidence so that no human intervention
is required. But, due to the limitations of the available
algorithms, only “Semi-Lights-Out Systems” are feasible,
especially for latent prints. In a Semi-Lights-Out System,
some human intervention is allowed during feature extrac-
tion from a latent, e.g., orienting the fingerprint, marking
the region of interest, etc. The system then outputs a short
list of candidates that need to be examined by a latent
examiner to determine if any of these fingerprint compar-
isons is a match.

Although tremendous progress has been made in im-
proving the speed and accuracy of AFIS, these systems work
extremely well only in scenarios where the matching is
performed between rolled or plain fingerprint images. The
results of the Fingerprint Vendor Technology Evaluation
(FpVTE) [15] showed that the most accurate commercial
fingerprint matchers achieved an impressive rank-1 identi-
fication rate of more than 99.4 percent on a database of 10,000
plain fingerprint images (see results of Medium Scale Test in
[15, page 56]). On the other hand, the NIST latent fingerprint
testing workshop reported that the rank-1 accuracy of an
automatic latent matcher can be as low as 54 percent on a
large database of more than 40 million subjects [14]. NIST is
conducting a multiphase project on Evaluation of Latent
Fingerprint Technologies (ELFTs) [16]. Phase-I results
showed that the best latent fingerprint matcher had an
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Fig. 2. Features in a latent fingerprint: (a) gray-scale image, (b) minutiae, (c) singular points (cores), (d) ridge quality map (darkness indicates high-
quality level), (e) ridge flow map, (f) ridge wavelength map, (g) skeletonized image, and (h) dots and incipient ridges.

identification accuracy of 80 percent in identifying 100 latent
images among a database of 10,000 rolled prints [17]. This
accuracy is significantly lower than the accuracy of rolled
print to rolled print matching on a similar size database.
Much higher accuracies were reported in ELFT Phase II [18],
organized shortly after Phase I. The rank-1 accuracy of the
most accurate system in Phase II was 97.2 percent in
matching 835 latents against a database of 100,000 rolled
prints. Unfortunately, the Phase II accuracy does not reflect
the performance in field applications since the latents used in
Phase II are of very good quality.

The difficulty in latent matching is mainly due to three
reasons: 1) poor quality of latent prints in terms of the
clarity of ridge information, 2) small finger area in latent
prints as compared to rolled prints, and 3) large nonlinear
distortion due to pressure variations. Fig. 1 shows a sample
latent image from the NIST SD27 along with its mated plain
and rolled prints. The ridge structure of the latent image is
obscured and there exists another latent print below it.
Further, while a typical rolled fingerprint has around
80 minutiae, a typical latent fingerprint may have only
15 usable (reasonable quality) minutiae.

To improve the accuracy of latent matching algorithms,
in addition to minutiae, additional features have to be used,
as is typically done by latent examiners in the ACE-V
procedure [6]. Fingerprint features are generally categor-
ized into three levels:

[a—

Level 1 features are the macrodetails of the fingerprint
such as ridge flow, singular points, and pattern type.

2. Level 2 features refer to ridge skeletons, ridge
bifurcations, and endings (namely, minutiae).
3. Level 3 features include ridge contours, sweat pores,

dots, and incipient ridges whose robust extraction
needs high-resolution images (> 1,000 ppi) com-
pared to the current FBI standard of 500 ppi.

Fingerprint features other than minutiae and singular points
are collectively referred to as extended features [19], as they
are not included in the current fingerprint standard [20]. See
Fig. 2 for various features in a latent fingerprint.

In this paper, we propose a latent-to-rolled/plain
matching algorithm which utilizes minutiae, reference
points (core, delta, and center point of reference), overall
image characteristics (ridge quality map, ridge flow map,
and ridge wavelength map), and skeleton (or skeletonized
image). These features are chosen due to their distinctive-
ness, repeatability, universality, and detectability in 500 ppi
fingerprint images. The features are manually marked for
latents, but they are automatically extracted for rolled prints
and the matching algorithm is also automatic. A rank-1
identification rate of 74 percent was obtained in matching
258 latent images in NIST SD27 [5] against a background
database of 29,257 rolled prints, which is composed of NIST
SD27 [5] (257 fingerprints after removing a duplicate
image), NIST SD4 [21] (2,000 file fingerprints), and NIST
SD14 [22] (27,000 file fingerprints).
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Another goal of this study is to understand the relative
importance of various extended features which will benefit
fingerprint standardization in forensic and governmental
applications. It is widely realized that template standardi-
zation is very important for the biometric industry.
Adoption of standard templates is especially important
for law enforcement applications since it is very common
for latent examiners to encode (extract features) latent prints
using their own AFIS, and then submit them to another
AFIS (by a different vendor) for matching. Improving AFIS
interoperability has been listed as one of the 13 recommen-
dations by the NAS Committee on Identifying the Needs of
the Forensic Science Community [23] to address the most
important issues now facing the forensic science commu-
nity. The ANSI/NIST fingerprint standard, which is mainly
based on minutiae, has been used by the FBI and many
other law enforcement agencies in the world. Although
AFIS vendors may use additional features in searching
latents encoded by their own AFIS [24], [25], only minutiae
are involved in searching latents encoded by AFIS from
different vendors. This leads to significant degradation in
matching accuracy and limits the interoperability between
different AFIS systems. This phenomenon has been ob-
served in the NIST Minutiae Interoperability Exchange Test
(MINEX) [26] and Proprietary Fingerprint Template (PFT)
Testing [27], where the standard minutiae template pro-
duces lower matching accuracy than the proprietary
templates. This suggests that current minutiae standards
should be extended to include additional features that can
be used to improve AFIS interoperability. In the 2005
ANSI/NIST fingerprint standard update workshop [28], the
Scientific Working Group on Friction Ridge Analysis,
Study, and Technology (SWGFAST) [29] recommended
that extended features be included in the FBI fingerprint
standard. This recommendation was endorsed by the
forensic community and initiated the establishment of an
ANSI/NIST committee, named the ANSI/NIST Committee
to Define an Extended Fingerprint Feature Set (CDEFFS), to
define an extended fingerprint feature set [19]. The current
CDEFFS document [30] includes several extended features
(e.g., ridge flow map, skeletonized image, ridge quality
map, virtual reference point, crease, dot, incipient ridge,
and pore). However, it may not be practical for latent
examiners to mark all of the available features in latents,
due to their heavy workload and backlog. It is also
impractical for fingerprint vendors to develop robust
algorithms for all of the extended features. Thus, it is
prudent to first examine the performance gain resulting
from various extended features in latent matching and
understand the relative importance of these extended
features. With this information, latent examiners may mark
only salient features and vendors can put more effort into
developing systems that use these features. Furthermore,
this will allow CDEFFS to make the definitions of salient
features more precise. To achieve this goal, various
extended features are incrementally used in our matching
algorithm and the performance gains are compared. The
order of adding extended features to the matching process
is based on their cost in manual marking and their
detectability in 500 ppi fingerprint images. For example,
ridge flow map is used ahead of ridge skeleton since the
former requires less effort during manual feature marking.

91

1.1 Related Work

It is a common practice to improve the capability of a
minutiae matcher by using Level 1 and Level 2 features.
These include singular points and pattern type [24], ridge
flow map (or orientation field) [24], [31], [32], [33], [34], [35],
ridge wavelength map (or frequency map) [31], [36],
skeleton [24], [25], [31], [37], [38], and crease [39]. We have
also utilized these Level 1 and Level 2 features for latent
fingerprint matching.

There is growing interest in using Level 3 features, such
as pores [35], [40], [41], ridge contours [35], [41], dots, and
incipient ridges [42], for fingerprint matching. It is claimed
that Level 3 features contain discriminating information
and can improve the performance of matching rolled/plain
to rolled /plain fingerprints. However, these conclusions are
not easy to extend to latent fingerprint matching because:

e Latent fingerprints are generally of poor quality.

e Since latent images need to be matched against
rolled/plain fingerprints, the repeatability or con-
sistency of Level 3 features is critical. Repeatability
of Level 3 features in images acquired with different
techniques is much lower than that in [35], [41], [42],
where the same sensor was used to capture both
template and query fingerprints. The survey per-
formed by Anthonioz et al. [43] among 70 latent
examiners shows that there is no clear consensus on
the repeatability of Level 3 features.

e Level 3 features such as pores and ridge edges are
correlated with skeleton and ridge flow map.
Therefore, it is not evident if the performance
improvement reported in [35], [41], [42] is due to
Level 3 features or Level 2 features that have been
implicitly used.

2 FEATURE EXTRACTION

2.1 Features

The proposed system utilizes the following features [30]:
reference points (singularity), overall image characteristics
(ridge quality map, ridge flow map, and ridge wavelength
map), minutiae, and skeleton. The effect of the secondary
features (dots, incipient ridges, and pores) has also been
examined. Since all of these features are defined in the
CDEFFS document [30], we use terms that are consistent
with these definitions. Note that not all the features and all
the properties for each feature defined in [30] have been
implemented in our system.

e Reference points have location, direction, and type
(see [30]).

e Ridge flow map, ridge wavelength map, and ridge
quality map are obtained by dividing the image into
nonoverlapping blocks of size 16 x 16 and assigning a
single orientation, wavelength, and quality value to
each block. We define three quality levels for a block:
level 0 (background), level 1 (clear ridge flow and
unreliable minutiae), and level 2 (clear minutiae).

e A minutia consists of five attributes, namely, « and
y coordinates, minutiae direction, type, and quality.
The quality of minutia is defined to have two levels:
0 (unreliable) and 1 (reliable).
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Fig. 3. Feature extraction in a rolled fingerprint. (a) Gray image. (b) Thinned image. (c) Ridges and minutiae (green: reliable minutiae, red: unreliable
minutiae). (d) Ridge flow map and ridge quality map (green: reliable blocks, red: unreliable blocks).

e  Askeletonisa one-pixel-wideridge, which is traced in
the thinned image and represented as a list of points.

e Secondary features (dots, incipient ridges, and
pores) are represented as a set of points.

2.2 Feature Extraction

While these features have been manually marked for
258 latents in SD27, the rolled fingerprints are automatically
processed to obtain all of the features, except for the
secondary features (dots, incipient ridges, and pores), which
are manually marked. The feature extraction algorithm
consists of two modules: preprocessing and postprocessing.
In this work, Neurotechnology Verifinger 4.2 SDK [44] was
used as a preprocessor. Due to the presence of background
noise (characters and strokes on many fingerprints scanned
from paper, such as the rolled prints in NIST SD4, SD14, and
SD27), Verifinger produces many false minutiae. Therefore, a
ridge validation algorithm is used to classify each ridge or
ridge segment as true or false and a minutiae validation
algorithm is used to classify each minutia as false, reliable, or
unreliable. Ridge flow and wavelength maps are generated
based on the validated ridges. Singular points are detected in
ridge flow map using the Poincaré index method [45]. An
example is given in Fig. 3 to show the results of these
processing steps. More implementation details are provided
in [1].

3 MATCHING

To understand the relative importance of various extended
features, they are incrementally used for matching and the
performance gains are examined. Starting with the baseline
matching algorithm, which uses only minutiae, additional
features (reference points, overall image characteristics, and
skeleton) are incrementally used. This order is roughly based
on the required time in manual feature marking. To match
various combinations of features, we have modified the
minutiae matching algorithm in [1]. The baseline matching
algorithm is not only a matcher for minutiae-only templates,
but also serves as a framework to match and fuse various
extended features. We provide a detailed description of the
baseline matcher and then describe the approaches to using
various extended features.

3.1 Baseline Matching Algorithm

The baseline matching algorithm takes only minutiae as
input and consists of the following steps:

1. Local minutiae matching: Similarity between each
minutia of latent fingerprint and each minutia of
rolled fingerprint is computed.

2. Global minutiae matching: Using each of the five
most similar minutia pairs found in Step 1 as an
initial minutia pair, a greedy matching algorithm is
used to find a set of matching minutia pairs.

3. Matching score computation: A matching score is
computed for each set of matching minutia pairs and
the maximum score is used as the matching score
between the latent and rolled prints.

3.1.1 Local Minutiae Matching

In this step, the similarity between each minutia of latent
fingerprint and each minutia of rolled fingerprint is com-
puted. Since the basic properties of a minutia, like location,
direction, and type, are not very distinctive features,
additional features, which are collectively referred to as a
descriptor, are computed for each minutia. Fig. 4 shows five
types of features that have been used as minutiae descriptors
in the literature [31], [46], [47]. In the baseline algorithm, a
neighboring minutiae-based descriptor is used since only
minutiae information is available.

The neighborhood of a minutia is defined to be a circular
region with an 80-pixel radius. All minutiae lying in this
neighborhood are called the neighboring minutiae. Let p
and ¢ be the two minutiae whose similarity needs to be
computed. For each neighboring minutia p; of p, we
examine tto see if there is a neighboring minutia of ¢ whose
location and direction are similar to those of p;. If such a
minutia exists, p; is deemed a matching minutia; otherwise,
p; is checked against the following two criteria: 1) The
minutia is unreliable and 2) it does not fall into the
foreground region (the convex hull of minutiae) when
mapped to the other fingerprint based on the alignment
parameters between p and q. If p; satisfies either one of these
two criteria, it will not be penalized; otherwise, it will be
penalized. The above process is also applied to the
neighboring minutiae of ¢. The similarity between two
neighboring minutiae-based descriptors is computed as

my, + 1 mg+1

= . 1
Sm my+u,+3 mg+u,+3° (1)

where m, and m, denote the number of neighboring
minutiae of p and ¢ that match, u, and u, denote the number
of penalized unmatched neighboring minutiae of p and ¢,
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Fig. 4. Minutia descriptors. (a) Local gray-scale image. (b) Neighboring minutiae. (c) Local ridge quality map. (d) Local ridge flow map. (e) Local ridge

wavelength map.

the value 1 in the numerator is used to deal with the case
where no neighboring minutiae are available and the value 3
in the denominator is empirically chosen to favor the case
where there are more neighboring minutiae that match.
Note that m, may be different from m, since we do not
establish a one-to-one correspondence between minutiae.

3.1.2 Global Minutiae Matching
Given the similarity among all minutia pairs, the one-to-one
correspondence between minutiae is established in the
global minutiae matching stage. Greedy strategy is used to
find matching minutia pairs in the decreasing order of
similarity. In order to give priority to those minutia pairs
that are not only similar to each other but also dissimilar
with other minutiae, a normalized similarity measure s, is
defined based on similarity s as

(NE+NE—1)-5(i, )

Zk:l s(i, k) + Zk:l s(k, j) — s(i,7)

where s(i, j) denotes the similarity between minutia ¢ and
minutia j and N2 and N% denote the number of minutiae in
the latent and rolled, respectively. All minutia pairs are
sorted in the decreasing order of normalized similarity, and
each of the top five minutia pairs is used to align the two
sets of minutiae. Minutiae are examined according to the
decreasing order of their similarity; minutiae that are close
in both location and direction and have not been matched to
other minutiae are deemed matching minutiae. After all of
the minutia pairs have been examined, a set of matching
minutiae is returned.

Sn(ia.j) = (2)

3.1.8 Matching Score Computation

The matching score between two fingerprints is a measure
that reflects the likelihood that they are from the same finger.
A desired property for matching scores is that the score for
fingerprints that have many matched minutiae and few
unmatched minutiae in the common area should be very
high, the score between fingerprints that appear obviously
different should be very low, and the score between
fingerprints that share a small common area or whose
common areas are of poor quality should be in the middle.
Computing matching scores or simply scoring is typi-
cally approached in two ways: formula-based and classifier-
based. In the formula-based approach [32], [48], an
empirically chosen formula is used to compute matching
scores. In the classifier-based approach [31], [49], scoring is
regarded as a two-category classification problem. A pair of

fingerprints is classified by a traditional classifier, such as
Artificial Neural Network (ANN) or Support Vector
Machine (SVM), as a genuine match or an impostor match
based on a feature vector extracted from matching these
two fingerprints. A major problem with classifier-based
approach is that the training targets of all genuine matches
are the same, say 1, no matter how many minutiae are
matched. Similarly, the training targets of all impostor
matches are also the same, say 0, no matter how many
minutiae in the common area are unmatched. This dis-
satisfies the desired property for matching scores. It is also
not practical to use a classifier-based scoring approach in
latent matching since obtaining manually marked latents is
very difficult. For the above two reasons, we adopted a
formula-based scoring approach in this paper.

Our scoring method is described as follows: When fewer
than three minutiae are matched, the matching score Sy, is
set as 0; otherwise, Sy is the product of a quantitative
score Sy, and a qualitative score S,,,:

SAM - S’mn . qu~ (3)

The quantitative score S, is computed as M,,/(M,, +8),
where M,,, denotes the number of matched minutiae and the
value 8 is an estimate of the average number of matching
minutiae for low-quality latents. The qualitative score is
computed as

MT!L . M'ﬂ?
M, +UL M, +UE’

Spg = Sa - (4)
where S; is the average similarity of descriptors for all
matching minutiae, and U and UZ denote the number of
penalized unmatched minutiae (defined in Section 3.1.1) in
latent and rolled prints, respectively.

3.2 Additional Features

3.2.1 Reference Points

Using the spatial transformation between the two images,
which is estimated based on the matched minutiae, the
reference points (if present) of the latent are transformed into
the coordinate system of the rolled print. The distance and
angle difference between reference points of the same type
are computed and compared to predefined thresholds (30 for
distance and 7/4 for angle). If both values are less than their
respective thresholds, the reference points are deemed
matched. The accumulated matching score is computed as

Sp=Su+0C,-S,, (5)
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where S, denotes the matching score based on reference
points, namely, the number of matched reference points,
and C, is a constant value empirically set as 0.03.

3.2.2 Ridge Quality Map

Ridge quality map is used in local minutiae matching and
matching score computation stages to ignore the un-
matched minutiae of one fingerprint that are mapped to
the low-quality region (quality level 0 or 1) of the other
fingerprint. As will be shown in Section 4, this modification
significantly improves the matching accuracy. The accu-
mulated matching score Sy is computed by (3) and (5).

3.2.3 Ridge Flow Map

Ridge flow map is used in two stages: local minutiae
matching and matching score computation.

For every minutia, a local coordinate system is defined
with the minutia as the origin and its direction as the
positive z-axis. A set of fixed sample points is defined [32]
and the local ridge flow at these sample points form the flow
descriptor. The similarity of two descriptors is computed as
the mean value of the similarity of all valid sample points (a
sample point falling in the background region is deemed as
invalid). The similarity between the flow at two sample
points is computed as sy = exp(—|Ad|/(7/16)), where A6
denotes the angle between the two flows. If the number of
common valid sample points is less than 25 percent of the
total number of sample points, the similarity of two
minutiae is set to 0. The similarity between two minutiae
is computed as the weighted sum of the neighboring
minutiae-based similarity and flow-based similarity:

S:U]m'*snz+(1_U)nL)'sf7 (6)

where the weight w,, for the neighboring minutiae-based
descriptor is empirically set as 0.6 due to its superior
performance compared to flow-based descriptor.

The ridge flow maps of latent and rolled prints are
aligned using the spatial transformation estimated based on
the matched minutia pairs. The matching score Sy based on
ridge flow is the product of a quantitative score Sy, and a
qualitative score Sy,. The quantitative score S, is computed
as N,/(N, + 100), where N, is the number of blocks where
the difference in flow is less than 7/8 and the value 100 is an
estimate of the average number of 16 x 16 blocks in low-
quality latents. The qualitative score Sy, is computed as
(1-2-Dy/m), where Dy is the mean of the difference of
flow values in all overlapping blocks.

The accumulated matching score Srp between two
fingerprints is computed as

Sp=8u+C-S.+C;- Sy, (7)
where the constant C; is empirically set as 0.2.

3.2.4 Ridge Wavelength Map

Ridge wavelength map is used in two stages: local minutiae
matching and matching score computation.

A wavelength-based minutia descriptor is composed of
the ridge wavelength at the same set of sample points as
ridge-flow-based descriptor. The similarity between the
wavelengths of two sample points is computed as s, =
exp(—|Aw|/3), where Aw denotes the wavelength differ-
ence at two sample points. The similarity between two
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minutiae is computed as the weighted sum of the
neighboring minutiae-based similarity, flow-based similar-
ity, and wavelength-based similarity:

§ = Wy * Sy, + wyg-Sf + (1 - Wm — wf) * Sw, (8)

where the weights w,, and w; for the neighboring minutiae-
based and flow-based descriptors are empirically set as 0.6
and 0.2, respectively.

The ridge wavelength maps of latent and rolled prints are
aligned using the spatial transformation estimated based on
the matched minutia pairs. The matching score S,, based on
wavelength is the product of a quantitative score S,,, and a
qualitative score S,,,. The quantitative score S,,, is computed
as N/ (Ny + 100), where N, is the number of blocks where the
difference in wavelength is less than 3 pixels and the value
100 is an estimate of the average number of 16 x 16 blocks
in low-quality latents. The qualitative score S,,, is computed
as the average similarity of wavelength in all overlapping
blocks.

The accumulated matching score Sy between two
fingerprints is computed as

SW' =Su+C,- Sr + Cf : Sf + Ow : Suw (9)
where the constant C,, is empirically set as 0.2.

3.2.5 Skeleton

Minutiae can be deemed an abstract representation of ridge
skeleton. However, the skeleton image contains more
information than minutiae. The skeleton matching algo-
rithm is similar in spirit to the “ridges in sequence” idea
recommended by SWGFAST [50]. Hara and Toyama [25]
describe an interesting skeleton matching algorithm which
consists of the following steps:

1. selectthe mostreliable minutiae pair from all matched
minutiae pairs as the base-paired minutiae (BPM);

2. removeminutiae pairs that are inconsistent with BPM;

3. modify the two skeleton images to make them more
similar; and

4. incrementally match skeleton points guided by the
matched minutiae or skeleton points.

While their approach needs at least three pairs of
correctly matched minutiae to guide the skeleton matching
process, our approach needs only a pair of correctly
matched minutiae as starting point, which is useful in
matching latent prints with very small area.

The proposed skeleton matching algorithm is an im-
proved version of the algorithm in [37]. Its main steps are
briefly described as follows:

1. Similarity between minutiae of two fingerprints is
computed.

2. For each of the five most similar minutiae pairs,
steps 3-5 are performed to establish correspondence
between skeletons of two fingerprints and compute
a matching score. The maximum value of these
scores is used as the skeleton matching score.

3. The associated skeletons of the initial minutiae pair
are assumed to be matched and used as a reference.

4. Skeletons adjacent to reference skeleton pair are
aligned according to reference skeleton pair and



JAIN AND FENG: LATENT FINGERPRINT MATCHING

then matched. Newly matched skeletons used a new
reference. This step is iteratively performed until no
more skeletons can be matched.

5. A skeleton matching score is computed.

The differences from the algorithm in [37] lie in
computation of minutiae similarity and skeleton matching
score. The similarity between minutiae is now computed
using the composite minutiae descriptor based on neigh-
boring minutiae, ridge flow, and wavelength features. The
similarity computation is described in previous sections.
This composite descriptor is more robust to noise than the
ridge-structure-based descriptor used in [37]. The skeleton
matching score is computed as the product of a quantitative
score Sy, and a qualitative score Sy

Sy = Sen - Seq- (10)
The quantitative score S, is computed as
M
sn — - ; 11
S M, + 400 (11)

where M, denotes the number of matched skeleton points
and the value 400 is an estimate of the average number of
skeleton sample points in low-quality latents. The qualita-
tive score is computed as

M; M
M,+ UL M+UF’

Suy = (12)
where UL and UF denote the number of unmatched
skeleton sample points of latent and rolled prints in their
common region, respectively.

The accumulated matching score Sg is obtained by
combining S, and Sy computed in (9):

Sg = Sw + C; - S, (13)

where the constant C; is empirically set as 1. For efficiency,
skeleton matching is performed only for the top 100 candi-
dates found by the minutiae matcher.

4 EXPERIMENTAL RESULTS

4.1 Database

To evaluate the latent fingerprint matching algorithm,
258 latent fingerprints in NIST SD27, which also contains
their mated rolled prints, were matched against a large
background database of rolled prints. This is the only public
domain database available containing mated latent and
rolled prints. Since there are only 257 (excluding one
duplicate image) rolled fingerprints in SD27, to make the
latent-to-rolled matching problem more realistic, we expand
the background database by adding fingerprints from the
NIST SD4 and SD14 databases. There are 2,000 different
fingers and two rolled impressions per finger in SD4, and
27,000 fingers and two rolled impressions per finger in SD14.
These fingerprints were also scanned from paper and have
similar characteristics to the rolled prints in SD27. The
29,000 file fingerprints in SD4 and SD14 are combined with
the 257 rolled images in SD27 to form a background database
containing 29,257 rolled prints. We search the 258 latents
against this background database of 29,257 rolled prints. All
these fingerprint images are scanned at 500 ppi.
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Fig. 5. CMC curve of the proposed algorithm in matching 258 latents
against a background database of 29,257 rolled prints.

4.2 Matching Accuracy

The Cumulative Match Characteristic (CMC) curve of the
proposed algorithm in searching all 258 latents against the
background database of 29,257 rolled prints is shown in Fig. 5.
A CMC curve plots the rank-k identification rate against k, for
k=1,2,...,20. The rank-k identification rate indicates the
proportion of times the mated fingerprint occurs in the top
k matches. A rank-1 identification rate of 74.0 percent and a
rank-20 identification rate of 82.9 percent were achieved.
Note that no systematic procedure has been used to select the
best parameters in matching score computation due to a lack
of a large number of latents. The matching accuracy can be
further improved by fusing the matching results of latent-to-
rolled and latent-to-plain, as shown in [51]. To our knowl-
edge, only ELFT Phase I [17] has reported matching
performance using latents in SD27. ELFT Phase I tested fully
automated latent search technology by searching 100 latents
against a background database of 10,000 rolled prints. Out of
100 latents, only 50 are from SD27, and the quality of these
selected latents is unknown. As shown in Fig. 6a, the
accuracies for different quality latents are significantly
different. Thus, the results of ELFT Phase I and our results
cannot be compared directly.

4.3 Latent Quality

Fingerprint quality has a significant impact on matching
accuracy of fingerprint matchers. The number of minutiae is
the most important indicator of fingerprint quality [49], [52].
We conducted an experiment to examine the impact of
subjective quality and the number of minutiae on matching
accuracy, respectively.

The 258 latent prints in SD27 were subjectively classified
by latent examiners into three quality levels, namely: Good,
Bad, and Ugly. There are 88 Good, 85 Bad, and 85 Ugly
latent prints in SD27. Fig. 6a shows the CMC curves of the
proposed algorithm separately for Good, Bad, and Ugly
quality latent prints. As expected, the matching perfor-
mance for Good quality latents is significantly better than
those for the latents belonging to the other two quality
groups. Three examples of successful identification (one
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Fig. 6. CMC curves for different types of latents. (a) Three types of latents according to subjective quality: Good (88), Bad (85), and Ugly (85).
(b) Three types of latents according to the number of minutiae: Large (86), Medium (85), and Small (87).

from each quality group) are shown in Fig. 7. In all three of
these cases, the mated rolled print was found at rank 1. It
should be noted that although there are only four matching
minutiae in the Ugly latent (Fig. 7), our algorithm still
identified it correctly at rank 1.

Based on the distribution of the number n of minutiae in
latents in SD27, these latents are classified into three types:
Large (n > 21), Medium (13 < n < 22), and Small (n < 13).
There are 86 Large, 85 Medium, and 87 Small latents in SD27.
Fig. 6b shows the CMC curves of the proposed algorithm
separately for these three types of latent prints. The curves in
Fig. 6b are quite consistent with those in Fig. 6a. This indicates
that the number of minutiae has similar capability as
subjective quality in predicting latent matching performance.

Although the quality of latent prints is a good indicator
of matching performance, the identification result of a given
latent print depends on both the latent and its mated rolled
print. If a large number of spurious minutiae are detected in
the overlapping region of latent and rolled prints, the
matching algorithm will fail, as shown in Fig. 8.

4.4 Importance of Extended Features

Fig. 9a plots the rank-1 identification rates for all 258 latents
when extended features are incrementally used. The largest
accuracy improvement is due to singularity feature; ridge
quality map and ridge flow map also significantly improve
the matching accuracy. Fig. 9b shows the rank-1 identification
rates separately for each quality level when extended features
are incrementally used. It can be observed that Ugly quality
latents benefit the most from the use of extended features.
Fig. 10 shows the matched minutiae and skeletons between a
latent and its mated rolled print. In this example, with the
incremental use of extended features, the rank of the mated
rolled print is 206 (minutiae), 114 (singularity), 5 (quality), 2
(flow), 2 (wavelength), and 1 (skeleton), respectively.

4.5 Secondary Features (Level 3 Features)

To evaluate the potential effect of secondary features on
matching accuracy, we conducted the following experiment.
A latent expert was asked to manually mark the pores, dots,

and incipients in all the 258 latents and the mated rolled
prints in SD27. The histograms of these secondary features
are shown in Fig. 11. The dots and incipients are marked by
the latent expert as line segments. We divide the length by
the average ridge wavelength (10 pixels) to represent the
number of dots/incipients. To evaluate the repeatability of
these features in both latents and rolled prints, we align
mated fingerprints using the ground-truth mated minutiae
provided by NIST and count the number of mated features (a
pair of feature points is deemed as mated if their distance is
less than 16 pixels). The histograms of mated secondary
features in 258 pairs of fingerprints are shown in Fig. 11. It
can be observed that: 1) only 15 latents have more than
20 pores and only four latents have more than 20 mated
pores; 2) only five latents have more than five dots/
incipients and only two latents have more than five mated
dots/incipients. In the case of automatic feature extraction,
the repeatability of these features will be even lower. The
utility of secondary features, at least for this database, is
further diminished if we consider the following facts: 1) They
are highly correlated with skeleton, which has already been
used in our matching algorithm; 2) they tend to appear more
in good quality latents, which can be easily identified by the
minutiae matcher. For instance, the latent in Fig. 2 and its
mated rolled print have the maximum number (20) of mated
dots/incipients in SD27. However, its mated rolled print has
already been correctly identified at rank 1 by the minutiae
matching algorithm. Taking all of these observations into
account, we can conclude that using secondary features will
not lead to obvious improvement in the matching accuracy at
least in the NIST SD27 database. This conclusion also holds
even if these fingerprints are scanned at 1,000 ppi, since the
histograms in Fig. 11 are based on the ground-truth features
marked by a latent expert who can reliably detect secondary
features at 500 ppi.

4.6 Speed

The experiments were conducted on a PC with Intel Core2
Duo CPU and Windows XP operating system. The automatic
feature extraction takes 580 ms for a rolled print in NIST SD4



JAIN AND FENG: LATENT FINGERPRINT MATCHING

97

Fig. 7. Examples of successful matchings. Three latents (classified as (a) good, (d) bad, and (g) ugly by latent examiners), the corresponding regions
in the mated rolled prints ((b), (e), and (h)), and the mated rolled prints ((c), (f), and (i)). In all three of these cases, our algorithm found the true mate

at rank 1.

and 735 ms for a print in NIST SD27 and SD14. It takes around
8 minutes to match a latent against all the 29,257 rolled prints.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a system for matching latent fingerprints
with rolled fingerprints. The matching module consists of
minutiae matching, orientation field matching, and skeleton
matching. To test the proposed system, 258 latent fingerprints
in NIST SD27 were matched against a background database
consisting of 29,257 rolled fingerprints from three different
NIST databases. The rank-1 identification rate of 34.9 percent
of the baseline minutiae matcher was improved to 74 percent

when singularity, ridge quality map, ridge flow map, ridge
wavelength map, and skeleton were incrementally used. The
importance of various extended features has also been
studied and the experimental results indicate that singular-
ity, ridge quality map, and ridge flow map are the most
effective features in improving the matching accuracy.

The proposed latent matching algorithm is still inferior to
the performance of experienced latent examiners, which may
be caused by three major differences between the methodol-
ogies used by latent experts and automatic matchers.

e Approaches used in matching ridge skeleton and
minutiae (or Level 2 features) are different. Latent
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Fig. 8. Example of an incorrect match. For the latent shown in (a), the
mated rolled print shown in (b) was ranked 200 by our algorithm. Many
spurious minutiae are detected in the rolled print.

examiners employ a “ridges in sequence” method
[50] in the matching process, which is robust to noise
and distortion. While the proposed skeleton match-
ing algorithm tries to mimic such a method, it is not
robust in the presence of large amounts of noise and
distortion. The minutiae matching algorithm is also
prone to spurious minutiae and distortion.

e The approach used to match the detailed ridge
features (or Level 3 features) is different. When
latent examiners compare the detailed ridge features
in fingerprints, there is no explicit separation
between feature extraction and matching stages.
The separation of feature extraction and matching in
automatic systems leads to some information loss. In
addition, the automatic feature extractor may not be
able to extract Level 3 features from rolled prints that
are always compatible with the features marked by
latent examiners.

e The approach to utilizing negative evidence is
different. Latent examiners can determine a pair of
fingerprints as unmatched based on a single
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Fig. 10. The matching result of a pair of mated fingerprints. (a) Minutiae
matching. (b) Skeleton matching.

unmatched minutia which is located in the good
quality region of the two fingerprints. This is a risky
proposition for fingerprint algorithms.

We plan to improve the latent matching accuracy by
reducing these differences.

Manual feature markings for poor quality latent
fingerprints is a time-consuming and tedious task. Con-
sidering that latent examiners often have to process many
latents within a limited time period, significant attention
should be paid to the automatic latent feature extraction
problem. Given the performance gap between automatic
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Fig. 9. Plot of rank-1 identification rates versus features. (a) All 258 latents. (b) Good, Bad, and Ugly quality latent prints.
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Fig. 11. Histograms of the ground-truth secondary features in NIST SD27. (a) Pores and mated pores. (b) Dots/incipients and mated dots/incipients.

and semi-automatic latent matching systems, human
intervention is likely to be necessary for some time. One
way to reduce manual processing is to define a latent
fingerprint quality measure which is continuously updated
when latent examiners are marking features. Once the
quality measure reaches a predefined threshold, the latent
examiners are notified that the image quality is already
good enough to perform a latent search.
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