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Abstract

We propose a texture template approach, consisting of a
set of virtual minutiae, to improve latent fingerprint recog-
nition accuracy. To compensate for the lack of a sufficient
number of minutiae in poor quality latent prints, we gen-
erate a set of virtual minutiae. However, due to a large
number of these regularly placed virtual minutiae, texture
based template matching has a large computational require-
ment compared to matching true minutiae templates. To
improve both the accuracy and efficiency of the texture tem-
plate matching, we investigate: i) both original and en-
hanced fingerprint patches for training convolutional neural
networks (ConvNets) to improve the distinctiveness of de-
scriptors associated with each virtual minutiae, ii) smaller
patches around virtual minutiae and a fast ConvNet archi-
tecture to speed up descriptor extraction, iii) reducing the
descriptor length, iv) a modified hierarchical graph match-
ing strategy to improve the matching speed, and v) extrac-
tion of multiple texture templates to boost the performance.
Experiments on NIST SD27 latent database show that the
above strategies can improve the matching speed from 11
ms (24 threads) per comparison (between a latent and a ref-
erence print) to only 7.7 ms (single thread) per compari-
son while improving the rank-1 accuracy by 8.9% against a
gallery of 10K rolled prints.

1. Introduction
Ever since minutiae were introduced for comparing fin-

gerprints in 1888 by Sir Francis Galton [7], minutiae have
been considered as the foundation for the science of finger-
print identification, which has expanded and transitioned to
a wide variety of applications for person recognition over
the past century [14]. In fact, the first Automated Fin-
gerprint Identification System (AFIS) launched by FBI in
early 1970s only stored an acquired fingerprint’s type and
minutiae instead of its digital image because of the com-
pact and efficient representation offered by minutiae1. Fol-

1https://www.fbi.gov/file-repository/about-us-cjis-
fingerprints biometrics-biometric-center-of-excellences-fingerprint-
recognition.pdf/view
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Figure 1. Fingerprint texture for matching. (a) Only two minutiae
in a fingerprint image (96× 96 at 500 ppi) acquired by a capaci-
tive sensor embedded in a smartphone (provided by Goodix), (b)
five manually marked minutiae in a latent fingerprint image from
NIST SD27, and (c) histogram of the number of minutiae in latent
fingerprints in NIST SD27 database (consisting of 258 operational
latents).

lowing decades of research and development, advances in
processors, memory, and sensor designs, fingerprint recog-
nition systems have now been deployed in a broad set of ap-
plications such as border control, employment background
checks, secure facility access and national identity pro-
grams [14]. For example, Aadhaar2, has the world’s largest
biometric ID system with an enrollment database that al-
ready exceeds 1.2 billion tenprints (along with correspond-
ing irises and face photos) of supposedly unique individu-
als. All of these systems are still primarily based on minu-
tiae based fingerprint matching algorithms.

However, minutiae based approaches may not be effec-

2https://uidai.gov.in/about-uidai/about-uidai.html
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tive in some cases, for example, in poor quality latent finger-
prints and fingerprint images captured by small area sensors
in mobile phones. Latent fingerprints (latents) are one of the
most important and widely used sources of evidence in law
enforcement and forensic agencies worldwide [8]. Due to
the unintentional deposition of the print by a subject, latents
are typically of poor quality in terms of ridge clarity, large
background noise and small friction ridge area. Hence, the
number of minutiae in a latent may be very small, e.g.,≤10.
Fig. 1 (c) shows the distribution of the number of manually
marked minutiae on NIST SD27 latent database and Fig. 1
(b) shows a latent image with 5 manually marked minutiae
overlaid on the image. Given this small number of minu-
tiae, minutiae alone do not have enough information for
latents. Another example where minutiae based matching
does not work is for matching fingerprint images captured
by the capacitive sensors embedded in smartphones. It is
estimated that 67% of the smartphones in the world will
have an embedded fingerprint sensor3 by 2018. The size of
these embedded fingerprint sensors (only 88× 88 pixels for
TocuhID4) are much smaller than the standalone sensors.
Hence, the number of minutiae in these images is not suf-
ficient as shown in Fig. 1 (a). For these reasons, accurate
non-minutiae based (also called texture based) fingerprint
matching algorithms are necessary. To our knowledge, all
major latent AFIS vendors use texture templates.

A few non-minutiae based fingerprint matching algo-
rithms have been proposed in literature. FingerCode by Jain
et al. [12] uses a bank of Gabor filters to capture both the
local and global details in a fingerprint. However, Finger-
Code relies on a reference point and its accuracy is much
lower than minutiae based approaches. Some approaches
based on keypoints, e.g., SIFT [16, 20] and AKAZE [15],
have been proposed to generate dense keypoints for finger-
print matching. However, these keypoints as well as their
descriptors are not sufficient to distinguish fingerprints from
different fingers.

Deep learning based approaches have also been proposed
for fingerprint recognition. Zhang et al. [22] proposed
a deep learning based feature, called deep dense multi-
level feature, for partial high resolution fingerprint recog-
nition which achieved promising performance on their own
database. However, their approach could not handle finger-
print rotation. Cao and Jain [4] proposed a virtual minutiae
based approach for latent fingerprint recognition, where the
virtual minutiae locations are determined by a raster scan
with a stride of 16 pixels; the associated descriptors are
obtained by three convolutional neural networks. Exper-
imental results on two latent databases, NIST SD27 and
WVU, showed that the recognition performance of the vir-
tual minutiae based “texture template” when fused with two
different true minutiae templates boosted the rank-1 accu-

3https://www.statista.com/statistics/522058/global-smartphone-
fingerprint-penetration/

4https://assets.documentcloud.org/documents/1302613/ios-security-
guide-sept-2014.pdf

racy from 58.5% to 64.7% against a 100K reference print
gallery for NIST SD27 [4]. However, the virtual minutiae
feature extractor and matcher were shown to be quite slow.

The objective of this paper is to improve both the ac-
curacy and efficiency of virtual minutiae (texture template)
based latent matching. The main contributions of this paper
are as follows:

1. Reduced the average recognition time between a latent
texture template and a rolled texture template from 11
ms (24 threads) to 7.7 ms (single thread);

2. Improved the rank-1 identification rate of the texture
templates in [4] by 8.9% (from 59.3% to 68.2%) for a
10K gallery;

3. Boosted the rank-1 identification rate in [4] by 2.7%
through fusion of the proposed three texture templates
with three templates in [4] (from 75.6% to 78.3%) for
a 10K gallery. This means that out of the 258 latents
in NIST SD27, improvements in the texture template
push 7 additional latents to rank 1.

2. Proposed Approach
In this section, we describe the proposed texture-based

latent matching approach, including feature extraction and
matching. Fig. 2 shows a flowchart of the proposed ap-
proach.

2.1. Virtual Minutiae Extraction
For both latents and reference prints, the texture template

is similar to that in [4] and consists of locations, orientations
and descriptors of virtual minutiae. We first describe the
virtual minutiae localization and then discuss the associated
descriptors.

For reference fingerprints which are typically of high
quality, the region of interest (ROI) is segmented by magni-
tude of the gradient and the orientation fields with a block
size of 16 × 16 pixels as in [6]. The locations of virtual
minutiae are sampled by raster scanning with a stride of
s and their orientations are the same as the orientations
of their nearest blocks in the orientation field. The virtual
minutiae close to the mask border are ignored. Fig. 3 shows
the virtual minutiae on two rolled prints.

For latents, the same manually marked ROIs and auto-
matically extracted ridge flow with a block size of 16 × 16
pixels as in [3] are used for virtual minutiae extraction. Sup-
pose that (x, y) are the x− and y−coordinates of a sampling
point and θ denotes the orientation of the block which is
closest to (x, y) in the ridge flow. Two virtual minutiae, i.e.,
(x, y, θ) and (x, y, θ + π), are created to handle the ambi-
guity in ridge orientation. Fig. 4 show virtual minutiae on
two enhanced latents from NIST SD27 with s = 32.

2.2. Descriptors for Virtual Minutiae
A minutia descriptor contains attributes of the minu-

tia based on the image characteristics in its neighborhood.
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Figure 2. Overview of the proposed latent fingerprint recognition algorithm.

(a) (b)

Figure 3. Virtual minutiae on two rolled prints with stride s=32.

(a) (b)

Figure 4. Virtual minutiae on two enhanced latent fingerprints with
stride s=32. Note that each circle represents two virtual minutiae
with opposite orientations to handle the ambiguity in ridge orien-
tation.

Salient descriptors are needed to establish minutiae corre-
spondences and compute the similarity between a latent and
reference prints. Instead of specifying the descriptor in an
ad hoc manner, Cao and Jain [4] trained ConvNets to learn
the descriptor from local fingerprint patches around a minu-
tia and demonstrated its superior performance. In this pa-
per, we improve both the distinctiveness of the descriptor
and the efficiency of descriptor extraction.

Cao and Jain [4] extracted approximately 800K 160 ×
160 fingerprint patches from around 50K minutiae from
images in a large longitudinal fingerprint database [21], to
train the ConvNets. On average, there are around 16 fin-
gerprint patches around each minutia for training. Cao and

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Examples of training fingerprint patches.

(a) (b) (c) (d)

Figure 6. Four different patch types used in [4] for descriptor ex-
traction. Patch types in (a)-(c) were determined to be the best com-
bination in terms of identification accuracy. The patches in (b), (c)
and (d) are of sizes 96× 96 pixels while the patch in (a) is of size
80 × 80 pixels. In this paper, we used patch types in (b), (c) and
(d) for descriptor extraction because all of them are of the same
size and hence no resizing is needed.

Jain also reported that descriptors extracted from enhanced
latent images give better performance. In order to augment
the training dataset and improve the descriptor distinctive-
ness between enhanced latent and original rolled prints, we
use patches from both the original and enhanced fingerprint
patches for training ConvNets; this results in around 1.6
million fingerprint patches for training. Fig. 5 shows some
example patches from the training dataset; Figs. 5 (a) to
(d) are from the original image and (e) to (h) are from the
corresponding enhanced images.

Location and size of the patches were also evaluated in
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[4]. The three patch types shown in Figs. 6 (a)-(c) were
determined to be the best patch types via forward sequential
selection. The two patches in Figs. 6 (b) and (c) are of the
same size (96 × 96 pixels) while the patch in Fig. 6 (a) is
of size 80 × 80 pixels. All the patches had to be resized to
160 × 160 pixels in [4], by bilinear interpolation. In this
work, to avoid resizing, we train a ConvNet on 96 × 96
images and use patch types in Figs. 6 (b)-(d) for descriptor
extraction. Note that the patch in Fig. 6 (d) is minutiae
centered whereas patches in Figs. 6 (b) and (c) are offset
from the center minutiae.

Among the various ConvNet architectures [17], [18], [9],
[11], MobileNet-v1 [11] uses depth-wise separable con-
volutions, resulting in a drastic reduction in model size
and training/evaluation times while providing good recog-
nition performance. The number of original model pa-
rameters to be trained in MobileNet-v1 (4.24M), is sig-
nificantly smaller than the number of model parameters in
Inception-v3 (23.2M) and VGG (138M), requiring signifi-
cantly lower efforts in terms of regularization and data aug-
mentation need, to prevent overfitting. For these reasons,
we utilize the MobileNet-v1 architecture. In order to feed
96×96 fingerprint patches for training and to reduce the de-
scriptor length, we make the following modifications to the
MobileNet-v1 architecture: i) change the input image size
to 96× 96× 1, ii) remove the last two convolutional layers
to accommodate the smaller input sizes, and iii) add a fully
connected layer, also called the embedding layer, before the
classifier layer to obtain a compact feature representation.
The modified architecture is shown in Table 1.

For each of the three patch types shown in Figs. 6 (b)-
(d), 1.6 million fingerprint patches are used to train a Mo-
bileNet. Given a fingerprint patch around a virtual minu-
tiae, the output (l-dimensional feature vector) of the last
fully connected layer is considered as the virtual minutiae
descriptor. In the experiments, three value of l, namely
l = 32, 64, and 128, are investigated. The concatenation of
the three outputs for the same virtual minutiae is regarded
as the descriptor with length ld = 3 × l. The set of vir-
tual minutiae and the associated descriptors define a texture
template.

2.3. Texture Template Matching
The algorithm for comparing two texture templates, one

from latent and the other from a reference print, as proposed
in [4] can be summarized as: i) compute pair-wise similar-
ities between the latent and reference print virtual minutiae
descriptors using cosine similarity; normalize the similar-
ity matrix, ii) select the top N (N = 200) virtual minutiae
correspondences based on the normalized similarity matrix,
iii) remove false minutiae correspondences using second-
order graph matching, iv) further remove false minutiae cor-
respondences using third-order graph matching, and (v) fi-
nally compute the overall similarity between the two tex-
ture templates based on final minutiae correspondences. Al-
though the second-order graph matching can remove most

mi1

mj1

θi1

θj1

θi1,j1

di1,j1

Figure 7. Illustration of second-order graph matching [4], where
mi1 and mj1 are the two virtual minutiae, di1,j1 is the Euclidean
distance between mi1 and mj1 , and θi1,j1 , θi1 and θj1 are the
three angles formed by two virtual minutiae orientations and the
line segment connecting mi1 and mj1 .

Table 1. MobileNet Architecture, where l is the length of feature
vector output by the modified MobileNet and c is the number of
classes used for training.

Type / Stride Filter Shape Input Size
Conv / s2 3×3×1×32 96×96×1

Conv dw / s1 3×3×32 dw 48×48×32
Conv / s1 1×1×32×64 48×48×32

Conv dw / s2 3×3×64 dw 48×48×64
Conv / s1 1×1×64×128 24×24×64

Conv dw / s1 3×3×128 dw 56×24×128
Conv / s1 1×1×128×128 24×24×128

Conv dw / s2 3×3×128 dw 24×24×128
Conv / s1 1×1×128×256 12×12×128

Conv dw / s1 3×3×256 dw 12×12×256
Conv / s1 1×1×256×256 12×12×256

Conv dw / s2 3×3×256 dw 12×12×256
Conv / s1 1×1×256×512 6×6×256

5×Conv dw / s1 3×3×512 dw 6×6×512
Conv / s1 1×1×512×512 6×6×512

Conv dw / s2 3×3×512 dw 6×6×512
Avg Pool / s1 Pool 6×6 6×6×512

FC / s1 512×l 1×1× 512
FC / s1 l × c 1×1× l

Softmax / s1 Classifier 1 × 1 ×c

false correspondences, it is still time-consuming as it in-
volves N(N − 1)/2 computations. Furthermore, since the
locations of virtual minutiae do not have large variations
due to the raster scan, the larger complexity third order
graph matching does not help too much in virtual minutiae
correspondences.

As shown in Fig. 7, the computation of the compati-
bility between two virtual minutiae pairs in second-order
graph matching involves one Euclidean distance computa-
tion and three angular distance computations. In our pre-
liminary experiments, we found that the Euclidean distance
alone is good enough to remove most false correspondences

4



(a)

(b)

(c)

Figure 8. Illustration of virtual minutiae correspondences by the
proposed graph matching strategy. Figures in (a), (b) and (c) show
the top N = 200 minutiae correspondences, 88 virtual minutiae
correspondences by using the modified second order graph match-
ing and 73 virtual minutiae correspondences by applying the sec-
ond order graph matching used in [4] to the 88 minutiae corre-
spondences in (b).

as shown in Fig. 8. The approach we propose here is to use a
modified second-order graph matching to remove most false
virtual minutiae correspondences and use the second-order
graph matching in [4] to get the final virtual minutiae corre-
spondences.

An overview of the modified virtual minutiae matching
algorithm is enumerated in Algorithm 1. The details of
the modified second-order graph matching are as following.
Suppose {i = (i1, i2)}Ni=1 is the set of N selected minutiae
correspondences between a latent L and a rolled print R,
where i1 and i2 denote the ith correspondence between the
ith1 and ith2 virtual minutiae in the latent Fl and the rolled
print Fr, respectively. Given two minutiae correspondences
(i1, i2) and (j1, j2),H2

i,j (H2 ∈ RN×N ) measures the com-
patibility between (i1, j1) from the latent and (i2, j2) from
the rolled prints:

H2
i,j = Z(Di,j , µ, τ, t), (1)

where Di,j = |di1,j1 − di2,j2 | and Z is a truncated sigmoid
function:

Z(v, µ, τ, t) =

{
1

1+e−τ(v−µ)
, if v ≤ t,

0, otherwise.
(2)

Here µ, τ and t are the parameters of function Z.
The goal of graph matching is to find an N -dimensional

correspondence vector Y , where the ith element (Yi) indi-
cates whether i1 is assigned to i2 (Yi = 1) or not (Yi = 0).
This can be represented in terms of maximizing the follow-
ing objective function:

S2(Y ) =
∑
i,j

H2
i,jYiYj . (3)

A strategy of power iteration followed by discretization
used in [4] is used to remove false minutiae correspon-
dences.

Suppose {i = (i1, i2)}ni=1 represent the final n matched
minutiae correspondences between Fl and Fr. The similar-
ity S between Fl and Fr is defined as:

S =

n∑
i=1

DesSim(i1, i2), (4)

where DesSim(i1, i2) is the descriptor similarity between
ith1 virtual minutiae in latent template Fl and ith2 virtual
minutiae in reference template Fr.

Algorithm 1 Modified virtual minutiae matching algorithm
1: Input: Latent template Fl and reference template Fr

2: Output: Similarity between Fl and Fr

3: Compute descriptor similarity matrix
4: Normalize similarity matrix
5: Select the top N minutiae correspondences based on

the normalized similarity matrix
6: Construct H2 based on these N minutiae correspon-

dences
7: Remove false correspondences using modified second-

order graph matching
8: Further remove false correspondences using original

second-order graph matching
9: Compute similarity between Fl and Fr

2.4. Constructing texture templates

The locations and orientations of virtual minutiae are de-
termined by the ROI and ridge flow, while the descriptors
depend on the images input to the trained ConvNets. Three
different processed latent images for each latent are inves-
tigated for texture template construction. Two different en-
hancement algorithms were proposed in [4] and the result-

5



(a) (b)

(c) (d)

Figure 9. Illustration of processing strategies applied to the input
latent shown in (a) for virtual minutiae descriptor extraction. (b)
and (c) are the two enhanced latent fingerprint images used for
minutiae template 1 and 2 extraction in [4], and (d) is the texture
component after decomposition [5].

ing two minutiae sets were extracted, one per enhanced im-
ages. Both of the enhanced images for virtual minutiae de-
scriptor extraction are also investigated here. However, the
fingerprint enhancement performance critically depends on
the estimates of ridge flow and ridge spacing. If ridge flow
or ridge spacing are not estimated correctly, spurious ridge
structures are created in the enhanced images. In addition
to the two enhanced images, we also consider the texture
image obtained by image decomposition [5], which essen-
tially removes large scale background noise and enhances
ridge contrast. Figs. 9 (b)-(d) illustrate the three processed
images for the input latent image in Fig. 9 (a). For each
latent, three different texture templates, Te1 , Te2 and Tt,
can then be extracted. Given a latent to reference print pair,
three texture template similarities are computed which are
then fused to improve the overall latent recognition perfor-
mance.

3. Experimental Results

The proposed texture template matching algorithm is
evaluated on NIST SD27 latent database, which consists of
88 good quality, 85 bad quality and 85 ugly quality latent
fingerprint images. For latent search experiments, 10,000
reference prints5, including the 258 mates of NIST SD27
and others from NIST SD14, are used as the gallery.

3.1. Descriptor length evaluation

The performance of the new virtual minutiae descriptors
with different feature lengths, namely, ld = 96 (l = 32),
192 (l = 64) and 384 (l = 128), are evaluated by veri-
fication performance based on manually marked minutiae

5Results for the larger gallery of 100K reference prints are not yet avail-
able at the time of submitting this paper.

(a) (b)

Figure 10. Manually marked minutiae correspondences are used to
evaluate the proposed virtual minutiae descriptors. (a) Manually
marked latent minutiae shown on the enhanced latent image and
(b) manually marked rolled minutiae shown on mated rolled print
image.

correspondences on NIST SD276 [1]. A total of 5,460
minutiae correspondences between the latent images and
the mated rolled fingerprint images were provided with the
NIST SD27 database. The average numbers of manually
marked minutiae correspondences on 88 good quality, 85
bad quality and 85 ugly quality latent images are 31, 18 and
14, respectively. For a fair comparison with the descriptors
used in [4], the descriptors for the latents are extracted on
the same enhanced images as in [4] while the descriptors of
the mated rolled prints are extracted on the original rolled
prints. Fig. 10 shows the manually marked minutiae on an
enhanced latent image and its mated rolled prints. The gen-
uine scores are computed using the similarities of descrip-
tors from the manually marked minutiae correspondences
while the impostor scores are computed using the similari-
ties of descriptors from the different minutiae. Thus, a to-
tal of 5,460 genuine scores and around 30 million impostor
scores (5, 460 × 5, 460) are computed. Fig. 11 compares
the Receiver Operating Characteristic (ROC) curves of dif-
ferent descriptor lengths as well as the descriptors from [4]
which used a descriptor length of 384. Note that the ROC
curves of descriptors with feature lengths 384 and 192 are
very close to each other, slightly better than descriptors with
feature length 96 and significantly better than the descrip-
tors in [4]. This can be explained by the use of both en-
hanced and original fingerprint patches along with a more
appropriate ConvNet architecture for training.

3.2. Texture template search
In this section, we evaluate the search performance of

the proposed three texture templates, i.e., Te1 , Te2 and Tt
extracted in section 2.4, as well as their fusion. The follow-
ing seven scenarios are considered:

1. Te1 : Texture template with enhanced image 1 (Fig. 9
(b)) for descriptor extraction;

6NIST SD27 dataset is no longer available for download from the NIST
site.
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different descriptor lengths.

Table 2. Latent search accuracies under different scenarios for
NIST SD27. Reference database size is 10K.

Input tem-
plates

descriptor
length

rank-1
(%)

rank-5
(%)

rank-10
(%)

Cao&Jain [4] 384 59.30 70.16 73.26
Te1 192 68.22 73.64 74.81
Te2 192 66.67 72.48 74.42
Tt 192 60.47 67.83 70.93
Te1+Te2 192 70.93 74.81 77.91
Te1+Tt 192 70.93 76.36 79.07
Te2+Tt 192 67.05 75.19 77.13
Te1+Te2+Tt 192 70.16 76.74 81.40
Te1 384 69.38 75.58 77.13
Te2 384 66.28 72.48 73.64
Tt 384 58.91 66.28 69.77
Te1+Te2 384 70.16 75.58 78.29
Te1+Tt 384 69.38 76.74 77.91
Te2+Tt 384 67.83 74.03 75.97
Te1+Te2+Tt 384 70.93 75.97 78.68

2. Te2 : Texture template with enhanced image 2 (Fig. 9
(c)) for descriptor extraction;

3. Tt: Texture template with texture image (Fig. 9 (d))
for descriptor extraction;

4. Te1 + Te2 : Score level fusion of Te1 and Te2 ;

5. Te1 + Tt: Score level fusion of Te1 and Tt;

6. Te2 + Tt: Score level fusion of Te2 and Tt;

7. Te1 + Te2 + Tt: Score level fusion of Te1 , Te2 and Tt.

For each one of the above seven scenarios, all three descrip-
tor lengths, i.e., ld = 96, 192 and 384, are considered. The
latent search accuracies of different scenarios at three differ-
ent ranks for NIST SD27 against 10K reference fingerprints
are shown in Table 2. In addition, the performance of tex-
ture template used in [4] is also included for a comparison

(row 1 of Table 2). Note that the enhanced images used for
Te1 extraction are the same as those in [4]. A descriptor
length 96 performs much lower than the other two lengths
(192 and 384) so its performance is not reported in Table 2.
The findings from Table 2 can be summarized as follows:
i) among the three texture templates, Te1 performs the best
for both descriptor lengths; ii) the performance of descrip-
tor length of 192 is sufficiently close to that of descriptor
length 384 in different scenarios; iii) rank-1 accuracy of Te1
with descriptor length 192 is 8.98% higher than that in [4];
and iv) fusion of any two out of the three proposed texture
templates is higher than that of any single template; the fu-
sion of all three templates boosts the performance slightly
at rank-1 (for ld=192) and rank-5 (for ld=384). Fusion of all
three proposed templates with ld = 192 is preferred because
of its smaller feature length and higher accuracy at rank-10.
As examiners typically evaluate top 10 candidate matches
to identify the source of a latent [2], this will ensure that the
true mate is frequently available in the candidate list.

3.3. Fusion with minutiae templates
In order to determine if our new texture templates can

boost the performance over the results in [4] we fuse the
proposed three texture templates with the three templates
used in [4]. Fig. 12 compares the Cumulative Match Char-
acteristic (CMC) curves of the fusion scheme on all 258 la-
tents in NIST SD27 as well as subsets of latents of three dif-
ferent quality levels (good, bad and ugly). Plots in Fig. 12
show the proposed three texture templates when fused with
the three templates in [4] can boost the overall performance
by 2.7% at rank-1 (from 75.6% to 78.3%). In particular, the
fusion of six templates (three proposed + three from [4])
improves the rank-1 accuracy by 4.7% on the subset of ugly
latents, some of the most challenging latents with an aver-
age of only 5 minutiae per latent. Fig. 13 shows two ugly
latents whose true mates were not retrieved at rank-1 by the
method in [4], but are now correctly retrieved at rank-1 with
the introduction of three new texture templates.

3.4. Computation time
The texture template matching algorithm was imple-

mented in tensorflow and python and executed on a desktop
with i7-6700K CPU@4.00GHz, GTX 1080 Ti (GPU), 32
GB RAM and Linux operating system. The average com-
putation time for comparing a latent texture template to a
rolled texture template is 7.7ms (single thread) compared
to 11.0 ms (24 threads) in [4]. The average times for ex-
tracting one proposed latent texture template and one pro-
posed rolled texture template are 0.7s and 1.5s (GPU), re-
spectively; when fused with the three templates in [4] are
1.2s and 2.2s (24 threads).

4. Summary and future work
Texture template are critical in improving the search

accuracy of latent fingerprints, especially for latents with
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(d)

Figure 12. Cumulative Match Characteristic (CMC) curves of the three texture templates proposed here and their fusion with three templates
used in [4] on (a) all 258 latents in NIST SD27, (b) subset of 88 good latents, (c) subset of 85 bad latents and (d) subset of 85 ugly latents.
Note that the scales of the y-axis in these four plots are different to show the differences between the two curves.

(a) (b)

Figure 13. Two ugly latents whose true mates were not retrieved
at rank 1 by the algorithm in [4]. The use of proposed texture
templates and their fusion with templates in [4] correctly retrieves
their true mates at rank 1.

small friction ridge area and large background noise. We
have proposed a set of three texture templates, defined as
a set of virtual minutiae along with their descriptors. Dif-
ferent virtual minutiae descriptors lead to different texture
templates. The contributions of this paper are as follows.
i) Use patches from original fingerprints and enhanced fin-
gerprints to improve the distinctiveness of virtual minutiae
descriptors, ii) three different texture templates, and iii) a
modified second-order graph matching. Identification re-
sults on NIST SD27 latent database demonstrate that the
proposed texture templates when used alone can improve

the rank-1 accuracy by 8.9% (from 59.3% in [4] to 68.2%).
Our ongoing research includes i) improving ridge flow es-
timation, ii) using latent-rolled pairs for learning minutiae
descriptors and similarities, and iii) using multicore proces-
sors to improve the search speed.
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