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A Multichannel Approach
to Fingerprint Classification

Anil K. Jain, Fellow, IEEE, Salil Prabhakar, Student Member, IEEE, and Lin Hong

Abstract—Fingerprint classification provides an important indexing mechanism in a fingerprint database. An accurate and consistent
classification can greatly reduce fingerprint matching time for a large database. We present a fingerprint classification algorithm which is
able to achieve an accuracy better than previously reported in the literature. We classify fingerprints into five categories: whorl, right loop,
left loop, arch, and tented arch. The algorithm uses a novel representation (FingerCode) and is based on a two-stage classifier to make
a classification. It has been tested on 4,000 images in the NIST-4 database. For the five-class problem, a classification accuracy of 90
percent is achieved (with a 1.8 percent rejection during the feature extraction phase). For the four-class problem (arch and tented arch
combined into one class), we are able to achieve a classification accuracy of 94.8 percent (with 1.8 percent rejection). By incorporating a
reject option at the classifier, the classification accuracy can be increased to 96 percent for the five-class classification task, and to 97.8
percent for the four-class classification task after a total of 32.5 percent of the images are rejected.

Index Terms—Biometrics, fingerprint classification, Gabor filters, neural networks, FingerCode.
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1 INTRODUCTION

INGERPRINTS are the ridge and furrow patterns on the tip
of the finger [1] and are used for personal identification

of people [2]. Fig. 1 shows some examples of fingerprints.
Large volumes of fingerprints are collected and stored eve-
ryday in a wide range of applications, including forensics,
access control, and driver license registration. An automatic
recognition of people based on fingerprints requires that the
input fingerprint be matched with a large number of finger-
prints in a database (the FBI database contains more than 70
million fingerprints!). To reduce the search time and compu-
tational complexity, it is desirable to classify these finger-
prints in an accurate and consistent manner such that the
input fingerprint needs to be matched only with a subset of
the fingerprints in the database. Fingerprint classification is a
technique used to assign a fingerprint into one of the several
prespecified types already established in the literature which
can provide an indexing mechanism. Fingerprint classifica-
tion can be viewed as a coarse level matching of the finger-
prints. An input fingerprint is first matched at a coarse level
to one of the prespecified types and then, at a finer level, it is
compared to a subset of the database corresponding to that
fingerprint type. In this study, we classify fingerprints into
five classes, namely, whorl (W), right loop (R), left loop (L), arch
(A), and tented arch (T) (Fig. 1).

There are two main types of features in a fingerprint:
1)�global ridge and furrow structures which form special

patterns in the central region of the fingerprint, and
2)� local ridge and furrow minute details.

A fingerprint is classified based on only the first type of
features and uniquely identified based on the second type
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Fig. 1. Major fingerprint classes. Twin loop images are labeled as whorl
in the NIST-4 database. (a) Twin loop (W), (b) Whorl (W), (c) Right loop
(R), (d) Left loop (L), (e) Arch (A), (f) Tented arch (T).
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of features (one such feature is the ridge endings and bifur-
cations, also known as minutiae). See Fig. 2 for examples of
ridges, minutiae, orientation field, and singular points in a
fingerprint image.

Several approaches have been developed for automatic
fingerprint classification. These approaches can be broadly
categorized into four main categories:

1)�model-based,
2)� structure-based,
3)� frequency-based, and
4)� syntactic.

The model-based fingerprint classification technique uses
the locations of singular points (core and delta) to classify a
fingerprint into the five above-mentioned classes [3], [4]. A
model-based approach tries to capture the knowledge of a
human expert by deriving rules for each category by hand-
constructing the models and therefore, does not require
training. Accuracies of 85 percent [3] and 87.5 percent [4]
have been reported on the NIST-4 database [5] using these
approaches. A structure-based approach uses the estimated
orientation field in a fingerprint image to classify the fin-
gerprint into one of the five classes. An accuracy of 90.2 per-
cent with 10 percent rejection is reported on NIST-4 [6]. The
neural network used in [6] was trained on images from
2,000 fingers (one image per finger) and then tested on an

independent set of 2,000 images taken from the same fin-
gers. The error reported is, thus, optimistically biased. A
later version of this algorithm [7] was tested on the NIST-14
database, which is a naturally distributed database, resulting
in a better performance. However, this performance im-
provement should be expected since the NIST-14 database
contains only a small percentage of arch-type fingerprints,
which pose the most difficulty for fingerprint classifiers and
the neural network used in the algorithm implicitly takes
advantage of this information. A similar structure-based
approach, which uses hidden Markov models for classifi-
cation [8], depends on a reliable estimation of ridge loca-
tions, which is difficult in noisy images. In another struc-
ture-based approach, B-spline curves are used to represent
and classify fingerprints [9]. A syntactic approach uses a
formal grammar to represent and classify fingerprints [10].
Frequency-based approaches use the frequency spectrum of
the fingerprints for classification [11]. Hybrid approaches
combine two or more approaches for classification [12], [13].
These approaches show some promise but have not been
tested on large databases. For example, Chong et al. [9] re-
port results on 89 fingerprints, Fitz and Green [11] on 40 fin-
gerprints, and Kawagoe and Tojo [13] on 94 fingerprints.

Most of the category information about a fingerprint is
contained in the central part of the fingerprint. The model-
based techniques which use both the core and delta points

Fig. 2. Orientation field, thinned ridges, minutiae, and singular points. (a) Gray scale image. (b) Orientation field. (c) Thinned ridges. (d) Minutiae
(�), Core (u), and Delta (D).
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for classification require that these singular points be present
in the image. The dab fingerprint images obtained by optical
scanners do not always capture the entire fingerprint and
often have the delta point(s) missing. The new solid-state
fingerprint capture devices are small in size and so, capture
only a part of the fingerprint (e.g., the FPS100 solid-state sen-
sor from Veridicom is about the size of a postage stamp).
Also, the core or delta point(s) are difficult to detect in noisy
fingerprint images. There is, however, sufficient information
available in the ridge pattern itself to classify a fingerprint.
While the structure-based approach does not depend upon
the core or delta points, it requires a reliable estimate of the
orientation field which is again very difficult to obtain in low
quality fingerprint images.

We propose a fingerprint classification algorithm (Fig. 3)
based on a novel representation scheme which is directly
derived from local ridge structures. The representation does
not use the core, delta, and orientation field, explicitly. It is
more capable of tolerating poor image quality, which is a
major difficulty in fingerprint classification.

The main steps of our classification algorithm are as
follows:

1)�Locate a registration point in the input image and de-
fine a spatial tessellation of the region around the
registration point (sectors).

2)�Decompose the input image into a set of component
images, each of which preserves certain ridge struc-
tures; compute the standard deviation of the compo-
nent images in each sector to generate the feature
vector (called FingerCode).

3)�Feed the feature vector into a classifier; in our algo-
rithm, a two-stage classifier is used.

This two-stage classifier uses a K-nearest neighbor classifier
in its first stage and a set of neural network classifiers in its
second stage to classify a feature vector into one of the five
fingerprint classes.

In the following sections, we will present the details of
our fingerprint classification algorithm. Section 2 presents
our feature extraction scheme. In Section 3, we present our
classification scheme. In Section 4, we present our experi-
mental results on the NIST-4 database. The conclusions and
future research directions are presented in Section 5.

2 FEATURE EXTRACTION

The category of a fingerprint is determined by its global
ridge and furrow structures. A valid feature set for finger-
print classification should be able to capture this global in-
formation effectively. We have developed a novel repre-
sentation scheme (FingerCode) which is able to represent

Fig. 3. Flow diagram of our fingerprint classification algorithm.
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both the minute details and the global ridge and furrow
structures of a fingerprint. For the purpose of classification,
we use a low-level representation which is very effective in
representing the global ridge and furrow structures and
which is invariant to individual minute details.

The main steps of our feature extraction algorithm are as
follows:

1)�Find a registration point (center point) and define a
spatial tessellation of the image space around the reg-
istration point (represented by a collection of sectors).

2)�Decompose the input image into a set of component
images, which preserve global ridge and furrow
structures.

3)�Compute the standard deviation of gray level val-
ues in each sector to form the feature vector or the
FingerCode.

Let I(x, y) denote the gray level at pixel (x, y) in an M � N
fingerprint image and let (xc, yc) denote the center point.
The spatial tessellation of the image space which consists of
the region of interest is defined by a collection of sectors Si,
where the ith sector Si is computed in terms of parameters
(r, q) as follows:

Si = {(x, y)|b(Ti + 1) � r < b(Ti + 2),    qi � q < qi+1,
1 � x � N,    1 � y � M },          (1)

where
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b is the width of each band and k is the number of sectors
considered in each band. We use six concentric bands
around the center point. Each band is 20-pixels wide (b = 20),
and segmented into eight sectors (k = 8) (Fig. 4). The inner-
most band is not used for feature extraction because the sec-
tors in the region near the center contain very few pixels.
Thus, a total of 8 � 6 = 48 sectors (S0 through S47) are defined.

2.1 Center Point Location
Any point that can be consistently detected in a fingerprint
image can be used as a registration point (or center point be-
cause we prefer this point to be positioned at the center of the
image). In a fingerprint image, the core point presents such a
consistent point. Therefore, in our algorithm, we define core
point as the center point (xc, yc). We used the core point detec-
tion algorithm described in [4] which is presented below.

1)�Estimate the orientation field 2 using the least square
orientation estimation algorithm [14]. Orientation
field 2 is defined as an N � N image, where 2(i, j)
represents the local ridge orientation at pixel (i, j). An
image is divided into a set of w � w nonoverlapping
windows and a single local orientation is defined for
each window.

2)�Smooth the orientation field in a local neighborhood. Let
the smoothed orientation field be represented as 2��.

3)� Initialize $, a label image used to indicate the core
point.

4)�For each pixel (i, j) in 2� �, compute the Poincaré index
and assign the corresponding pixels in $ a value of
one if the Poincaré index is (1/2). The Poincaré index at
pixel (i, j) enclosed by a digital curve, which consists
of a sequence of pixels that are on or within a distance
of one pixel apart from the corresponding curve, is
computed as follows:
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d(k) = 2�(Yx(k�), Yy(k�)) - 2�(Yx(k) ,Yy(k)),    (8)

k� = (k + 1) mod NY, (9)

where Yx(¼) and Yy(¼) are the x and y coordinates of
the closed digital curve with NY pixels.

5)�Find the connected components in $. If the area of a
connected component is larger than seven, a core is
detected at the centroid of the connected component.
If the area of a connected component is larger than 20,
two cores are detected at the centroid of the connected
component.

6)� If more than two cores are detected, go back to Step 2.
7)� If two cores are detected, the center is assigned the

coordinates of the core point with the lower y value

Fig. 4. Core (u), center (�), the region of interest and 48 sectors.
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(the upper core). If only one core is detected, the cen-
ter is assigned the coordinates of the core point.

8)� If no core point is detected, compute the covariance
matrix of the vector field in a local neighborhood (q � q)
of each point in the orientation field. Define a feature
image ) with the largest eigenvalue of the covariance
matrix for each element in the orientation image. A
core is detected at the centroid of the largest con-
nected component in the thresholded image of ) and
the center is assigned the coordinates of the core.

The center found above is shifted 40 pixels down for
further processing based on the fact that most of the cate-
gory information in a fingerprint lies in the lower part of
the fingerprint. This value was empirically determined. See
Figs. 4, 12, 13, 14, and 15 for results of our center location
algorithm.

2.2 Decomposition
Fingerprint images present a strong orientation tendency
and have a well-defined spatial frequency in each local
neighborhood that does not contain singular point(s)
(Fig. 6b). Gabor filters are band-pass filters which have
both orientation-selective and frequency-selective proper-
ties and have optimal joint resolution in both spatial and
frequency domains [18]. By applying properly tuned Ga-
bor filters to a fingerprint image, the true ridge and fur-

row structures can be greatly accentuated. These accentu-
ated ridges and furrow structures constitute an efficient
representation of a fingerprint image.

An even symmetric Gabor filter has the following gen-
eral form in the spatial domain:
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x� = xsinq + ycosq,         (11)

y� = xcosq - ysinq,         (12)

where f is the frequency of the sinusoidal plane wave along
the direction q from the x-axis, and dx and dy specify the
Gaussian envelope along x and y axes, respectively, which
determine the bandwidth of the Gabor filter.

In our algorithm, the filter frequency f is set to the average
ridge frequency (1/K), where K is the interridge distance.
The average interridge distance is approximately 10 pixels in
a 500 dpi fingerprint image. If f is too large, spurious ridges
may be created in the filtered image, whereas if f is too small,
nearby ridges may be merged into one. The bandwidth of the
Gabor filters is determined by dx and dy. The selection of the
values of dx and dy is based on the following trade-off. If they
are too large, the filter is more robust to noise, but is more
likely to smooth the image to the extent that the ridge and

Fig. 5. Gabor filters (size = 33 � 33, f = 0.1, dx = 4.0, dy = 4.0). (a) 0° orientation. (b) 45° orientation. (c) 90° orientation. (d) 135° orientation.
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furrow details in the fingerprint are lost. On the other hand,
if they are too small, the filter is not effective in removing
noise. In our algorithm, the values of dx and dy were empiri-
cally determined and both were set to 4.0.

A fingerprint image is decomposed into four component
images corresponding to four different values of q (0o, 45o,
90o, and 135o) with respect to the x-axis (Fig. 5). A finger-
print image is convolved with each of the four Gabor filters
to produce the four component images. Convolution with a
0o-oriented filter accentuates ridges parallel to the x-axis,
and it smoothes ridges which are not parallel to the x-axis.
Filters tuned to other directions work in a similar way. Ac-
cording to our experimental results, the four component
images capture most of the ridge directionality information
present in a fingerprint image and thus form a valid repre-
sentation. We illustrate this by reconstructing a fingerprint
image by adding together all the four filtered images. The
reconstructed image is similar to the original image but the
ridges have been enhanced (Fig. 7).

Before decomposing the fingerprint image, we normalize
the region of interest in each sector separately to a constant
mean and variance. Normalization is done to remove the
effects of sensor noise and finger pressure differences. Let
I(x, y) denote the gray value at pixel (x, y), Mi and Vi, the
estimated mean and variance of sector Si, respectively, and
Ni(x, y), the normalized gray-level value at pixel (x, y). For
all the pixels in sector Si, the normalized image is defined as:
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where M0 and V0 are the desired mean and variance values,
respectively. Normalization is a pixel-wise operation which
does not change the clarity of the ridge and furrow struc-
tures. If normalization is done on the entire image, then it
cannot compensate for the intensity variations in the differ-
ent parts of the finger due to finger pressure differences.
Normalization of each sector separately alleviates this prob-
lem. For our experiments, we set both M0 and V0 to a value
of 100. Normalized, filtered, and reconstructed images for the
fingerprint shown in Fig. 4 are shown in Fig. 7.

2.3 Feature Vector
In each component image, a local neighborhood with
ridges and furrows that are parallel to the corresponding

filter direction exhibits a higher variation, whereas a local
neighborhood with ridges and furrows that are not paral-
lel to the corresponding filter tends to be diminished by
the filter which results in a lower variation. The spatial
distribution of the variations in local neighborhoods of the
component images thus constitutes a characterization of
the global ridge structures and is well captured by the
standard deviation of grayscale values. In our algorithm,
the standard deviation within the sectors defines the fea-
ture vector.

Let Ciq(x, y) be the component image corresponding to q
for sector Si. For "i, i = 0, 1, ¡, 47 and q ³ [0o, 45o, 90o, 135o],
a feature is the standard deviation Fiq, defined as:

F C x y Mi i i
Ki

q q q= -Ê ,1 63 82 ,            (14)

where Ki is the number of pixels in Si and Miq is the mean of
the pixel values in Ciq(x, y). The 192-dimensional feature
vectors, also called FingerCodes (similar to the IrisCode

Fig. 7. Normalized, filtered, and reconstructed fingerprint images. (a)
Normalized image. (b) Component image 0°. (c) Component image
45°. (d) Component image 90°. (e) Component image 135°. (f) Recon-
structed image.

Fig. 6. Fingerprints have well defined local frequency and orientation.
(a) Ridges in a local region. (b) Fourier spectrum.
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introduced by Daugman [16]), for typical fingerprint images
from different classes are shown as gray level images with
four disks, each disk corresponding to one filtered image
(Fig. 8). The gray level in each sector of a disk represents the

feature value for that sector in the corresponding filtered
image. One can see that visually this representation appears
to discriminate the five fingerprint classes reasonably well.

Fig. 8. Fingerprint representation using 192-dimensional feature vectors (In each representation, the top left disk represents the 0o component,
the top right disk represents the 45o component, the bottom left disk represents the 90o component, and the bottom right disk represents the 135o

component). The test pattern is a right loop. Each disk corresponds to one particular filter and there are 48 features (shown as gray values) in
each disk (8 � 6 = 48 sectors) for a total of 192 (48 � 4) features. (a) Test, (b) whorl, (c) right loop, (d) left loop, (e) arch, (f) tented arch.

Fig. 9. Classification scheme using a combination of classifiers.
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3 CLASSIFICATION
Automatic classification of fingerprints is a difficult problem
because of the small interclass variability and large intraclass
variability among the five classes under consideration.

In order to simplify the classification task, we decom-
pose the five-class problem into a set of 10 two-class prob-
lems. Further, we use a two-stage classifier for fingerprint
classification. In the first stage, we use a K-nearest neighbor
classifier to find the two most probable classes for a given
input pattern. The K-nearest neighbor decision rule first
finds the K nearest neighbors of the test pattern in the fea-
ture space and, then, assigns the test pattern to the class
which is most frequently represented among the K nearest
neighbors. The top two categories can be retrieved from the
K-NN classifier corresponding to the classes which have the
highest and the second highest count among the K nearest
neighbors, i.e., the first recall and the second recall. In the
second stage of the classifier, a set of 10 (C2

5 ) neural net-
works are trained to solve the 10 different two-class prob-
lems. The second stage uses the first and second recalls to
select the specific neural network which has been trained to
distinguish between the corresponding pair of classes and
the input pattern is then sent to the selected neural network
for further classification. This neural network makes the
final decision between these two classes.

4 EXPERIMENTAL RESULTS

4.1 Dataset
We report the results of our fingerprint classification algo-
rithm on the NIST-4 database for the five-class fingerprint
classification problem. Since fingerprint classes A (arch) and
T (tented arch) have a substantial overlap, it is very difficult
to separate these two classes. Therefore, we also report our
results for the four-class classification problem, where
classes A and T have been merged into one class. By incor-
porating a rejection option, classification accuracy can be
increased. We report the improvement in error rates at dif-
ferent rejection rates for both the five-class and the four-
class classification problems.

The NIST-4 database consists of 4,000 fingerprint images
(image size is 512 � 480) from 2,000 fingers. Each finger has
two impressions (f and s). Each image is labeled with one or
more of the five classes (W, R, L, A, and T). To simplify the
training procedure, we make use of only the first label of a
fingerprint to train our system. For testing, however, we
make use of all the labels for a fingerprint and consider the
output of our classifier to be correct if the output matches
any one of the labels. This is in line with the common prac-
tice used by other researchers in comparing the classifica-
tion results on the NIST-4 database. The images in the
NIST-4 database are numbered f0001 through f2000 and
s0001 through s2000. Each number represents a fingerprint
from a different finger. We form our training set with the
first 2,000 fingerprints from 1,000 fingers (f0001 to f1000 and
s0001 to s1000) and the test set contains the remaining 2,000
fingerprints (f1001 to f2000 and s1001 to s2000). The natural
proportion of fingerprints belonging to each class is 0.279,
0.317, 0.338, 0.037, and 0.029 for the classes W, R, L, A, and
T, respectively [6]. Classification accuracies can be signifi-

cantly increased by using datasets whose records follow the
natural distribution of fingerprint classes because the more
common types of fingerprints (loop and whorl) are easier to
recognize. However, we do not use datasets with a natural
class distribution. Twenty-eight fingerprints from the
training set were rejected by our feature extraction algo-
rithm because the center was detected at a corner of the
image and, therefore, a valid tessellation could not be es-
tablished for these images (Fig. 10). Thirty-five fingerprints
were rejected from the test set for the same reason. So, our
training set contains 1,972 fingerprint images. The 35 im-
ages rejected from the test set of 2,000 fingerprints amounts
to a reject rate of 1.8 percent.

4.2 K-Nearest Neighbor Classifier
The K-nearest neighbor classifier results in an accuracy of
85.4 percent for the five-class classification task when 10
nearest neighbors (K = 10) are considered. Classification
accuracy does not always increase with increasing K; there
exists an optimal value of K for finite training sample size
classification problems (Fig. 11) [19]. For the four-class clas-
sification task (where classes A and T were collapsed into
one class), an accuracy of 91.5 percent is achieved. The con-
fusion matrix for the K-nearest neighbor classification is
shown in Table 1. The diagonal entries in this matrix show
the number of test patterns from different classes which are
correctly classified. Since a number of fingerprints in the

Fig. 10. Example of images which were rejected because a valid tes-
sellation could not be established.

Fig. 11. K vs. percent error for the K-nearest neighbor classifier.
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NIST-4 database are labeled as belonging to two different
classes, row sums of the confusion matrices in Tables 1, 2,
and 3 are not identical.

4.3 Neural Network Classifier
We trained a multilayer feed-forward neural network using
a quick propagation training algorithm [22]. The neural
network has one hidden layer with 20 neurons, 192 input
neurons, and five output neurons corresponding to the five
classes. We obtain an accuracy of 86.4 percent for the five-
class classification task. For the four-class classification task,
an accuracy of 92.1 percent is achieved. The confusion matrix
for the neural network classification is shown in Table 2.

4.4 Two-Stage Classifier
The objective here is to perform a “simple” classification task
using a K-NN classifier and then use a bank of two-class neu-
ral network classifiers to handle more subtle discriminations.
The first stage uses the K-nearest neighbor (K = 10) classifier
to yield the two most probable classes. We observed that 85.4
percent of the time, the class with the maximum frequency
among the K nearest neighbors is the correct class and 12.6
percent of the time, the class with the second highest fre-
quency is the correct class. In other words, the K-nearest
neighbor classifier yields the top two classes with an accu-
racy of 98 percent. This result itself can be used to accurately
classify fingerprints into two out of the five classes. Each fin-
gerprint will have an entry in two of the five partitions of the
database and the matching is required to be performed only
in the corresponding two partitions of the database. The sec-
ond stage uses 10 different neural networks for 10 different
pairwise classifications. These neural networks have 192 in-
put neurons, 20-40 hidden neurons in one hidden layer, and
2 output neurons. Each neural network is trained using the
patterns from only the two corresponding classes in the
training set. For example, the neural network which distin-
guishes between R and W is trained using only the patterns
labeled R and W in the training set.

This two-stage classifier yields an accuracy of 90 percent for
the five-class classification task and an accuracy of 94.8 percent
is achieved for the four-class classification task. The confu-
sion matrix for the two-stage classification is shown in Ta-
ble 3. Although our classifier is robust to noise and is able
to correctly classify most of the poor quality fingerprints in
the NIST-4 database (Fig. 12), it fails on some very bad
quality fingerprint images where no ridge information is
present in the central part of the fingerprint (Fig. 13). In
poor quality fingerprints, it is very difficult to detect the
center point correctly (Fig. 10b). Our classifier also fails to
correctly classify twin loop images which are labeled as
whorl in the NIST-4 database. For these images, our center
location algorithm picks up the upper core and on consid-
ering that as the center, the image looks like a loop in the
region of interest which leads to a misclassification of W as
L or R. See Fig. 14 for these misclassifications. About 3 per-
cent of the errors result from loop-arch misclassification be-
cause of the subtle difference between loop and arch types
(see Fig. 15a). The A-T misclassification accounts for about
5 percent of the errors. An example of this type of confusion
is shown in Fig. 15b.

4.5 Reject Option
Classification accuracies can be further increased by incor-
porating a rejection option. We use the (K, K�)-nearest
neighbor classifier [23] for rejection and the proposed

TABLE 1
CONFUSION MATRIX FOR THE K-NEAREST NEIGHBOR

CLASSIFICATION; K = 10

TABLE 2
CONFUSION MATRIX FOR THE NEURAL NETWORK

CLASSIFICATION

TABLE 3
CONFUSION MATRIX FOR THE TWO-STAGE CLASSIFICATION
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two-stage classifier for classification. If the number of
training samples from the majority class among the K near-
est neighbors of a test pattern is less than K� (K� < K), we
reject the test pattern and do not attempt to classify it. Most
of the rejected images using this scheme are of poor quality
(Figs. 16a and 16b). Other rejected images are those images
which “appear” to belong to different classes. For example,
for the fingerprint image shown in Fig. 16c, three of its near-
est neighbors belong to class R, three to class A, and four to
class T. By rejecting 19.5 percent of the images for the five-
class problem, the classification accuracy can be increased to
93.5 percent and for the four-class classification problem, the
accuracy can be increased to 96.6 percent (Table 4).

5 CONCLUSIONS

We have developed a novel multichannel filter-based classi-
fication algorithm which gives better accuracy than previ-
ously reported in the literature on the NIST-4 database. Our
feature vector, called FingerCode, is more representative of

TABLE 4
ERROR-REJECT TRADE-OFF

Fig. 12. Poor quality images which were correctly classified. (a) Arch,
(b) left loop.

Fig. 13. Poor quality images which were misclassified as arch. (a) Whorl,
(b) right loop.

Fig. 14. Misclassification of whorl (twin loop) as (a) right loop, (b) left
loop.

Fig. 15. Misclassifications; (a) a right loop misclassified as an arch; (b) an
arch misclassified as a tented arch.
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the fingerprint class information and is robust to noise
which is reflected in the classification accuracy. We have
tested our algorithm on the NIST-4 database and a very
good performance has been achieved (90 percent for the
five-class classification problem and 94.8 percent for the
four-class classification problem with 1.8 percent rejec-
tion during the feature extraction phase). However, this
algorithm suffers from the requirement that the region of
interest be correctly located, requiring the accurate detec-
tion of center point in the fingerprint image. By improving
the accuracy of registration point location, a better per-
formance can be easily expected. Our system takes about 10
seconds on a Sun Ultra-1 machine to classify one finger-
print, which is another aspect of the algorithm that needs to
be improved. Since image decomposition (filtering) steps
account for 90 percent of the total compute time, special
purpose hardware for convolution can significantly de-
crease the overall time for classification.
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