Hierarchical Kernel Fitting for Fingerprint Classification
and Alignment

Abstract

Fingerprint classification consists of labeling a fin-
gerprint impression as one of several major types of
fingerprints: arch, left loop, right loop, whorl, etc. The
problem of fingerprint matching amounts to deciding
whether or not two impressions were produced by the
same finger. We propose a model based method for fin-
gerprint classification which only uses the flow field,
avoiding the non-trivial computation of the thinned
ridges and minutia points. For each class, a fin-
gerprint kernel is defined, which models the shape of
fingerprints in that class. The classification is then
achieved by finding the kernel that best fits to the flow
field of the given fingerprint. We obtain a classifica-
tion accuracy of 91.25% on the NIST J database. We
also show how the kernel fitting procedure can be used
for an initial fingerprint alignment.

1 Introduction

Fingerprints are biometric characteristics of hu-
mans, that consist of ridges and furrows at the tips of
the fingers. There is evidence [5] that human aware-
ness of these patterns predates Christianity. Since the
last century fingerprints have been used systematically
for authentication, particularly in criminal investiga-
tion. Based on empirical evidence [5, 6] it is widely ac-
cepted that fingerprints uniquely identify an individ-
ual. Unlike other authentication methods (such as face
or voice recognition, which may not distinguish iden-
tical twins), fingerprint authentication is unequivocal.
Moreover, fingerprints do not change over time, which
gives them an important advantage over other bio-
metric measurements. Lastly, in comparison to other
biometrics techniques (such as retinal scan and iris
scan), fingerprint acquisition is relatively simple and
inexpensive. All these characteristics make the use of
fingerprints one of the most pervasive methods of au-
thentication, both in the forensic sector as well as in
the commercial sector (e.g. access control).

Given the astronomical size! of fingerprint

IThere were 810,188 records (containing 10 fingerprints each)
upon the formation of the Identification Division of the FBI in
1924 [5]. Currently there are 226 million cards on file, repre-

databases, it became apparent that an indexing
methodology which would assign fingerprints into a
small number of categories was in order. The sys-
tem developed at the end of the 19-th century by Sir
Edward Henry is the basis of modern automatic fin-
gerprint identification systems (AFIS) in the majority
of English-speaking countries, and serves the purpose
of what is usually termed as (primary) classification
of fingerprints [2, 8, 11, 10]. The system adopted by
the FBI contains eight basic fingerprint patterns [5, 6]:
arch, tented arch, left loop, right loop, whorl, central
pocket loop, double loop and accidental. Throughout
this paper, we shall confine ourselves to only four ma-
jor classes of fingerprints 2: arch (A), left loop (L),
right loop (R) and whorl (W). See Figure 1.

There have been a number of methods proposed
for fingerprint classification, including (but not limited
to) syntactic methods [14], singularity based methods
[11, 13], and neural network methods [1]. For a more
detailed literature review see for instance [2, 8, 10] and
the references therein.

In this paper we address the problem of auto-
matic fingerprint classification into one of the 4 types
(A,L,R,W) using a novel method which we term ker-
nel fitting. Detailed classification results are shown
in Section 3. In addition, we demonstrate how our
method can be used for fingerprint alignment, as a
pre-processing step for fingerprint matching.

2 Mathematical model
2.1 Flow field

We model the ridges of a fingerprint as curves in
the plane, and define the flow field as the direction
of the tangent to these curves at each point 3. There
have been several methods proposed for the extraction
of the flow field [3, 12, 13]. We employ the method
developed by Hong in [9], which averages a function
of the gradient of the intensity over a 16 x 16 window.
The window moves in increments of 12 pixels in each

senting about 79 million individuals [4].

2However, the method we propose can be readily extended
to more classes of fingerprints.

3Except at a small number of points, where the curve is not
smooth (e.g. bifurcations).
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Figure 1: Four major classes of fingerprints.

direction, so for fingerprint images of size 512 x 512
the flow field is a relatively small 43 x 43 array. See
Figure 5. Thus, conceptually, we think of the flow field
as a unit vector field in the plane, or, equivalently,
as its argument 8 € [0,7) * (the angle between the
direction of the vector and the x-axis).

2.2 Fingerprint kernels

We define class-specific kernel curves as follows.
The kernel of the whorl is the unit circle. The ker-
nels of the other classes are defined empirically using
splines (see Figure 2). Given points p1,...,pps1 and
(equally spaced) scalars t; = 0,t3...,tp41 = 1, we
can find a curve o : [0,1] — R? such that o(t;) = ps,
and such that both coordinate functions (z(t),y(t))
are polynomials (necessarily of degree n). This can be
done by solving two Vandermonde systems, where the

unknowns are the coefficients of the polynomials z(t)
and y(t).

2.3 Kernel hierarchy

Above any of the kernel curves, there is always an
arch. This makes the arch category inherently am-
biguous. Put differently, if an arch is found in an

4There is no canonical orientation of the ridges, so 8 € [0, )
rather than [0, 27).

unknown fingerprint, one cannot simply label that fin-
gerprint as “arch”; we must “descend” inside the arch.
Consequently, to dis-ambiguate the classification, we
use splines again to define sub-kernels at a fixed po-
sition inside the top level kernels. We defined 5 sub-
kernels for the arch alone, and one sub-kernel for each
of the other kernels. All the sub-kernels bear the same
label as the parent kernel. See Figure 2
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Figure 2: Kernel hierarchy. (a) The continuous curves are
the high level kernels of A,L,R,W, respectively; the dotted
curves are the low-level kernels of L,R,W. (b): the dotted
curves are the low-level curves relative to A.

2.4 Kernel fitting

Suppose we have a smooth vector field V' defined
over some region in the plane R2. Let ~(t) =
(x(t),y(t)) be a parametric curve in R2, let ¥ be the
tangent to 7, and « its argument. As before, let 3 be
the argument of V. See Figure 3.

Define an energy functional which captures the dif-
ference between the direction of 4 and that of the vec-
tor field V' at the point 7(¢) by

[ sin’(a - B()dy
Jydv

The denominator in (1) is a normalization factor
and rules out the trivial solution (when « degenerates
to a point).

From a mathematical standpoint, finding the ex-
trema of a functional over a space of functions is in
general highly non trivial, because one has to address
the issues of existence and regularity of the solutions.
Indeed, a functional over, say, C° (the space of con-
tinuous functions) may not have an extremum in C°,
for the simple reason that C° is not closed under any
topology. It is beyond the scope of this paper to ad-
dress the existence and regularity of extrema of the
above functional.

E(v) (1)



Figure 3: Red vector: unit tangent vector to . Blue
line: direction of the flow field at the point ().

For fingerprint classification, the problem of mini-
mizing the energy (Eq. (1)) can be cast as the prob-
lem of finding minima over a (5-dimensional) space
of transformations of curves in the plane, rather than
over the space of all curves. Loosely speaking, given a
fingerprint, we do not fit an arbitrary curve to its flow
field, but rather a curve with a predefined shape that
models the core pattern of the fingerprint.

Specifically, we consider only the transformations:

T(x)=Rys-D-z+7 VreR? (2)

In this equation Ry is a rotation of angle ¢ about
a 0
0 b
izontal and vertical direction and 7 is a translation
vector.
2.5 Algorithm

Let A, L, R, W be the (high level) kernels of the
“arch”, “left loop”, “right loop” and “whorl” respec-
tively. Let also T be a training set. In our experiments
T had 1000 fingerprints.

the origin. D = is a dilation in the hor-

Training: For a fixed fingerprint class, split 7" into
T, and T_, the positive and negative samples in that
class. Plot the distributions of the energy (Eq. (1))
over Ty and 7" and find a threshold which indicates
when the fit is sufficiently good. Obtain separation
thresholds for all L,R and W.

Classification: Fit each of the kernels of L, R, and
W (but not A) to a test sample, with scores E;, E,
and E,,, respectively.

e Case 1. Precisely one of Ej, E, or E, is below
its own threshold. Label the sample as the class
of best fit.

e Case 2. More than one of E;, E, and E,, is below
its own threshold. Compare the sub-kernels of
each of the candidate curves, and label the sample
as the sub-kernel of best fit.

e Case 3. None of F;, E, and E, is below its
own threshold. Then fit the arch A and check the
sub-kernels of A. The label is then given by the
smallest score inside the arch.

3 Experimental results
3.1 Kernel fitting

Figure 4 shows two impressions of the same finger
and the whorl kernel fit to them. The fit is consis-
tent, in the sense that an ellipse of the same size is
fit to both impressions, and it is positioned at about
the same region in the fingerprints. Note also, that a
very good fit is found in (a), even though the kernel
curve is not entirely contained in the image. This is
the effect of the denominator in the definition of the
energy function (Eq. (1)).

(a) (b)

Figure 4: Elliptic kernel fit to two impressions of the same
finger.

3.2 Fingerprint classification

We used the NIST 4 database [7] to test the pro-
posed method. The database consists of 4000 fin-
gerprint impressions, of size 512 x 512 pixels. Each
impression was labeled as one of the “arch”, “tented
arch”, “left loop”, “right loop” and “whorl” by a hu-
man expert. Some of the images were ambiguous and
had more than one label. We considered a fingerprint
to be correctly classified if the label assigned by our
method was among the labels assigned by the human
expert. Furthermore, since in the natural distribution
of fingerprints the arch and the tented arch combined
make up for approximately 5% of all fingerprints [4, 8],
we classified both “arch” and “tented arch” simply as
“arch”. However, we did not alter the distribution
of the classes in the NIST database, which is uni-
form. It takes under 0.3 seconds to classify a single



image on a Pentium IIT 800 MHz processor, which
yields a total time of under 20 minutes for the entire
database of 4000 images. Under these conditions, with
no rejection option, we obtained a classification rate
of 91.25%. Table 1 presents our result in comparison
with other classification methods. In the “4 classes”
column the arch and tented arch were placed in the
same category, whereas in the “5 classes” column, the
arch and tented arch were considered distinct.

Algorithm 4 classes | 5 classes
Kernel Fitting 91.25% -
MASK [2] - 87.1%
KARU & JAIN [11] | 91.1 % 85.4%
JAIN et. al.(*) [10] 94.8% 90%

Table 1: Comparison between various fingerprint classifi-
cation methods. (*) On 2000 fingerprints, with a rejection
rate of 1.75%.

Table 2 presents the confusion matrix. Recall that
in the NIST database some of the fingerprints had
two true labels. In building the confusion matrix we
counted these images once for each of the true labels.
The labels in the leftmost column represent the true
labels.

L R | W A
L |730| 2 18 54
R| 5 |74 7 66

Wi 32 | 3 | 718 | 11

A 14| 39 7 | 1448

Table 2: The confusion matrix.

We have identified two main reasons for the clas-
sification errors that our approach makes. The first
type of error is due to the flow field. In some cases,
the fit is good, yet the test sample is misclassified due
to the fact that the flow field does not provide a faith-
ful representation of the fingerprint (Figures 5 (a) and
(b)). This, in turn, is due to the loss of information
incurred when the fingerprint is represented as a flow
field. The second type of error is due to the curve fit-
ting itself: a wrong kernel may have a slightly better
score than the true kernel (Figure 5 (c)).

3.3 Fingerprint alignment

Once the kernel has been fit to the fingerprints,
it is then a trivial matter to find a transformation
that overlaps one impression onto the other. A pri-
ori, fingerprints belonging to different classes cannot
be aligned. Assume then that the two fingerprints
are in the same class. Let v; = Tj(v), 7 = 1,2 be
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Figure 5: Two types of misclassifications. (a) Best
(sub) kernel fit to the flow field. (b) Overlay of the kernel
(red) and best fitting sub-kernel (blue) onto the fingerprint
impression associated with (a). The true fingerprint class
is L and was classified as A. (c) Left loop fingerprint. Blue
(arch) and green (left loop): best two sub-kernels fit to the
flow field, overlaid on the fingerprint impression. The blue
curve has a slightly better score than the green curve and
the fingerprint is misclassified as A.



the curves fit to the two fingerprints, both obtained
from the same kernel 79. Then the transformation
that aligns the two fingerprints is T =Ty o T2_1. Fig-
ure 6 shows the impressions from Figure 4 (a) and 4
(b) aligned by overlapping the kernels of best fit.

Figure 6: Alignment of impressions in Figure 4 (a)
and (b). The green pixels represent the exact overlap.

4 Summary and conclusion

We have presented a novel method for fingerprint
classification into one of four general classes: arch, left
loop, right loop and whorl, by fitting a kernel of a pre-
defined shape and size to a vector field. Except for the
whorl, which is modeled by a circle, the other kernel
curves are constructed empirically, by using polyno-
mial splines. The performance of our method is influ-
enced by the amount of the kernel curve that is a priori
visible in the fingerprint impression. Classification is
inherently ambiguous if only a very small part of the
kernel is present. However, on “reasonable” impres-
sions, the method proves to be reliable and fast, as it
avoids thinning the ridges and extracting the minutia
points.

Our long term goal is to devise an algorithm for
fingerprint matching that avoids as much as possible
the use of minutia points as landmarks, by using the
energy defined in this paper (Eq. (1)) as a measure of
similarity between two impressions.
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