Latent Fingerprint Recognition: Role of Texture Template

Kai Cao and Anil K. Jain

Michigan State University

Limited Minutiae in Partial Fingerprints

Five minutiae in a latent image

Minutiae frequency: NIST SD27

Limited Minutiae in Partial Fingerprints

96x96 pixels at 500 ppi

Two minutiae in capacitive smartphone fingerprint

Capacitive fingerprint reader in a smartphone

https://c.slashgear.com/wp-content/uploads/2014/11/mx4.jpg

NIST Study: similarity scores as a function of patch size

https://www.samsi.info/wp-content/uploads/2016/03/Tabassi_august2015.pdf

Virtual Minutiae

- A virtual minutia, similar to a real minutia, consists of location and orientation
- Location and orientation determined by a raster scan and ridge flow, respectively

[1] K. Cao and A. K. Jain. Automated latent fingerprint recognition. IEEE TPAMI, DOI 10.1109/TPAMI.2018.2818162, 2018.

Virtual Minutiae

- A virtual minutia, similar to a real minutia, consists of location and orientation
- Location and orientation determined by a raster scan and ridge flow, respectively
- At each grid in a latent, there are two virtual minutiae with opposite orientations to handle the ambiguity in ridge orientation

Virtual minutiae on latents

[1] K. Cao and A. K. Jain. Automated latent fingerprint recognition. IEEE TPAMI, DOI 10.1109/TPAMI.2018.2818162, 2018.

Virtual Minutiae Matching

1. K. 110/00

Main steps:

- Compute virtual minutiae similarity using their descriptors
- Select the top 200 virtual minutiae correspondences
- Remove false correspondences using second- and third-order graph matching

Search Performance

[1] K. Cao and A. K. Jain. Automated latent fingerprint recognition. IEEE TPAMI, DOI 10.1109/TPAMI.2018.2818162, 2018.

Challenges

- Can we further improve the search performance?
 - Rank-1 accuracies: NIST SD27 (~50%), WVU (~58%)
- Can we improve the search speed?
 - Each virtual minutia descriptor is a 384 dimension feature
 - Second- and third-order graph matching takes 11ms (24 threads)

Virtual Minutiae Descriptor

Training dataset:

~800K patches from ~50K minutiae

Enhanced fingerprint patches

- Increase the number of patches for each minutiae
- Improve the robustness of the descriptor extraction model

Virtual Minutiae Descriptor

Descriptor extraction:

3*l*-dim descriptor for each minutiae

- 3 patches (96x96 pixels) cropped from each minutiae
- One model is trained for each patch type
- Each minutia is considered as an individual class
- Output of last fully connected lay used as descriptor

Graph Matching

Second-order:

- n(n-1)/2 pairs
- 4 features per pair

Third-order:

- n(n-1)(n-2)/6 triples
- 9 features per triple

Modified Graph Matching

Euclidean second-order:

- n(n-1)/2 pairs
- 1 features per pair

Full second-order:

- n(n-1)/2 pairs
- 4 features per pair

Dataset

- Latent dataset: 258 latents from NIST SD27
- Background database: 10K exemplar fingerprints
- Latent processing: 3 different latent preprocessing approaches

Performance of Texture Template: Fusion Schemes

Input tem-	descriptor	rank-1	rank-5	rank-10
plates	length	(%)	(%)	(%)
Cao&Jain [1]	384	59.30	70.16	73.26
T_{e_1}	192	68.22	73.64	74.81
T_{e_2}	192	66.67	72.48	74.42
T_t	192	60.47	67.83	70.93
T_{e_1} + T_{e_2}	192	70.93	74.81	77.91
T_{e_1} + T_t	192	70.93	76.36	79.07
T_{e_2} + T_t	192	67.05	75.19	77.13
T_{e_1} + T_{e_2} + T_t	192	70.16	76.74	81.40
T_{e_1}	384	69.38	75.58	77.13
T_{e_2}	384	66.28	72.48	73.64
T_t	384	58.91	66.28	69.77
T_{e_1} + T_{e_2}	384	70.16	75.58	78.29
T_{e_1} + T_t	384	69.38	76.74	77.91
T_{e_2} + T_t	384	67.83	74.03	75.97
$T_{e_1} + T_{e_2} + T_t$	384	70.93	75.97	78.68

Latent database: 258 latents from NIST SD27 Background database: 10K exemplar fingerprints

CMC curves on NIST SD27

[1] K. Cao and A. K. Jain. Automated latent fingerprint recognition. IEEE TPAMI, DOI 10.1109/TPAMI.2018.2818162, 2018.

Summary and Future Work

- Improved the rank-1 identification rate from 59.3% to 68.2% for a 10K gallery
- Reduced the average latent to rolled texture template comparison time between 11ms (24 threads) to 7.7ms (single thread)
- Future works include:
 - reduce the texture template size,
 - further improve comparison speed
 - improve search accuracy

Thanks!

Flowchart of Proposed Approach

A texture template contains a set of virtual minutiae and their descriptors

Virtual Minutiae Descriptor

Training dataset: ~800K patches from ~50K minutiae

Descriptor extraction:

3*l*-dim descriptor for each minutiae

- 3 patches (96x96 pixels) cropped from each minutiae
- One model is trained for each patch type
- Each minutia is considered as an individual class
- Output of last fully connected lay used as descriptor