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Fingerprint Image Enhancement:
Algorithm and Performance Evaluation

Lin Hong, Student Member, IEEE, Yifei Wan, and Anil Jain, Fellow, IEEE

Abstract—A critical step in automatic fingerprint matching is to automatically and reliably extract minutiae from the input fingerprint
images. However, the performance of a minutiae extraction algorithm relies heavily on the quality of the input fingerprint images. In
order to ensure that the performance of an automatic fingerprint identification/verification system will be robust with respect to the
quality of input fingerprint images, it is essential to incorporate a fingerprint enhancement algorithm in the minutiae extraction
module. We present a fast fingerprint enhancement algorithm, which can adaptively improve the clarity of ridge and valley structures
of input fingerprint images based on the estimated local ridge orientation and frequency. We have evaluated the performance of the
image enhancement algorithm using the goodness index of the extracted minutiae and the accuracy of an online fingerprint
verification system. Experimental results show that incorporating the enhancement algorithm improves both the goodness index and
the verification accuracy.

Index Terms—Biometrics, fingerprint, minutiae, enhancement, Gabor filters, performance evaluation.
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1 INTRODUCTION

INGERPRINT identification is one of the most impor-
tant biometric technologies which has drawn a sub-

stantial amount of attention recently [12], [15]. A finger-
print is the pattern of ridges and valleys (also called fur-
rows in the fingerprint literature [14]) on the surface of a
fingertip. Each individual has unique fingerprints. The
uniqueness of a fingerprint is exclusively determined by
the local ridge characteristics and their relationships [12],
[14]. A total of 150 different local ridge characteristics
(islands, short ridges, enclosure, etc.) have been identi-
fied [14]. These local ridge characteristics are not evenly
distributed. Most of them depend heavily on the impres-
sion conditions and quality of fingerprints and are rarely
observed in fingerprints. The two most prominent local
ridge characteristics, called minutiae, are

1)� ridge ending and
2)� ridge bifurcation.

A ridge ending is defined as the point where a ridge ends
abruptly. A ridge bifurcation is defined as the point where
a ridge forks or diverges into branch ridges. A good qual-
ity fingerprint typically contains about 40–100 minutiae.
Examples of minutiae are shown in Fig. 1.

Automatic fingerprint matching depends on the com-
parison of these local ridge characteristics and their rela-
tionships to make a personal identification [12]. A critical
step in fingerprint matching is to automatically and reliably
extract minutiae from the input fingerprint images, which
is a difficult task. The performance of a minutiae extraction
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Fig. 1. Examples of minutiae. (a) A minutiae can be characterized by its
position and its orientation. (b) Minutiae overlaid on a fingerprint image.
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algorithm relies heavily on the quality of the input finger-
print images. In an ideal fingerprint image, ridges and val-
leys alternate and flow in a locally constant direction and
minutiae are anomalies of ridges, i.e., ridge endings and
ridge bifurcations. In such situations, the ridges can be eas-
ily detected and minutiae can be precisely located from the
thinned ridges. Fig. 1b shows an example of good quality
live-scan fingerprint image. However, in practice, due to
variations in impression conditions, ridge configuration,
skin conditions (aberrant formations of epidermal ridges
of fingerprints, postnatal marks, occupational marks), ac-
quisition devices, and noncooperative attitude of subjects,
etc., a significant percentage of acquired fingerprint im-
ages (approximately 10 percent according to our experi-
ence) is of poor quality. The ridge structures in poor-quality
fingerprint images are not always well-defined and, hence,
they cannot be correctly detected. This leads to following
problems:

1)�a significant number of spurious minutiae may be
created,

2)�a large percent of genuine minutiae may be ignored,
and

3)� large errors in their localization (position and orienta-
tion) may be introduced.

Examples of fingerprint images of very poor quality, in
which ridge structures are completely corrupted, are shown
in Fig. 2. In order to ensure that the performance of the mi-
nutiae extraction algorithm will be robust with respect to
the quality of input fingerprint images, an enhancement
algorithm which can improve the clarity of the ridge struc-
tures is necessary.

A fingerprint expert is often able to correctly identify
the minutiae by using various visual clues such as local
ridge orientation, ridge continuity, ridge tendency, etc., as
long as the ridge and valley structures are not corrupted
completely. It is possible to develop an enhancement algo-
rithm that exploits these visual clues to improve the clar-
ity of ridge structures in corrupted fingerprint images.
Generally, for a given digital fingerprint image, the region
of interest can be divided into the following three catego-
ries (Fig. 3):

      
                                                                  (a)                                                                                           (b)

Fig. 2. Fingerprint images of very poor quality.

        
                                     (a)                                                                        (b)                                                                        (c)

Fig. 3. Fingerprint regions. (a) Well-defined region. (b) Recoverable corrupted region. (c) Unrecoverable corrupted region.
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•� Well-defined region, where ridges and valleys are
clearly differentiated from one another such that a
minutiae extraction algorithm is able to operate rea-
sonably.

•� Recoverable corrupted region, where ridges and valleys
are corrupted by a small amount of creases, smudges,
etc. But, they are still visible and the neighboring re-
gions provide sufficient information about the true
ridge and valley structures.

•� Unrecoverable corrupted region, where ridges and val-
leys are corrupted by such a severe amount of noise
and distortion that no ridges and valleys are visible
and the neighboring regions do not provide sufficient
information about the true ridge and valley structures
either.

We refer to the first two categories of regions as recover-
able and the last category as unrecoverable. The goal of an
enhancement algorithm is to improve the clarity of ridge struc-
tures of fingerprint images in recoverable regions and to
remove the unrecoverable regions. Since the objective of a
fingerprint enhancement algorithm is to improve the clarity
of ridge structures of input fingerprint images to facilitate
the extraction of ridges and minutiae, a fingerprint en-
hancement algorithm should not result in any spurious
ridge structures. This is very important because spurious
ridge structure may change the individuality of input fin-
gerprints.

Fingerprint enhancement can be conducted on either

1)�binary ridge images or
2)�gray-level images.

A binary ridge image is an image where all the ridge pixels
are assigned a value one and nonridge pixels are assigned a
value zero. The binary image can be obtained by applying a
ridge extraction algorithm on a gray-level fingerprint image
[6]. Since ridges and valleys in a fingerprint image alternate
and run parallel to each other in a local neighborhood, a
number of simple heuristics can be used to differentiate the
spurious ridge configurations from the true ridge configu-
rations in a binary ridge image [5]. However, after applying
a ridge extraction algorithm on the original gray-level im-
ages, information about the true ridge structures is often
lost depending on the performance of the ridge extraction
algorithm. Therefore, enhancement of binary ridge images
has its inherent limitations.

In a gray-level fingerprint image, ridges and valleys in a
local neighborhood form a sinusoidal-shaped plane wave
which has a well-defined frequency and orientation. A
number of techniques that take advantage of this informa-
tion have been proposed to enhance gray-level fingerprint
images [2], [16], [8], [20], [21]. However, they usually as-
sume that the local ridge orientations can be reliably esti-
mated. In practice, this assumption is not valid for finger-
print images of poor quality, which greatly restricts the ap-
plicability of these techniques. Hong et al. [4] proposed a
decomposition method to estimate the orientation field
from a set of filtered images obtained by applying a bank of
Gabor filters on the input fingerprint images. Although this
algorithm can obtain a reliable orientation estimate even for
corrupted images, it is unsuitable for an on-line system be-

cause it spends a significant amount of efforts in local ori-
entation estimation from the filtered images which is com-
putationally expensive. We present a fast enhancement al-
gorithm which is able to adaptively enhance the ridge and
valley structures using both the local ridge orientation and
local frequency information. Instead of using a computa-
tional expensive method to precisely estimate the local
ridge orientation, a simple but efficient method is used. In
addition, since this algorithm is designed to be integrated
in an online system, a computationally efficient filtering
technique is used.

In the following sections, we will describe in detail our
fast fingerprint enhancement algorithm. Section 2 addresses
the main steps of our algorithm. A goal-directed perform-
ance evaluation of the implemented fingerprint enhance-
ment algorithm on fingerprint databases is described in
Section 3. Section 4 contains the summary and discussion.

2 FINGERPRINT ENHANCEMENT

A fingerprint image enhancement algorithm receives an
input fingerprint image, applies a set of intermediate steps
on the input image, and finally outputs the enhanced im-
age. In order to introduce our fingerprint image enhance-
ment algorithm, a list of notations and some basic defini-
tions are given below.

2.1 Notation
A gray-level fingerprint image, ,, is defined as an N ¥ N ma-
trix, where ,(i, j) represents the intensity of the pixel at the
ith row and jth column. We assume that all the images are
scanned at a resolution of 500 dots per inch (dpi), which is
the resolution recommended by FBI. The mean and variance
of a gray-level fingerprint image, ,, are defined as
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respectively.
An orientation image, 2, is defined as an N ¥ N image,

where 2(i, j) represents the local ridge orientation at pixel
(i, j). Local ridge orientation is usually specified for a block
rather than at every pixel; an image is divided into a set of
w ¥ w nonoverlapping blocks and a single local ridge ori-
entation is defined for each block. Note that in a fingerprint
image, there is no difference between a local ridge orienta-
tion of 90o and 270o, since the ridges oriented at 90o and the
ridges oriented at 270o in a local neighborhood cannot be
differentiated from each other.

A frequency image, ), is an N ¥ N image, where )(i, j) rep-
resents the local ridge frequency, which is defined as the fre-
quency of the ridge and valley structures in a local neigh-
borhood along a direction normal to the local ridge orien-
tation. The ridge and valley structures in a local neighbor-
hood (Fig. 4) where minutiae or singular points [9] appear
do not form a well-defined sinusoidal-shaped wave. In
such situations, the frequency is defined as the average
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frequency in the neighborhood of block (i, j). Like orienta-
tion image, frequency image is specified block-wise.

The region mask, 5, is defined as an N ¥ N image with
5(i, j) indicating the category of the pixel. A pixel could be
either

1)�a non-ridge-and-valley (unrecoverable) pixel (with
value zero) or

2)�a ridge-and-valley (recoverable) pixel (with value one).

Region mask is also specified block-wise.

2.2 Algorithm
The flowchart of the fingerprint enhancement algorithm is
shown in Fig. 5. The main steps of the algorithm include:

1)�Normalization: An input fingerprint image is normal-
ized so that it has a prespecified mean and variance.

2)�Local orientation estimation: The orientation image is
estimated from the normalized input fingerprint im-
age.

3)�Local frequency estimation: The frequency image is com-
puted from the normalized input fingerprint image
and the estimated orientation image.

4)�Region mask estimation: The region mask is obtained by
classifying each block in the normalized input finger-
print image into a recoverable or a unrecoverable
block.

5)�Filtering: A bank of Gabor filters which is tuned to local
ridge orientation and ridge frequency is applied to the
ridge-and-valley pixels in the normalized input fin-
gerprint image to obtain an enhanced fingerprint
image.

2.3 Normalization
Let ,(i, j) denote the gray-level value at pixel (i, j), M and
VAR denote the estimated mean and variance of ,, respec-
tively, and *(i, j) denote the normalized gray-level value at
pixel (i, j). The normalized image is defined as follows:
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where M0 and VAR0 are the desired mean and variance val-
ues, respectively. Normalization is a pixel-wise operation. It
does not change the clarity of the ridge and valley struc-
tures. The main purpose of normalization is to reduce the
variations in gray-level values along ridges and valleys,
which facilitates the subsequent processing steps. Fig. 6
shows an example of image normalization.

2.4 Orientation Image
The orientation image represents an intrinsic property of
the fingerprint images and defines invariant coordinates for
ridges and valleys in a local neighborhood. By viewing a
fingerprint image as an oriented texture, a number of
methods have been proposed to estimate the orientation
field of fingerprint images [11], [17], [10], [1]. We have de-
veloped a least mean square orientation estimation algo-
rithm. Given a normalized image, *, the main steps of the
algorithm are as follows:

1)�Divide * into blocks of size w ¥ w (16 ¥ 16).
2)�Compute the gradients ∂x(i, j) and ∂y(i, j) at each pixel,

                        

Fig. 4. Ridge and valley structures in a local neighborhood of minutiae.

Fig. 5. A flowchart of the proposed fingerprint enhancement algorithm.
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(i, j). Depending on the computational requirement,
the gradient operator may vary from the simple Sobel
operator to the more complex Marr-Hildreth operator
[13].

3)�Estimate the local orientation of each block centered at
pixel (i, j) using the following equations [17]:
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where q(i, j) is the least square estimate of the local
ridge orientation at the block centered at pixel (i, j).
Mathematically, it represents the direction that is or-
thogonal to the dominant direction of the Fourier spec-
trum of the w ¥ w window.

4)�Due to the presence of noise, corrupted ridge and val-
ley structures, minutiae, etc. in the input image, the
estimated local ridge orientation, q(i, j), may not al-
ways be correct. Since local ridge orientation varies
slowly in a local neighborhood where no singular
points appear, a low-pass filter can be used to modify
the incorrect local ridge orientation. In order to per-
form the low-pass filtering, the orientation image
needs to be converted into a continuous vector field,
which is defined as follows:

Fx(i, j) = cos(2q(i, j)),                          (8)
and

Fy(i, j) = sin(2q(i, j)),                           (9)

where Fx and Fy are the x and y components of the
vector field, respectively. With the resulting vector
field, the low-pass filtering can then be performed as
follows:

¢ = - -
=- =-
Â ÂF F

F

F

F

F

x
u w

w

v w

w

xi j W u v i uw j vw, , ,1 6 0 5 1 6
2

2

2

2

   (10)

and

¢ = - -
=- =-
Â ÂF F

F

F

F

F

y
u w

w

v w

w

yi j W u v i uw j vw, , ,1 6 0 5 1 6
2

2

2

2

,  (11)

where W is a two-dimensional low-pass filter with
unit integral and wF ¥ wF specifies the size of the fil-
ter. Note that the smoothing operation is performed at
the block level. The default size of the filter is 5 ¥ 5.

5)�Compute the local ridge orientation at (i, j) using
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With this algorithm, a fairly smooth orientation field es-
timate can be obtained. Fig. 7 shows an example of the ori-
entation image estimated with our algorithm.

2.5 Ridge Frequency Image
In a local neighborhood where no minutiae and singular
points appear, the gray levels along ridges and valleys can
be modeled as a sinusoidal-shaped wave along a direction
normal to the local ridge orientation (see Fig. 8). Therefore,
local ridge frequency is another intrinsic property of a fin-
gerprint image. Let * be the normalized image and 2 be
the orientation image, then the steps involved in local ridge
frequency estimation are as follows:

1)�Divide * into blocks of size w ¥ w (16 ¥ 16).
2)�For each block centered at pixel (i, j), compute an ori-

ented window of size l ¥ w (32 ¥ 16) that is defined in
the ridge coordinate system (Fig. 8).

3)�For each block centered at pixel (i, j), compute the x-
signature, X[0], X[1], ... X[l - 1], of the ridges and val-
leys within the oriented window, where
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                                                                       (a)                                                                                (b)

Fig. 6. The result of normalization. (a) Input image. (b) Normalized image (M0 = 100, VAR0 = 100).
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If no minutiae and singular points appear in the ori-
ented window, the x-signature forms a discrete sinu-
soidal-shape wave, which has the same frequency as
that of the ridges and valleys in the oriented window.
Therefore, the frequency of ridges and valleys can be
estimated from the x-signature. Let 7(i, j) be the aver-
age number of pixels between two consecutive peaks
in the x-signature, then the frequency, W(i, j), is com-
puted as: W(i, j) = 1/7(i, j). If no consecutive peaks can
be detected from the x-signature, then the frequency is

assigned a value of -1 to differentiate it from the valid
frequency values.

4)�For a fingerprint image scanned at a fixed resolution,
the value of the frequency of the ridges and valleys in
a local neighborhood lies in a certain range. For a
500dpi image, this range is [1/3, 1/25]. Therefore, if
the estimated value of the frequency is out of this
range, then the frequency is assigned a value of -1 to
indicate that a valid frequency cannot be obtained.

5)�The blocks in which minutiae and/or singular points
appear and/or ridges and valleys are corrupted do not
form a well-defined sinusoidal-shaped wave. The fre-
quency values for these blocks need to be interpolated
from the frequency of the neighboring blocks which
have a well-defined frequency. The interpolation is
performed as follows [19]:

      
                                                                     (a)                                                                                     (b)

Fig. 7. Comparison of orientation fields using the method proposed in [17] (a) and our method; w = 16 and wF = 5 (b).

Fig. 8. Oriented window and x-signature.
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Wg is a discrete Gaussian kernel with mean and
variance of zero and nine, respectively, and wW = 7
is the size of the kernel.

(ii) If there exists at least one block with the frequency
value of -1, then swap W and ¢W  and go to step (i).

6)�Interridge distances change slowly in a local neigh-
borhood. A low-pass filter can be used to remove the
outliers in ¢f :
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where Wl is a two-dimensional low-pass filter with
unit integral and wl = 7 is the size of the filter.

2.6 Region Mask
As mentioned early, a pixel (or a block) in an input finger-
print image could be either in a recoverable region or an
unrecoverable region. Classification of pixels into recover-
able and unrecoverable categories can be performed based
on the assessment of the shape of the wave formed by the
local ridges and valleys. In our algorithm, three features are
used to characterize the sinusoidal-shaped wave: amplitude
(a), frequency (b), and variance (g). Let X[1], X[2], ..., X[l] be
the x-signature of a block centered at (i, j). The three fea-
tures corresponding to pixel (block) (i, j) are computed as
follows:

1)�a = (average height of the peaks - average depth of
the valleys).

2)�b = 1/T(i, j), where T(i, j) is the average number of
pixels between two consecutive peaks.
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We selected several typical fingerprint images where both
recoverable and unrecoverable regions were manually la-
beled and computed the three features for those regions. A
total of 2,000 three-dimensional patterns were obtained. In
order to find representative patterns for the two classes, we
fed the 2,000 patterns to a squared-error clustering algo-
rithm and identified six clusters. Four of these clusters cor-
respond to recoverable regions and the remaining two cor-
respond to unrecoverable regions. The six prototypes (cor-

responding to the six cluster centers) were used in an one-
nearest neighbor (1NN) classifier to classify each w ¥ w
block in an input fingerprint image into a recoverable or an
unrecoverable block. If a block centered at (i, j) is recover-
able, then 5(i, j) = 1, else 5(i, j) = 0. After the image 5 is
obtained, the percentage of recoverable regions is com-
puted. If the percentage of recoverable regions is smaller
than a threshold, Grecoverable = 40, then the input fingerprint
image is rejected. An accepted image is then passed
through the filtering stage.

2.7 Filtering
The configurations of parallel ridges and valleys with well-
defined frequency and orientation in a fingerprint image
provide useful information which helps in removing unde-
sired noise. The sinusoidal-shaped waves of ridges and
valleys vary slowly in a local constant orientation. There-
fore, a bandpass filter that is tuned to the corresponding
frequency and orientation can efficiently remove the unde-
sired noise and preserve the true ridge and valley struc-
tures. Gabor filters have both frequency-selective and ori-
entation-selective properties and have optimal joint resolu-
tion in both spatial and frequency domains [3], [7]. There-
fore, it is appropriate to use Gabor filters as bandpass fil-
ters to remove the noise and preserve true ridge/valley
structures.

The even-symmetric Gabor filter has the general form [7]
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xf = x cos f + y sin f,                            (19)

yf = -x sin f + y cos f,                           (20)

where f is the orientation of the Gabor filter, f is the fre-
quency of a sinusoidal plane wave, and dx and dy are the
space constants of the Gaussian envelope along x and y
axes, respectively. The modulation transfer function (MTF)
of the Gabor filter can be represented as
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uf = u cos f + v sin f,                            (22)

vf = -u sin f + v cos f,                           (23)
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v f0

2
=

p fsin
,                                  (25)

where du = 1/2pdx and dv = 1/2pdy. Fig. 9 shows an even-
symmetric Gabor filter and its MTF.

To apply Gabor filters to an image, three parameters
must be specified:

1)� the frequency of the sinusoidal plane wave, f,
2)� the filter orientation, and
3)� the standard deviations of the Gaussian envelope, dx

and dy.

Obviously, the frequency characteristic of the filter, f, is
completely determined by the local ridge frequency and the
orientation is determined by the local ridge orientation. The
selection of the values of dx and dy involves a trade-off. The
larger the values, the more robust to noise the filters are but
the more likely the filters will create spurious ridges and
valleys. On the other hand, the smaller the values of dx and
dy, the less likely the filters will create spurious ridges and
valleys; consequently they will be less effective in removing
the noise. The values of dx and dy were set to 4.0 and 4.0,
respectively based on empirical data. Let * be the normal-
ized fingerprint images, 2 be the orientation image, ) be
the frequency image, and 5 be the recoverable mask, the
enhanced image ( is obtained as follows:
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where wg = 11 specifies the size of the Gabor filters.

3 EXPERIMENTAL RESULTS

The purpose of a fingerprint enhancement algorithm is to
improve the clarity of ridges and valleys of input finger-

print images and make them more suitable for the minu-
tiae extraction algorithm. The ultimate criterion for evalu-
ating such an enhancement algorithm is the total amount
of “quality” improvement when the algorithm is applied
to the noisy input fingerprint images. Such an improve-
ment can be assessed subjectively by a visual inspection of
a number of typical enhancement results. However, a pre-
cise and consistent characterization of the quality im-
provement is beyond the capability of subjective evalua-
tion. Examples of the enhancement results are shown in
Fig. 10. From these examples, we can see that our en-
hancement algorithm does improve the clarity of the ridge
and valley structures of input fingerprint images.

A goal-directed performance evaluation assesses the
overall improvement in the system performance that in-
corporates the enhancement module as a component.
Therefore, it is capable of providing a more reliable as-
sessment of the performance benchmark and is directly
associated with the ultimate goal of the system [22]. In the
following, we present the results of the goal-directed per-
formance evaluation of our enhancement algorithm.

3.1 Evaluation Using Goodness Index
We have used the goodness index (GI) of the extracted minu-
tiae to quantitatively assess the performance of our finger-

print enhancement algorithm. Let M f f fd d d d
n= 1 2, , ,K4 9  be

the set of n minutiae detected by the minutiae extraction

algorithm and M f f fe e e e
m= 1 2, , ,K4 9  be the set of m minutiae

identified by human expert in an input fingerprint image.
We define the following terms:

•� Paired minutiae (p): Minutiae fd and fe are said to be
paired if fd is located in a tolerance box centered around
fe. In this evaluation, the tolerance box size is 8 ¥ 8.

•� Missing minutiae (a): A minutiae that is not detected
by the minutiae extraction algorithm.

•� Spurious minutiae (b): A minutiae that is detected by
the minutiae extraction algorithm, but which is not in
the tolerance box of any minutiae, fe.

      
                                                          (a)                                                                                                              (b)

Fig. 9. An even-symmetric Gabor filter. (a) The Gabor filter with f = 10 and f = 0. (b) The corresponding MTF.
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The goodness index (GI) is defined as follows [18]:

GI

q p a b

q t

i i i i
i
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i i
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=

=

Â

Â
1

1

,                          (27)

where r is the number of 16 ¥ 16 windows in the input fin-
gerprint image, pi represents the number of minutiae paired
in the ith window, qi represents the quality factor of the ith
window (good = 4, medium = 2, poor = 1), ai represents the
number of missing minutiae in the ith window, bi repre-
sents the number of spurious minutiae in the ith window,
and ti represents the number of true minutiae in the ith
window. GI penalizes both the missing minutiae and spuri-

ous minutiae. It is a reasonable measure of the quality of
the extracted minutiae. The larger the value of GI, the better
the minutiae extraction algorithm. The maximum value of
GI equals one, which means there are no missing and spu-
rious minutiae.

Our fingerprint enhancement algorithm was tested on 50
typical poor fingerprint images obtained from IBM. First,
we computed the goodness index of the extracted minutiae
without applying the enhancement algorithm and then the
goodness index of the extracted minutiae was computed
with the enhancement algorithm applied to the input fin-
gerprint images before the minutiae were extracted. Exam-
ples of minutiae extraction with and without enhancement
are shown in Fig. 11. Table 1 shows the GI values of eight
typical fingerprint images and the mean and standard de-

      
                                                                  (a)                                                                                           (b)

      
                                                                  (c)                                                                                           (d)

Fig. 10. Examples of enhancement results; (a), (c), (e), and (g) are the input images; (b), (d), (f), and (h) show enhanced recoverable regions
superimposed on the corresponding input images.
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viation of GI values for all the 50 images. The GI values
after applying the enhancement algorithm are always larger
than that without the enhancement algorithm. Thus, we can
conclude that our fingerprint enhancement algorithm does
improve the quality of the fingerprint images, which, in
turn, improves the accuracy and reliability of the extracted
minutiae.

3.2 Evaluation Using Verification Performance
The performance of the enhancement algorithm was also
assessed on the first volume of the MSU fingerprint da-
tabase (700 live-scan images; 10 per individual) using the
verification accuracy of an online fingerprint verification
system [6]. We demonstrated that incorporating the en-
hancement algorithm in the fingerprint verification sys-
tem improves the system performance. In the first test,

the fingerprint enhancement algorithm was not applied.
Each fingerprint image in the data set was directly
matched against the other fingerprint images in the da-
tabase. In the second test, the fingerprint enhancement
algorithm was applied to each fingerprint image in the
data set. Then, the verification was conducted on the
enhanced fingerprint images. The receiver operating
curves (ROC) resulting from these two tests are shown in
Fig. 12. From these experimental results, we can observe
that the performance of the fingerprint verification sys-
tem is significantly improved when our fingerprint en-
hancement algorithm is applied to the input fingerprint
images. In particular, the enhancement algorithm sub-
stantially reduced the false reject rate while maintaining
the same false accept rate.

     
                                                                (e)                                                                                                (f)

      
                                                               (g)                                                                                                (h)

Fig. 10. Continued.
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In order to incorporate the enhancement algorithm into
an online fingerprint verification/identification system, the
whole enhancement process should take only a few sec-
onds. Table 2 shows the wall time for different stages of the
enhancement algorithm and the total time.

4 SUMMARY AND CONCLUSIONS

We have developed a fast fingerprint enhancement algo-
rithm which can adaptively improve the clarity of ridge
and valley structures based on the local ridge orientation
and ridge frequency estimated from the inputed image. The
performance of the algorithm was evaluated using the
goodness index of the extracted minutiae and the perform-
ance of an online fingerprint verification system which in-
corporates our fingerprint enhancement algorithm in its
minutiae extraction module. Experimental results show that

      
                                                                   (a)                                                                                        (b)

      
                                                                   (c)                                                                                        (d)

Fig. 11. Examples of minutiae extraction with and without enhancement; (a) and (c) show the extracted minutiae without applying the enhance-
ment algorithm; (b) and (d) show the extracted minutiae after applying the enhancement algorithm.

TABLE 1
THE GI VALUES OF EIGHT TYPICAL FINGERPRINT IMAGES

AND THE MEAN AND STANDARD DEVIATION
OF 50 IBM FINGERPRINT IMAGES

Goodness Index (GI)

Image # Without Enhancement With Enhancement
1 0.46 0.55
2 0.38 0.52
3 0.29 0.42
4 0.26 0.39
5 0.21 0.35
6 0.12 0.31
7 0.11 0.26
8 0.10 0.29

mean 0.24 0.39
std 0.05 0.04
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our enhancement algorithm is capable of improving both
the goodness index and the verification performance. The
algorithm also identifies the unrecoverable corrupted re-
gions in the fingerprint and removes them from further
processing. This is a very important property because such
unrecoverable regions do appear in some of the corrupted
fingerprint images and they are extremely harmful to mi-
nutiae extraction. These properties suggest that our en-
hancement algorithm should be integrated into an online
fingerprint verification/identification system.

The global ridge and valley configuration of fingerprint
images presents a certain degree of regularity. A global
model of the ridges and valleys that can be constructed
from partial “valid” regions can be used to correct the er-
rors in the estimated orientation images, which, in turn,
will help the enhancement. Currently, we are investigating
such a model-based enhancement algorithm.

The configurations of ridges and valleys within a local
neighborhood vary with the quality of input fingerprint
images, so a well-defined sinusoidal-shaped waves of
ridges and valleys may not always be observed. Global
features are needed for a more precise region mask classi-
fication.
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