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Another important use of friction ridges is person iden-
tification. The pattern of friction ridges on each finger 
is unique and immutable, enabling its use as a mark of 
identity. In fact, even identical twins can be differentiated 
based on their fingerprints. Superficial injuries such as 
cuts and bruises on the finger surface alter the pattern in 
the damaged region only temporarily; the ridge structure 
reappears after the injury heals. 

Henry Faulds, Francis Galton, and Edward Henry, 
among others, established the scientific basis for using 
fingerprints as a method for person identification in the 
late 19th century. Since then, law enforcement agencies 
worldwide have employed fingerprint recognition for two 
main purposes: 

•	 establish the identity of a suspect (or victim) based 
on partial prints, or latents, left at a crime scene; 
and 

•	 identify repeat offenders based on prints of all of 
their fingers (using 10 prints improves matching 
accuracy).

T
he skin on our palms and soles exhibits a 
flow-like pattern of ridges and valleys. These 
papillary ridges on the finger, called fric-
tion ridges, help the hand to grasp objects by 
increasing friction and improving the tactile 

sensing of surface textures. The “Friction Ridge Pat-
terns” sidebar describes the nature and origin of these 
characteristics.

Fingerprint matching has been successful-
ly used by law enforcement for more than 
a century. The technology is now finding 
many other applications such as identity 
management and access control. The au-
thors describe an automated fingerprint 
recognition system and identify key chal-
lenges and research opportunities in the 
field. 
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criminals, and immigration violators by comparing a 
visa applicant’s fingerprints with those in watch-list 
databases and also verifies that a visitor at a port of 
entry is the same person to whom the visa was issued. 

The growing list of commercial and government ap-
plications for fingerprint recognition, coupled with the 
advent of compact and inexpensive sensors and powerful 
processors, have increased demand for fully automated, 
highly accurate, real-time systems. Developing these 
next-generation systems presents both challenges and 
opportunities. 

One of the world’s largest fingerprint recognition 
systems is the Integrated Automated Fingerprint Iden-
tification System, maintained by the FBI in the US since 
1999. The IAFIS currently contains fingerprints of more 
than 60 million persons, with corresponding demo-
graphic information, providing both latent-print search 
for crime scene investigation and 10-print ID for sus-
pect identification and general-population background 
checks. In 2008, the FBI began updating the IAFIS to 
the Next Generation Identification (NGI) system, which 
will support other biometric traits such as palmprint, 
iris, and face.

Due to rising concerns about security and fraud, govern-
ment1 and commercial organizations have substantially 
increased their own deployment of fingerprint-based 
recognition systems in several nonforensic applications, 
including physical and logical access control, ATM trans-
actions, border control, and consumer device access. The 
fingerprint is the dominant biometric trait in these applica-
tions compared to other common traits such as face, iris, 
and voice, and new emerging traits, including gait, ear, 
and palm-vein.2 

The main reasons for the popularity of fingerprint rec-
ognition are

•	 its success in various applications in the forensic, gov-
ernment, and civilian domains;

•	 the fact that criminals often leave their fingerprints 
at crime scenes;

•	 the existence of large legacy databases; and
•	 the availability of compact and relatively inexpensive 

fingerprint readers. 

A fingerprint recognition system can be used for 
both verification and identification. In verification, the 
system compares an input fingerprint to the “enrolled” 
fingerprint of a specific user to determine if they are 
from the same finger (1:1 match). In identification, the 
system compares an input fingerprint with the prints 
of all enrolled users in the database to determine if the 
person is already known under a duplicate or false iden-
tity (1:N match). Detecting multiple enrollments, in which 
the same person obtains multiple credentials such as a 
passport under different names, requires the negative 
identification functionality of fingerprints.

The US Department of Homeland Security’s US-VISIT 
program (www.dhs.gov/usvisit) provides visa-issuing 
posts and ports of entry with fingerprint recognition 
technology that enables the federal government to 
establish and verify the identity of those visiting the 
US. This large-scale automated fingerprint recognition 
system has processed more than 100 million visitors 
to the US since 2004. The system identifies terrorists, 

V olar skin—derived from vola, an ancient Roman term for the 
palm of the hand and the sole of the foot—is different from the 

skin covering other parts of the body. Continuously corrugated 
with narrow ridges, it contains no hairs or oil glands.1 Volar skin is 
not unique to humans; all primates have this regular pattern of 
interweaving ridges and valleys on their palms and soles. Because 
friction ridges appear on the epidermis layer of the skin, they are 
also called epidermal ridges. In fact, the inner layer of the epidermis 
also has a ridge pattern similar to the surface layer.

Embryology research has shown that the process of friction 
ridge pattern formation is preceded by the formation of volar 
pads at about the sixth week of fetus development. Friction 
ridges appear in about the fourth month of gestation as a result 
of the stresses during growth of the fetus; the ridges are not ele-
vated on the skin until about the 18th week. Minutiae are formed 
as ridges separate and create space for forming new ridges due to 
the growth of the finger surface. 

Figure A. Major fingerprint pattern types: (a) arch, (b) loop, and 
(c) whorl. 

The overall pattern of the fingerprint is governed by the 
shape, size, and placement of volar pads.2 Higher and symmetric 
volar pads tend to generate whorls, flatter and symmetric volar 
pads tend to generate arches, and asymmetric volar pads tend to 
generate loops as Figure A shows. Identification of the pattern 
type can facilitate faster search in large-scale fingerprint-recog-
nition applications. 

It is generally understood that friction ridge patterns are influ-
enced not just by genetic factors but also by random physical 
stresses and tensions during fetal development. These random 
effects in the formation of fingerprints provide their uniqueness.
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ridges end abruptly or where a ridge branches into 
two or more ridges. A typical good-quality finger-
print image contains about 20-70 minutiae points; the 
actual number depends on the size of the sensor sur-
face and how the user places his or her finger on the 
sensor. The system stores the minutiae information— 
location and direction—along with the user’s demo-
graphic information as a template in the enrollment 
database.

During the identification phase, the user touches the 
same sensor, generating a new fingerprint image called a 
query print. Minutia points are extracted from the query 
print, and the matcher module compares the query minu-
tia set with the stored minutia templates in the enrollment 
database to find the number of common minutia points. 
Due to variations in finger placement and pressure ap-
plied on the sensor, the minutia points extracted from the 
template and query fingerprints must be aligned, or reg-
istered, before matching. After aligning the fingerprints, 
the matcher determines the number of pairs of matching 
minutiae—two minutia points that have similar location 
and directions. The system determines the user’s identity 
by comparing the match score to a threshold set by the 
administrator. 

Sensing
Fingerprints can be sensed using numerous 

technologies. 
The traditional “ink and paper” method, still used 

by many law enforcement agencies, involves applying 
ink to the finger surface, rolling the finger from one 
side of the nail to the other on a card, and finally scan-
ning the card to generate a digital image. 

In the more popular live-scan method, a digital image 
is directly obtained by placing the finger on the surface 
of a fingerprint reader as shown in Figure 2. Optical 
sensors based on the frustrated total internal reflection 
(FTIR) technique are commonly used to capture live-scan 
fingerprints in forensic and government applications, 
while solid-state touch and sweep sensors—silicon-based 

AUTOMATED FINGERPRINT RECOGNITION
Figure 1 outlines a typical automated fingerprint rec-

ognition system. 
During the enrollment phase, the sensor scans the 

user’s fingerprint and converts it into a digital image. 
The minutiae extractor processes the fingerprint 
image to identify specific details known as minu-
tia points that are used to distinguish different users. 
Minutia points represent locations where friction 

Figure 2. Fingerprint readers: Cross Match (www.crossmatch.com) optical (a) 10-print and (b) single-print scanners; AuthenTec 
(www.authentec.com) solid-state (c) touch and (d) sweep sensors embedded in Privaris plusID (www.privaris.com) devices.

Sensor

Matcher

User identity

Minutiae
extractor

Enrollment
database

Figure 1. A typical automated fingerprint recognition system. 
The system determines the user’s identity by comparing the 
match score to a threshold.

(a) (b) (c) (d)
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Based on these values, it then performs contextual filtering 
to improve the image quality and facilitate ridge extraction. 
The algorithm then obtains binary ridge skeletons from the 
enhanced image by tracing the ridge lines. Ridge endings 
and bifurcation points are obtained from the ridge skeleton 
and referred to as minutiae. The algorithm employs some 
heuristic rules to detect and remove spurious minutiae 
resulting from an imperfect skeleton image.

Matching
A fingerprint matching module computes a match 

score between two fingerprints, which should be high 
for fingerprints from the same finger and low for those 
from different fingers. Fingerprint matching is a difficult 
pattern-recognition problem due to large intraclass varia-
tions (variations in fingerprint images of the same finger) 
and large interclass similarity (similarity between finger-
print images from different fingers). Intraclass variations 
are caused by finger pressure and placement—rotation, 
translation, and contact area—with respect to the sensor 
and condition of the finger such as skin dryness and cuts. 
Meanwhile, interclass similarity can be large because there 
are only three types of major fingerprint patterns (arch, 
loop, and whorl). 

Most fingerprint-matching algorithms adopt one of four 
approaches: image correlation, phase matching, skeleton 
matching, and minutiae matching. Minutiae-based repre-
sentation is commonly used, primarily because

•	 forensic examiners have successfully relied on mi-
nutiae to match fingerprints for more than a century, 

•	 minutiae-based representation is storage efficient, and 

devices that measure the differences in 
physical properties such as capacitance 
or conductance of the friction ridges 
and valleys—dominate in commercial 
applications. 

Latent fingerprint impressions left at 
crime scenes require manual “lifting” 
techniques like dusting.3

The most significant characteristics of 
fingerprint readers are their resolution 
and capture area. The standard fingerprint 
image resolution in law enforcement ap-
plications is 500 pixels per inch (ppi), but 
some readers now have dual-resolution ca-
pability (500 and 1,000 ppi). The sensing 
surface of readers used by law enforcement 
tends to be large so that they can capture 
palmprints and all four fingers simulta-
neously—such sensors are referred to as 
10-print scanners. 

Low-resolution and small-area readers 
are preferred in commercial applications 
so that they can be easily embedded in consumer de-
vices. Sweep sensors are popular in mobile phones, 
PDAs, and laptops because of their small size (for exam-
ple, 14 mm × 5 mm) and low cost (under $5). However, 
such sensors require users to sweep their finger across 
the sensing surface; the reader fuses overlapping image 
slices obtained during sweeping to form a full finger-
print. Fingerprint sensors embedded in mobile phones 
or PDAs are also used to support navigation and hot-
key functions, with each finger assigned to a specific 
functionality.

Feature extraction
Features extracted from a fingerprint image are gener-

ally categorized into three levels, as shown in Figure 3a. 
Level 1 features capture macrodetails such as friction ridge 
flow, pattern type, and singular points. Level 2 features 
refer to minutiae such as ridge bifurcations and endings. 
Level 3 features include all dimensional attributes of the 
ridge such as ridge path deviation, width, shape, pores, 
edge contour, and other details, including incipient ridges, 
creases, and scars. 

Level 1 features can be used to categorize fingerprints 
into major pattern types such as arch, loop, or whorl; level 
2 and level 3 features can be used to establish a finger-
print’s individuality or uniqueness. Higher-level features 
can usually be extracted only if the fingerprint image 
resolution is high. For example, level 3 feature extraction 
requires images with more than 500-ppi resolution.

Figure 3b shows the flow chart of a typical minutiae 
feature extraction algorithm. First, the algorithm estimates 
the friction ridge orientation and frequency from the image. 

Grayscale image
(b)

(a)

Orientation �eld Binary image Minutiae

Figure 3. Feature extraction. (a) Feature levels in a fingerprint. Note that the 
second and third images are magnified versions of the fingerprint regions 
indicated by green boxes in the corresponding preceding images. (b) Flow 
chart of a typical minutiae feature extraction algorithm.
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same finger as a match. A system’s false 
match rate (FMR) and false nonmatch 
rate (FNMR) depend on the operating 
threshold; a large threshold score leads 
to a small FMR at the expense of a high 
FNMR. For a given fingerprint match-
ing system, it is impossible to reduce 
both these errors simultaneously. 

Fingerprint identification system 
performance is measured in terms 
of its false positive identification 
rate (FPIR) and false negative identi-
fication rate (FNIR). A false positive 
ident i f icat ion occurs when the 
system finds a hit for a query fin-
gerprint that is not enrolled in the 
system. A false negative identifica-
tion occurs when it finds no hit or 
a wrong hit for a query fingerprint 
enrolled in the system. The relation-
ship between these rates is defined by  
FPIR = 1 - (1 - FMR)N, where N is 
the number of users enrolled in the 
system. Hence, as the number of en-
rolled users grows, the fingerprint 
matcher’s FMR needs to be extremely 
low for the identification system to be 

effective. For example, if an FPIR of 1 percent is required 
in a fingerprint identification system with 100 million 
enrolled users, the FMR of the corresponding fingerprint 
matcher must be on the order of 1 in 10 billion. Such 
a stringent FMR requirement can usually be met only 
when fingerprints from all 10 fingers of a person are 
used for identification. This explains the need to continu-
ously decrease the error rates of fingerprint matchers 
employed in large-scale identification systems.

The National Institute of Standards and Technology 
(NIST) has conducted several fingerprint technology evalu-
ations (http://fingerprint.nist.gov), such as the Fingerprint 
Vendor Technology Evaluation (FpVTE), the Minutiae 
Interoperability Exchange Test (MINEX), Proprietary 
Fingerprint Template (PFT) testing, and the Evaluation 
of Latent Fingerprint Technologies (ELFT), which use 
operational data collected in forensic and government 
applications. The University of Bologna conducts FVC-
onGoing (https://biolab.csr.unibo.it/fvcongoing/UI/Form/
Home.aspx), which is an evolution of the international 
Fingerprint Verification Competitions (FVCs) organized 
between 2000 and 2006.

Table 1 summarizes FpVTE 2003 Medium-Scale Test 
(MST), FVC2006, and ELFT 2008 (Phase II) results. Clearly, 
system performance varies widely depending on finger-
print data characteristics used in the evaluation. However, 
while these evaluations are useful, the performance of 

•	 expert testimony about suspect identity based on 
mated minutiae is admissible in courts of law. 

The current trend in minutiae matching is to use local 
minutiae structures to quickly find a coarse alignment 
between two fingerprints and then consolidate the local 
matching results at a global level. This kind of matching al-
gorithm4 typically consists of four steps, as Figure 4 shows. 
First, the algorithm computes pairwise similarity between 
minutiae of two fingerprints by comparing minutiae de-
scriptors that are invariant to rotation and translation. 
Next, it aligns two fingerprints according to the most  
similar minutiae pair. The algorithm then establishes 
minutiae correspondence—minutiae that are close 
enough both in location and direction are deemed to be 
corresponding (mated) minutiae. Finally, the algorithm 
computes a similarity score to reflect the degree of match 
between two fingerprints based on factors such as the 
number of matching minutiae, the percentage of matching 
minutiae in the overlapping area of two fingerprints, and 
the consistency of ridge count between matching minutiae.

Performance
A fingerprint matcher can make two types of errors: 

a false match, in which the matcher declares a match 
between images from two different fingers, and a false 
nonmatch, in which it does not identify images from the 

2 1 3 11

Pairwise similarity Alignment

Score

Correspondence

Figure 4. Typical minutiae-matching algorithm. The algorithm first uses local 
minutiae descriptors to coarsely align two fingerprints and then computes a 
global match score based on minutiae correspondences. 

Table 1. Sample accuracy results from three fingerprint technology evaluations. 

Evaluation Data Best reported accuracy

NIST FpVTE 2003 (MST) 10,000 plain fingerprints FNMR = 0.6% at FMR = 0.1%

FVC2006 140 fingers × 12 images  
Electric field sensor (250 ppi)
Optical sensor (569 ppi)
Sweep sensor (500 ppi)

FNMR = 15% at FMR = 0.1%
FNMR = 0.02% at FMR = 0.1%
FNMR = 3% at FMR = 0.1%

NIST ELFT 2008 (Phase II) 835 latent prints, 100,000 
rolled fingerprints

FNIR = 8% at FPIR = 1%
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tral technology to scan a fingerprint pattern directly from 
just below the skin’s surface; this technique may provide 
better-quality fingerprints from dry, wet, or dirty fingers. 
Researchers at TBS (www.tbsinc.com) are investigating 
touchless 2D and 3D fingerprint imaging, which could 
obtain complete fingerprint information without the dis-
tortion introduced by rolling and other pressure variations. 

However, more work is still needed to improve the 
quality of acquired images of difficult fingers with as little 
imaging constraint as possible. Even touchless fingerprint 
imaging requires users to place their finger(s) within close 
proximity of the sensor. Existing touchless sensors cannot 
be used in surveillance applications. The feasibility of 
acquiring fingerprints from a distance is still an open ques-
tion, and any solution is likely to revolutionize the field and 
lead to numerous new applications for fingerprints.

Low-quality images
Due to nonideal skin conditions, inherently low-quality 

fingers, and sensor noise, a significant percentage of fin-
gerprint images are of poor quality. Extracting features 
from and matching low-quality fingerprints, like those 
shown in Figures 5a and 5b, is a challenging problem that 
will require significant research.

In many government and forensic applications, human 
experts are available to encode low-quality fingerprints 
and verify associated hits found by the automated fin-
gerprint recognition systems. In situations where human 
intervention is expensive or inconvenient, or fingerprints 
are unusable, a possible solution is multibiometrics5—the 
fusion of multiple biometric traits such as fingerprint, 
palmprint, face, iris, and voice. However, the seamless 
integration of different biometric traits remains a difficult 
research problem both at the acquisition stage (how to 
acquire the multiple traits simultaneously) and process-
ing stage (how to combine the information from multiple 
traits effectively). 

Small overlapping area and nonlinear distortion
Fingerprint sensors embedded in consumer electronic 

devices tend to have a smaller sensing area. This factor, 
combined with users’ improper placement of their finger 
on the sensor, results in a limited overlapping area be-
tween two impressions of the same finger, as Figure 5c 
shows. Given the very small number of minutiae in the 
overlapping area, it is difficult to determine if two finger-
prints are from the same finger. 

different biometric systems cannot always be directly 
compared. In addition, technology evaluations do not 
always reflect operational performance due to differences 
in data characteristics, operating environments, and user 
interactions with the fingerprint reader.

A fingerprint recognition system’s operational per-
formance is based on several factors, including sensor 
characteristics, the number and demographic distribu-
tion of the population enrolled in the system, and various 
environmental factors—indoor versus outdoor, tempera-
ture, humidity, and so on. Moreover, the required FMR 
and FNMR depend on the specific application—for ex-
ample, Disney World’s fingerprint-based entry system 
operates at a low FNMR, so as not to upset paying cus-
tomers, at the expense of a higher FMR. On the other 
hand, an ATM fingerprint verification system may re-
quire low FMR at the expense of higher FNMR.

In some cases, a fingerprint recognition system may 
not even successfully capture the user’s fingerprint. Fail-
ure to enroll (FTE) and failure to acquire (FTA) refer to the 
fraction of users who cannot be enrolled or processed by 
a particular system due to the poor quality of their fin-
gerprints—for example, people such as manual laborers 
or the elderly with “worn-out” fingers. In practice, FTE 
can be rather high (a few percentage points) depending 
on the target population and the occupation of users in 
the population. 

OPEN RESEARCH OPPORTUNITIES
Numerous challenging problems in fingerprint recog-

nition are yet to be solved. The ever-increasing demand 
for reducing the error and failure rates of automated fin-
gerprint recognition systems and the need for enhancing 
their security have opened many interesting research 
opportunities that encompass multiple domains such as 
image processing, computer vision, statistical modeling, 
cryptography, and sensor development. 

New sensors
The physical shape of fingers makes it difficult to cap-

ture a complete fingerprint pattern using touch-based 
sensors. In law enforcement applications, multiple im-
pressions of the same finger are often recorded to obtain 
good-quality complete images of all the fingers. As most 
touch-based sensors are based on directly measuring the 
finger surface, they have difficulty sensing the fingerprints 
of elderly persons, whose fingerprints tend to be flattened, 
and manual laborers, whose fingerprints may contain 
many cuts. Rolling and improper pressure while using 
touch-based sensors also introduce distortion in the sensed 
images.

New sensor technologies are being developed to over-
come these drawbacks. For instance, Lumidigm (www.
lumidigm.com) has developed readers that use multispec-

The actual problem of estimating 
the error rate of latent fingerprint 
identification is not yet solved. 
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One way to alleviate this problem is to utilize level 3 
features to improve the matching accuracy in cases where 
there is only a small overlapping area between the two 
impressions. However, level 3 features may not be suit-
able for commercial applications because the sensors used 
in such applications usually provide only low-resolution 
images. A more feasible solution may be fingerprint mo-
saicking, which combines multiple smaller images into a 
larger image, and more ergonomic and intuitive interfaces 
that can guide users to properly place the central (pattern) 
area of their finger on the sensor. 

Pressing soft finger skin on a sensor always intro-
duces some distortion, which is generally not repeatable. 
Matched fingerprints may appear very different under 
severe distortion, as Figure 5d shows. Ergonomic sensors 
and appropriate feedback to users can alleviate this prob-
lem. Another option is to match fingerprints locally—for 
example, using local minutiae descriptors4—before ag-
gregating these local matches globally. 

Latent fingerprints
Latent fingerprints generally suffer from low image 

quality, small overlapping area, and nonlinear distor-

tion as well as the presence of a complex 
background, as Figure 5e shows. To over-
come this challenging problem, current 
automated fingerprint ID systems require 
extensive manual intervention in latent 
encoding (feature extraction) and in verify-
ing a candidate list returned by the system. 
With the increase in latent matching trans-
actions for civilian, law enforcement, and 
homeland security applications, automated 
latent processing and matching are receiv-
ing more attention.

Latent fingerprint evidence was accepted 
as infallibly accurate in US courts of law for 
almost a century. In recent years, however, 
it has been repeatedly challenged under 
the Daubert standard, a rule of evidence 
regarding the admissibility of scientific tes-
timony largely derived from a 1993 Supreme 
Court case (http://cfr.law.cornell.edu/supct/
html/92-102.ZS.html). The Daubert stan-
dard has two basic requirements for expert 
opinions: The underlying scientific basis 
should be accepted widely, and the error 
rate should be known.

Match/nonmatch decisions are made 
subjectively by human experts whose error 
rates are difficult to estimate and can vary 
significantly from person to person. Al-
though many researchers have attempted 
to estimate the inherent individuality of fin-

gerprints,6 the actual problem of estimating the error rate 
of latent fingerprint identification,7 which involves human 
factors in many stages—latent development, encoding, 
matching—is not yet solved. The only viable solution in 
the near term may be to keep improving automated finger-
print systems’ performance and ultimately replace human 
experts with automated systems.

Altered/fake fingerprints
People may alter their fingerprints in different ways for 

many reasons. For example, an unauthorized user may 
use a fake finger that imitates a legitimate user’s finger-
print template to access a computer system. Criminals 
may cover their fingers with fake fingerprints made of sub-
stances like glue or they may intentionally mutilate their 
fingers to avoid being identified by automated systems or 
even human experts, as Figure 5f shows. 

An essential countermeasure to thwart the use of in-
animate or fake fingers is liveness detection—checking if 
the finger is “live” by measuring and analyzing various 
vital signs of the finger such as pulse, perspiration, and 
deformation. While software-based liveness detection 
solutions that complement existing fingerprint scanners 

(a) (b)

(c) (d)

(f)(e)

Figure 5. Challenges in automated fingerprint processing: (a) wet 
fingerprint (left) and extracted features (right); (b) fingerprint with many 
cuts (left) and extracted features (right); (c) small overlapping area as 
marked by rectangles; (d) large nonlinear distortion in fingerprint patterns 
as indicated by the corresponding triangles; (e) latent fingerprint with 
overlapping letters (left) and the extracted features (right); (f ) altered 
fingerprint: a criminal made a Z-shaped incision into each of his fingers 
(left), switched two triangles, and stitched them back into the finger (right).
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may be more cost-effective, they have not yet shown much 
promise. 

To deal with mutilated fingers, a mutilation detector 
should be added, and, once mutilation is detected, effort 
should be made to identify the subject either by restoring 
the original fingerprints or using only the unaltered areas 
of the fingerprint. With the adoption of multiple biometric 
traits in large-scale identification systems such as the FBI’s 
NGI, multibiometrics will be a powerful tool to handle 
altered fingerprints.

Interoperability
Interoperability problems can occur in all three main 

modules of a fingerprint recognition system: sensor, fea-
ture extractor, and matcher. Different sensors may output 
images that exhibit variations in resolution, size, distortion, 
contrast, background noise, and so on. Different encoders 
may extract different features or adopt varying defini-
tions of the same feature. This diversity makes it difficult 
to build a fingerprint system with principal components 
sourced from different vendors. 

To improve interoperability among multiple fingerprint 
systems, international standardization organizations have 
established standards for sensors, templates, and system 
testing—for example, image quality specifications for fin-
gerprint sensors and data exchange formats for minutiae 
templates.8 However, the superiority in matching accuracy 
of proprietary templates compared to standard templates 
in NIST MINEX testing shows that existing standards must 
be improved by, for example, including extended features.

Fingerprint matchers pose a less-noticeable interoper-
ability challenge. Different matchers can have different 
score distributions, which may pose a problem during 
the fusion of multiple algorithms or multiple biometrics. 
Limited work has been done in standardizing the output 
of matchers. 

System on device
An important security issue in fingerprint recognition 

systems is the tampering or modification of the hardware/
software components and interception of fingerprint data 
passing through the communication channels—for exam-
ple, the wireless interface between a passport reader and 
the chip on a passport that contains the user’s fingerprint 
template. This problem can be overcome by employing 
system-on-device technology in which the sensor, feature 
extractor, matcher, and even the templates reside on a 
tamper-resistant device such as the Privaris plusID product 
shown in Figure 2d. The advantage of this technology is 
that the information about a user’s fingerprint never leaves 
the device; it is only the matching result that is securely 
transmitted. Moreover, well-known cryptographic tools 
can be leveraged to prevent interception and alteration of 
fingerprint information.

Template security
While system-on-device technology may be a useful 

security measure in verification applications, fingerprint 
ID systems require centralized storage of fingerprint infor-
mation in large enrollment databases. The unauthorized 
use or disclosure of fingerprint template information from 
such databases constitutes a serious security and privacy 
threat. Not only can a stolen fingerprint template be re-
verse-engineered to construct a fake finger9 or replayed 
into the system, it can be used for cross-matching across 
different databases to covertly track people without their 
consent, thereby compromising their privacy. 

Another issue is that unlike credentials such as pass-
words or ID cards that can be easily revoked and reissued, 
people cannot arbitrarily replace their fingerprint tem-
plate—disclosure of fingerprint information results in 
permanent loss. Merely encrypting the fingerprint is insuf-
ficient because the template remains secure only as long 
as the decryption key is held secretly. Most of the reported 
attacks on biometric passports issued in European coun-
tries have tried to exploit this vulnerability by intelligently 
sniffing the decryption key.

Two strategies have been proposed to secure fingerprint 
templates. One is to apply a noninvertible mathematical 
transformation to the fingerprint template and store only 
the transformed template. In this way, even if the trans-
formed template is revealed, the real fingerprint cannot 
be gleaned easily. Since the same fingerprint can be used 
to generate a new template using a different transforma-
tion, it is referred to as a cancellable fingerprint, as Figure 
6 shows. Another promising solution is to use biometric 
cryptosystems and generate cryptographic keys based on 
biometric samples. 

The problem with both approaches is that there is 
some loss of information during the transformation/key 
generation process that adversely affects the fingerprint 

Figure 6. Cancellable fingerprint. Applying a noninvertible 
mathematical transformation to the fingerprint template 
on the left produces the template on the right. Even if the 
transformed template is revealed, the real fingerprint cannot 
be gleaned easily.
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recognition system’s accuracy. However, researchers are 
exploring ways to minimize this degradation in accuracy 
without compromising template security.

A
utomated fingerprint identification systems 
have been successfully deployed around the 
globe for both law-enforcement and civilian 
applications, and new fingerprint-matching 
applications continue to emerge. The finger-

print will continue to be the dominant biometric trait, 
and many identity management and access control appli-
cations will continue to rely on fingerprint recognition 
because of its proven performance, the existence of large 
legacy databases, and the availability of compact and 
cheap fingerprint readers. Further, fingerprint evidence 
is acceptable in courts of law to convict criminals. 

While fingerprint recognition technology has been 
under development for nearly half a century, new research 
problems have accompanied the wide deployment of fin-
gerprint technology. These include extraction of level 3 
features, liveness detection, and automated latent finger-
print identification. Issues such as fingerprint recognition 
at a distance, real-time identification in large-scale ap-
plications with billions of fingerprint records, developing 
secure and revocable fingerprint templates that preserve 
accuracy, and scientifically establishing the uniqueness 
of fingerprints will likely remain as grand challenges in 
the near future.

Although fingerprint recognition is one of the earli-
est applications of pattern recognition, the accuracy 
of state-of-the-art fingerprint-matching systems is still 
not comparable to human fingerprint experts in many 
situations, particularly latent print matching. Signifi-
cant advances require not only a deeper understanding 
of friction ridge formation, but also adaptation of new 
developments in sensor technology, image processing, 
pattern recognition, machine learning, cryptography, 
and statistical modeling. While successful commercial 
applications have driven fingerprint-matching tech-
nology, more breakthroughs could be achieved with 
greater investment in fundamental research.10 Active 
collaboration among academic and industrial research 
groups will also stimulate rapid progress in fingerprint 
matching. 
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