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A Real-Time Matching System for Large 
Fingerprint Databases 
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Abstract-With the current rapid growth in multimedia technology, there is an imminent need for efficient techniclues to search and 
query large image databases. Because of their unique and peculiar needs, image databases cannot be treated iri a similar fashion 
to other types of digital libraries. The contextual dependencies present in images, and the complex nature of two-dimensional image 
data make the representation issues more difficult for image databases. An invariant representation of an image is still an open 
research issue. For these reasons, it is difficult to find a universal content-based retrieval technique. Current approaches based on 
shape, texture, and color for indexing image databases have met with limited success. Further, these techniques have not been 
adequately tested in the presence of noise and distortions. A given application domain offers stronger constraints for improving the 
retrieval performance. Fingerprint databases are characterized by their large size as well as noisy and distorted query images. 
Distortions are very common in fingerprint images due to elasticity of the skin. In this paper, a method of indexincl large fingerprint 
image databases is presented. The approach integrates a number of domain-specific high-level features such as pattern class and 
ridge density at higher levels of the search. At the lowest level, it incorporates elastic structural feature-based matching for indexing 
the database. With a multilevel indexing approach, we have been able to reduce the search space. The search engine has also 
been implemented on Splash 2-a field programmable gate array (FPGA)-based array processor to obtain near-,4SIC level speed of 
matching. Our approach has been tested on a locally collected test data and on NIST-9, a large fingerprint database available in the 
public domain. 
index Terms-Image database, fingerprint matching, minutiae points, image registration, indexing, field programmable gate array. 

1 INTRODUCTION 
multimedia system is expected to efficiently handle A various types of data suclh as text, image, audio, and 

video. Current database technology can easily manage al- 
phanumeric data. However, the techniques used in con- 
ventional text-oriented databases cannot handle image re- 
trievals based on content. An obvious approach to content- 
based retrieval based on static annotation of images by text, 
followed by available database methods has a limited us- 
age. The main drawback of this method is that the scene 
description can be different at different times for the same 
image depending on the query context. Secondly, for large 
databases, annotating each and every image can be a highly 
time consuming task. Researchers in the past had shown 
substantial interest in pictorial databases. But, the prevail- 
ing hardware at the time posed serious limitations. With 
recent advances in hardware technology, nontextual data- 
bases are receiving more attention. For textual data, the 
representation and retrieval issues have been addressed 
extensively. The same analysis cannot be extended to im- 
ages, audio, and video data because of the difficulties in 
obtaining an invariant representation of nontextual data. 
For example, an object is represented in a textual database 
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by its name, color, and other attributes that define the ob- 
ject. The image of the same object m,iy vary depending on 
its orientation, ambient light, and the sensor. The sensed 
information is of much higher dimensionality than the 
textual information. In a digital library, there are primarily 
three components: 

1) data capture, 
2) storage management, and 
3) search and query techniques. 

For nontextual data, the data capture stage is context de- 
pendent and highly sensitive to sensing modalities. Hence, 
the other two stages warrant special treatment. 

Early image databases were primarily used for remotely 
sensed data [13], [15]. Recently, manly researchers have ex- 
amined various design issues for image databases [30], [32], 
[40], 1501, [4], 1471, [48]. The conteni-based retrieval tech- 
niques used in these systems are based on many visual cues 
such as color [43], texture [33], and shape [91. Iconic index- 
ing [14], [ll] has been used for representation and retrieval. 
Orenstein and Manola [31] describe ,in image database for 
spatial and temporal data modeling. A data structure called 
”point sets” has been used to represent images and an op- 
erator called the ”geometric filter” has been used to opti- 
mize spatial queries. Joseph and Carillenas [22] proposed a 
high-level query language, called PICQUERY for pictorial 
database management. This was later extended to PIC- 
QUERY’ by Cardenas et al. [lo]. They describe a high-level 
domain-independent query language that supports impre- 
cise and fuzzy descriptors. Roussopolous et al. 1381 use R- 
and R+ trees and a query language I’SQL for cartographic 
database applications. Iconic indexing was first proposed 
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by Chang et al. [14] for representing images as 2D strings. 
Querying using iconic indexing then reduces the problem 
to 2D subsequence matching. Extending this idea, Chang 
and Lee [11] describe a retrieval method which is based on 
transforming each image into a set of ordered triplets rep- 
resenting relationship between objects in the image and 
then constructing a hash table for all the triplets for a faster 
access. 

Index-based object recognition has become popular in 
the computer vision community [18], 191, [42], [37]. Features 
extracted from an image are compared with features in the 
model database of objects. Geometric hashing [25] has been 
extensively used for this purpose. Rigoutsos and Hummel 
[37] have implemented geometric hashing on a parallel ma- 
chine for object recognition. Recently, Califano and Mohan 
[9] have described an analytical framework for multidi- 
mensional indexing. Color histograms of multicolored ob- 
jects proposed by Swain and Ballard [43] provide another 
method of indexing into a large database of models. The 
QBIC project [30] integrates many cues such as color, tex- 
ture, and shape to efficiently retrieve contents from the im- 
age database. MIT’s Photobook [32] describes a set of inter- 
active tools for browsing and searching images and image 
sequences. A set of perceptually-significant coefficients are 
used for image matching. Similar approaches have been 
taken by Picard and Minka [331 for annotating a digital li- 
brary of images based on image texture. For video data in- 
dexing and retrieval, Smoliar and Zhang 1401 use color, 
texture, and shape as features and construct index tables 
using knowledge representation techniques. Yoshitaka, 
et al. [50] used a knowledge assisted content-based retrieval 
technique based on an object-oriented data model called 
MORE. Chang and Hsu [12] discuss many research issues 
in an image information system and suggest the use of gen- 
eralized icons and active indices for content-based retrieval. 
Jain and Vailaya [21] describe an image retrieval technique 
based on color and shape with excellent results on trade- 
mark image database. 

There has been a considerable amount of interest in face 
databases. Bach et al. [4] integrate ideas from image under- 
standing for image retrieval and update it with example- 
based querying from database technology for querying. 
They use edge maps and other topological features from 
faces (e.g., nose length) as features for face image retrieval. 
Wu and Narasimhalu 1471 describe similar methods for face 
retrieval based on neural networks for iconic indexing. 
Though a general purpose content-based retrieval system is 
hard to design, Wu et al. [48] attempt to integrate many basic 
requirements in a content-based search engine, called CORE. 

For small databases (on the order of hundreds of images) 
most of these techniques have been shown to work well. As 
the database size grows, these techniques are not very suc- 
cessful. The performance does not scale as the cues used are 
primarily global in nature. Secondly, these techniques have 
been tested under controlled environments. Hence, their 
robustness to noise and distortions in real-life environ- 
ments is yet to be demonstrated. 

Our interest in image database representation and con- 
tent-based retrieval stems from the application domain of 
fingerprint matching. A fingerprint database is character- 

ized by a large number of records (in the order of millions). 
The FBI database size has grown from over 0.8 million fin- 
gerprint cards (10 fingerprints per card) in 1924 to over 114 
million fingerprint cards in 1994. The storage requirements 
for such a large collection of images runs into 1,140 
terabytes without compression 171. Moreover, the type of 
queries such a system is expected to handle radically differs 
from the other application domains of image databases. A 
typical query of the type “find the best possible matches 
from the database to the input image” is different for a fin- 
gerprint database in the following ways: 

1) we may not have an exact match (yes/no type); 
2) the input image can be substantially different from 

the stored image in the database even though they 
represent the same finger; 

3) the input image may be noisy and distorted, and fi- 
nally 

4) the input may contain only a partial image with se- 
vere distortions as in the case of a scene-of-crime fin- 
gerprint. 

Both the uniqueness of the application domain as well as an 
inadequate treatment of the associated difficult issues war- 
rant a thorough treatment. 

The problems associated with fingerprint matching are 
very complex and an inappropriate representation scheme 
can make it intractable. This paper addresses many critical 
issues involved in large-scale fingerprint matching. The 
purpose of this paper is three fold. 

First, we describe a content-based retrieval method 
that can tolerate noisy and distorted query images. 
Second, an integrated multilevel approach is de- 
scribed to handle very large databases. 
Finally, in order to meet ”real-time” matching re- 
quirements in large databases, we have imple- 
mented our search engine on Splash2-a custom 
computing machine. 

Splash 2 is a field programmable gate array (FPGA)-based 
custom computing platform. By a suitable mapping of an 
algorithm on FPGA-based processing elements, near-ASIC 
level speeds can be achieved [8]. 

The rest of the paper is organized as follows. The finger- 
print matching problem is briefly introduced in Section 2. 
The various high-level features extracted for use in the re- 
trieval stage are described in Section 3. The integrated mul- 
tilevel retrieval technique is presented in Section 4. The 
proposed method has been implemented and tested on the 
NIST-9 database. The results of our tests are discussed in 
Section 5. In order to meet the computational needs of this 
content-based retrieval technique, we have mapped our 
algorithm on a novel custom computing machine. In Sec- 
tion 6, the architecture of Splash 2 and the mapping of the 
matching algorithm onto Splash 2 is described. Our conclu- 
sions and future work are described in Section 7. 
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Fig. 1. Gray level fingerprint images of different types of patterns with core (0) and delta (A) points: (a) arch; (b) tented arc:h; (c) right loop; 
(d) left loop; (e) whorl; (f) twin loop. 

2 FINGERPRINT MATCHING 
Fingerprint matching is one of the most popular biometric 
techniques used in automatic personal identification [28]. 
Law enforcement agencies use it routinely for criminal 
identification. Now it is also being used in several other 
applications such as access control for high security instal- 
lations, credit card usage verification, and employee identi- 
fication [281. The main reason for the popularity of finger- 
prints as a method of identification is that the fingerprint of 
a person is unique and features used in matching remain 
invariant with age. The law enforcement agencies have de- 
veloped a standardized method for manually matching 
rolled fingerprints and latent or partial fingerprints (lifted 
from the scene of a crime). However, the manual matching 
of fingerprints is a highly tedious task for the following 
reasons. The fingerprint matching complexity is a func- 
tion of the size of the image database, which can vary 
from a few hundred records to several million records. 
Even though the standard Henry formula [261 for finger- 
print recognition can be used to cut down the search 
time, the manual matching can still take several days in 
some cases. The manual classification method makes the 
distribution of records uneven resulting in more work 
for commonly occurring fingerprint classes. These prob- 
lems can be easily overcome by automating the finger- 

print-based identification process. 
For the purpose of automation, a suitable representation 

(feature extraction) of fingerprints is essential. This repre- 
sentation should have the following desirable properties: 

1) retention of the discriminating power (uniqueness) of 
each fingerprint at several levels of resolution (detail), 

2) easy computability, 
3)  amenable to automated matching algorithms, 
4) stable and invariant to noise and diistortions, and 
5) efficient and compact representation. 

The compactness property of representation often con- 
strains its discriminating power. Clearly, the raw digital 
image of a fingerprint itself does not meet these represen- 
tational requirements. Hence, high-level structural features 
are extracted from the image for the purpose of representa- 
tion and matching. 

The ridges and valleys in a fingerprint alternate, flowing 
in a local constant direction (see Fig. 1). A closer analysis of 
the fingerprint reveals that the ridges (or the valleys) ex- 
hibit anomalies of various kinds, such as ridge bifurcations, 
ridge endings, short ridges, and ridge crossovers. Eighteen 
different types of fingerprint features have been enumer- 
ated in 1161. Collectively, these features are called minutiae. 
For automatic feature extraction and matching, the set of 
fingerprint features is restricted to two types of minutiae: 
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ridge endings and ridge bifurcations. Ridge endings and bifur- 
cations are shown in Fig. 2. 

Manual 
Feature Editing 

(Optional) 
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These generic techniques are known to be intractable prob- 
lems. Suboptimal solutions have been obtained using itera- 
tive procedures such as relaxation [44], simulated anneal- 
ing, and genetic algorithms [31. The large computational 
requirement of matching is primarily due to the following 
three factors: 

1) a query fingerprint is usually of poor quality, 
2 )  the fingerprint database is very large, and 
3)  structural distortion of the fingerprint images requires 

powerful matching algorithms. 

Fig. 2. Two commonly used fingerprint features: (a) ridge bifurcation; 
(b) ridge ending. 

In a good quality, rolled fingerprint image, there are 
about 70 to 80 minutiae points. In a latent, or partial finger- 
print, the number of minutiae is much less (approximately 
20 to 30). More complex fingerprint features can be ex- 
pressed as a combination of these two basic features. For 
example, an enclosure can be considered a collection of two 
bifurcations and a short ridge can be considered a pair of 
ridge endings as shown in Fig. 3. 

Fig. 4. Components of a minutiae feature 

Fig. 3. Complex features as a combination of simple features: (a) shod 
ridge; (b) enclosure. 

The structural features which are commonly extracted 
from the gray level input fingerprint image are the ridge 
bifurcations and ridge endings. Each of the two types of 
minutiae has three attributes, namely, the x-coordinate, the 
y-coordinate, and the local ridge direction (0) as shown in 
Fig. 4. Many other features have been derived from this 
basic three-dimensional feature vector [l]. 

Given the minutiae representation of fingerprints, 
matching a fingerprint against a database reduces to the 
problem of point matching. Due to the large size of the fin- 
gerprint database, only a small subset from the database are 
selected using some of the image indexing techniques de- 
scribed in the literature. A variety of fingerprint matching 
techniques have been proposed. The early work by Moayer 
and Fu I291 was based on syntactic pattern recognition. 
Later, many geometrical approaches have been adopted. 
The matching problem can be defined as finding a degree 
of match between a query and reference fingerprint feature 
set. The minutiae sets can be matched using many tech- 
niques, including 

1) point set matching [46], 
2) graph matching [20], and 
3) sub-graph isomorphism [l]. 

. 
Matching 

Verification 

Fig. 5. Stages in an AFIS 

An automatic fingerprint identification system (AFIS) 
consists of various processing stages as shown in Fig. 5. 
Commercially available fingerprint identification systems 
typically use ridge bifurcations and ridge endings as fea- 
tures. Because of the large size of the fingerprint database 
and the noisy fingerprints encountered in practice, it is very 
difficult to achieve a reliable one-to-one matching in all the 
test cases. Therefore, the commercial systems provide a 
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ranked list of possible matches (usually the top 10 matches) 
which are then verified by a human expert. Details of 
commercial fingerprint recognition systems from NEC, 
PRINTRAK, and MORPHO are presented in [261. 
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3 FEATURE EXTRACTION 
In addition to minutiae features described earlier, there are 
other high-level features that can be used in reducing the 
search space during a match. A very important feature for 
this purpose is the pattern class of a fingerprint. Finger- 
prints are classified into five main categories: 

arch, 
tented arch, 
left loop, 
right loop, and 
whorl. 

The pattern class may be ambiguous in partial finger- 
prints and indeterminate for noisy fingerprints. An alter- 
nate class or wild-card class is assigned in these cases. Yet 
another high-level feature is the ridge density in a finger- 
print. Ridge density can be defined as the number of 
ridges per unit distance. In order to make it invariant to 
position, the ridge density between two singular points in 
a fingerprint is computed. The singular points of interest 
to us are the c m e  and delta points. The core point is the top 
most point on the inner most ridge and a delta point is the 
triradial point with three ridges radiating from it. Our 
definition of comre and delta point differs from a finger- 
print expert's point of view. Often, they are the same 
points except thmt in case of arch and tented arch classes, 
core and delta points are not defined for a fingerprint ex- 
pert. We still identify these points to suit our algorithms 
even for arch and tented arch classes. The core and delta 
points have been marked for some commonly observed 
classes and shown in Fig. 1. 

Central to our feature extraction process is the computa- 
tion of ridge dir'ections in non-overlapping windows in the 
fingerprint image. The predominant direction is computed 
as an optimal estimate of the direction vectors at each pixel 
in the window. Fingerprint images can be considered as an 
oriented texture pattern. As per the taxonomy described in 
[34], fingerprints can be classified as a weakly-ordered 
texture. The orientation field [34] is used to compute the 
optimal dominant ridge direction in each 16 x 16 window 
or block. The following steps are involved in the computa- 
tion of the oiientation field for each window: 

1) Compute the gradient of the smoothed block. Let 
GJi,j) and G&i, j) be the gradient magnitude in x and 
y directions, respectively, at pixel (i, j) obtained using 
the 3 x 3 Sobel masks [5]. 

2) Obtain the dominant direction in a 16 x 16 block using 
the following equation: 

( 1=1 ]=1 

G, # OandG, f 0 

Note that if either G, or G, is zero then the estimate of the 
dominant direction is trivial (0" or 90"). The angle 0, is 
quantized into 16 directions. 

3.1 Fingerprint Classification 
The fingerprint classification problem deals with assigning 
a fingerprint image to one of the following classes: 

arch, 
tented arch, 
whorl, 
left loop, 

* right loop, and 
reject. 

A human expert can perform this classification relatively 
easily. For an automatic system, the problem is much more 
difficult because the system has to take into account the 
global ridge directions and also their local connectivity. 
Many researchers have addressed the fingerprint classifica- 
tion problem [35], [411, L241, [6J. Rao and Black 1351 and 
Kawagoe and Tojo [24] used syntactic techniques for classi- 
fication. Srinivasan and Murthy [41] used a classification 
method based on singular point detection. Blue et al. [61 
used a neural network based method for classification. Our 
approach is similar to the approach taken in [41] except that 
we use Poincar6 index to locate the singular points. Our 
algorithm [23] has three main steps, 

1) block direction computation, 
2) smooth directional image, and 
3)  location of singular points. 

Based on the number of singular points located, a simple 
set of rules can be used to obtain the class label. The block 
diagram of the approach is shown in Fig. 6. 

The singular points of interest to us are the core and 
delta points. The input to the classification algorithm is a 
64 x 64 image of ridge directions. Directions are given not 
as angles but as vectors [6]. For each pixel, we compute its 
direction a in degrees ( a  E [0, 180"]), multiply this by two, 
and represent it as a unit vector in this direction D = (cos 201, 
sin 2a). As a byproduct, we also obtain the confidence value 
in the estimated direction as the length of the averaged 
vector. A directional image in the vector representation can 
be smoothed by averaging the two components of the vec- 
tors separately. We have used a 3 x 3 averaging box filter. 
The filter can be implemented very efficiently, and by ap- 
plying it several times we get a Gaussian-like smoothing of 
the reduced vector image. One of the most crucial problems 
in the fingerprint classification algorithm is to determine 
the amount of smoothing which should be applied to the 
64 x 64 vector image. We have taken an iterative approach, 
where we smooth the image once, and then try to classify it. 
If the classifier fails, we smooth the image once more and 
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try to classify the image again. This process eventually ter- 
minates because any image, when smoothed sufficiently 
many times, becomes a constant directional image, and this 
image is classified as an arch pattern. 

Input finger image - * Compute directions 

Smooth directional image 

Find singular points 

Number of core-deb pairs 

0 

Loop or tented arch? Whorl or twin loop? 

Left loop or right loop? 

Fig. 6. Block diagram of the fingerprint classification algorithm 

A point in the directional image is classified as an ordi- 
nary point, core, or delta by computing the Poincari. index 
along a small closed curve around the point. The Poincare 
index is computed by summing up the changes in the di- 
rection angle around the curve. When making a full 
counter-clockwise turn around the curve in a directional 
image, we see that the direction angle turns 0", *180", 
*360", _.. during this trip. A point is called ordinary if the 
angle has turned 0", core if it has turned 180", and delta if it 
has turned -180" (Fig. 7 ) .  

After locating all the core and delta points, we classify 
the fingerprint image based on the number and locations of 
these points. As can be seen in Fig. 8, an arch fingerprint 
image contains no cores or deltas; loops and tented arches 
contain one core and one delta; and whorls and twin loops 
have two cores and two deltas. We discriminate a tented 
arch from a loop by connecting the core and delta points 
with a straight line. In a tented arch image, this line's ori- 
entation is along the local direction vectors, while in a loop 
image the line intersects local directions transversally. Let p 
be the slope of the line connecting the core and delta points, 
and let a,, a,, . . ., a, be the local direction angles on this line 

segment. If the averaged sum $ c" sin(a, - p) is less than 
1=1 

a threshold (0.2 was used in our experiments), then the im- 
age is classified as tented arch, otherwise it is a loop image. 
The same technique can be used to distinguish a whorl 
from a twin loop. In a whorl image, the two core points can 
be connected along direction vectors, while in a twin loop 

image they cannot be connected. Left loops are discrimi- 
nated from right loops as follows. When starting from a 
core point and moving along the direction vectors, the delta 
point remains to the left in a left loop image, and to the 
right in a right loop image. A confidence measure is deter- 
mined for the assigned class and in case of low confidence 
values, an alternate class or wildcard class is used. The de- 
tails of the approach including classification results on 
NIST-4 and NIST-9 databases have been reported in [23]. 

3.2 Minutiae Extraction 
One of the main problems in extracting structural features is 
the presence of noise in the fingerprint image. Commonly 
used methods for taking fingerprint impressions involve ap- 
plying a uniform layer of ink on the finger and rolling the 
finger on paper. This causes the following types of problems: 

over-inked areas of the finger create smudgy areas in 
the image, 
breaks in ridges are created by under-inked areas, and 
the skin being elastic in nature can change the positional 
characteristics of the fingerprint features depending 
upon the pressure being applied on the fingers. 

Although inkless methods for taking fingerprint impres- 
sions are now available, these methods still suffer from the 
positional shifting caused by the skin elasticity. Often, the 
non-cooperative attitude of suspects or criminals leads to 
smearing in parts of the fingerprint impressions. Thus, a 
substantial amount of research reported in the literature on 
fingerprint identification is devoted to image enhancement 
techniques. 

We briefly describe our feature extraction method pre- 
sented in [36]. While our approach uses many of the well- 
known ideas proposed in the earlier studies [39], [27], [19], 
[49], the ridge flow orientations form the basis for adapting 
parameters in all the stages of our feature extraction algo- 
rithm. We view a fingerprint image as a flow pattern with a 
definite texture. To accurately determine the local orienta- 
tion field, the input image is divided into equal-sized 
blocks (windows) of 16 x 16 pixels. Each block is processed 
independently. The gray level projection along a scanline 
perpendicular to the local orientation field provides the 
maximum variance. We locate the ridges using the peaks 
and the variance in this projection. The ridges are thinned 
and the resulting skeleton image is enhanced using an adap- 
tive morphological filter. The feature extraction stage applies 
a set of masks to the thinned and enhanced ridge image. The 
postprocessing stage deletes noisy feature points. The overall 
process can be divided into three main operations; 

1) preprocessing and segmentation, 
2) thinning and feature extraction, and 
3) postprocessing. 

The purpose of preprocessing and segmentation is to obtain 
a binary segmented fingerprint ridge image from an input 
gray scale fingerprint image, where the ridges have a value 
'1' (white) and rest of the image has value '0.' This is 
achieved through the following four steps: 

1) computation of orientation field, 
2) foreground/background separation, 
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Ordinary goint 
0 

Delta &pint 
-180 

Core point 
1800 

Double-core point 
360’ 

Fig. 7. Computation of the Poincare index and the definition of ordinary, core, and delta points. The circle is centered at the point of interest, 
denoted as ‘X.’ 

Arch Tented Arch 

n 

Right Loop Whorl 

~ ~~ 

Left LOOD 

Fig. 8. Cores (c) and deltas (A) in fingerprint images belonging to different classes. 

3)  ridge segmentation, and 
4) directional smoothing of ridges. 

Details of our feature extraction algorithm are available in [36]. 
The results of intermediate stages and the detected mi- 

nutiae features for a typical fingerprint are shown in Fig. 9. 
The performance of this approach has been evaluated by 
comparing the minutiae obtained using this algorithm and 
ground truth a s  obtained by a human expert. The evalua- 
tion results, including a comparative analysis with other 
algorithms are available in [36]. 

sification procedure. Having obtained the core-delta points 
from the classifier module, to obtain the ridge density, we 
make use of the skeleton of the fingerprint used in our fea- 
ture extraction stage. The number of points cutting the 
imaginary line between the core point and delta point on 
the skeleton gives us the number of ridges between the core 
and delta. The core and delta are highly stable points in a 
fingerprint. Hence, this ridge count is also a good estimate 
of ridge density. Manual fingerprint matching uses a simi- 
lar approach 1161. 

3.3 Ridge Counting 4 INTEGRATED MULTILEVEL MATCHING 
The singular point detection is a significant part of our clas- This section describes the various stages in our matching 
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for database retrieval. The matching pyramid consists of 
four levels, namely, 

1) text-based, 
2) class-based, 
3) ridge density-based, and 
4) minutiae-based. 

The computational complexity increases as we traverse 
down the pyramid where as the number of records selected 
from the database reduces in the same direction. At the top 
of the pyramid, we have the whole fingerprint database 
available for matching. Every level of filtering/matching 
discards a large number of undesirable records. At the low- 
est level, the minutiae-based matching is used to obtain a 
matching score between the query fingerprint feature vec- 
tor and a database fingerprint record. 

A high-level description of the multilevel matching is 
described as follows: 

1) Let the search space be the whole database of finger- 

2) Filter records that match the text range. 
3) Obtain the fingerprint class information. Filter records 

that match with the query class or an alternate class. 
In case of wildcard class, include all the records ob- 
tained from previous step. 

4) Obtain the ridge density for the query and retain the 
records with ridge count within a tolerance limit of 
the query ridge count. 

5) Perform elastic matching on the query feature set 
and each of the database records retained in the pre- 
vious step. 

Skin elasticity demands that we accommodate elastic dis- 

prints. 

tortions in our minutiae matching. The text-based filters 
need a range-based retrieval, commonly available in stan- 
dard database packages. The textual fields that can be used 
are the last name, age range, and colors of hair and eye. 
Steps2, 3, and 4 are self explanatory after the associated 
features have been extracted. We describe the elastic 
matching algorithm in more detail. 

4.1 Elastic Matching 
Matching a query and a database fingerprint is equivalent 
to matching their minutiae sets. Each query fingerprint mi- 
nutia is examined to determine whether there is a corre- 
sponding database fingerprint minutia. There are three 
steps involved in the elastic matching process: 

1) registration, 
2) minutiae pairing, and 
3) matching score computation. 

The first two steps are explained in the following subsec- 
tions, followed by the overall matching algorithm. 

4.1.1 Registration 
In order to match two point sets with unknown orientation, 
scale, and translation, the two point sets must be registered 
with respect to each other. The orientation, scale, and 
translation parameters are estimated using a generalized 
Hough Transform [51. 

The input to the registration algorithm consists of two sets 
of minutiae points 'P and 9 extracted from two fingerprint 
images. For convenience, we use the following notation: 

, . . .  

id) ie) (f) 

Fig. 9. Results of various stages in feature extraction: (a) original image; (b) orientation field; (c) foreground/background segmentation; (d) ridges 
after masking out the background; (e) skeleton with minutiae points marked; (f)  minutiae superimposed on the input gray level image. 
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T = ((p:,p;,al), ..., (p~,p~..')>, transformations Fs,,,,,,Ay: R2 + R2 given by 

sin8 x 
Q = {(d,q;J), . . . I  (9, Q Q Q  r % p P  )} F s l m j A Y  (;) = J( ':k88 cos 8)( y ) + (;;I 

where I ? I  = P, I & I  = Q, and (p:,p;,a') are the three 

ith minutia in set T. We assume that the second fingerprint 
image can be obtained by applying a similarity transforma- 

The second point set Q is then a rotated, scaled, and trans- 
lated version of the set P, where points may be shifted by a 
random noise, some points may be added and some points 
deleted. Fig. 10 shows two different images of the Same 
finger and the extracted minutiae point sets overlaid on 
each other. The task of fingerprint registration is to recover 
this unknown transformation. Since we do not know 
whether the two fingerprints are the same or not (i.e., im- 
ages of the same finger), we attempt to find the 'best' trans- 
formation in the sense that when applying the transforma- 
tion to the minutiae points of the set P, as many of these 
points as possible overlap with the minutiae points from 
the set Q. TWO overlapping points are considered as a 
match only if they have the same direction. There may be 
minutiae points in either set that do not match with any 
point in the other set. cosQl sinOl 

where s, 0, and (Ax, Ay) are the scale, rotation, and shift 

sists of quadruples (s, 0, Ax, Ay), where each parameter is 
discretized into a finite set of values: 

features (spatial position, orientation) associated with the Parameters/ The 'Pace Of transformations 'On- 

tion (rotation, scaling, and translation) to the first image. s E {SI, . . ., SKI, B E  {@I, ..., @I, Ax E {Ax*, ..., AXMI,  

Ay E my1, . . . I  AYNJ. 

and 

Matching scores for the transformations are collected in 
the accm-"ator array A, where the entry A@, 1, m, n)  
counts the evidence for the transformation Fsk,81,A,nz,Ay~z. The 

array A is filled as follows, F~~ each pair (p, q), where 

= (41,q1~ is a point = (pi,pi~is a point in the set 

in the set 9 we find all possible transformations that map p 
to q, and increment the evidence for these transformations 
in the array A (see Fig. 11). For every pair of values, (sb e), 
there is exactly one shift vector (Ax, Ay)f such 
thatFsk,,i,,,Ay(p) = q ,  and it can be found as: 

1 [@;I= q - ' k  ( -sinal case, P. 

Scale / Kx Translate 

// ', -, 
Y 

Y O t a t e  

, ,b- 

'&C 
Minutia point in P 

.' Minutia point in 0 
, 

h 
L( -' - r- 

Fig. 10. Two images of the same fingerprint and overlay of their minutiae 
point sets: (a) first image, (b) second image, (c) overlay of minutiae points 
before registration, (d) overlay of minutiae points after registration. 

The usual Hough transform for line detection can be 
generalized for point matching. We discretize the set of all 
allowed transformations, and for each transformation, the 
matching score is computed. The transformation with the 
maximal score is believed to be the correct one. We consider 

Fig. 11. Applying a similarity transformation to a minutia point. 

The values Ax and Ay need to be quantized to the nearest 
bins corresponding to Ax, and Ayn. It is common in Hough 
transform to cast a vote not only in the correct bin A(k, 1, m, 
n), but also to its nearest neighbors. The result of applying 
the registration algorithm on the minutiae sets of Fig. 1Oc is 
shown in Fig. 10d. In the above description, we have disre- 
garded the directions of minutiae points. This can be incor- 
porated by checking if the direction of p, when rotated by 4 
degrees, is the same as the direction of q. The complete al- 
gorithm is given in Fig. 12. 

4.1.2 Minutia Pairing 
After registering the two point sets, the minutiae need to be 
paired. Two minutiae are said to be paired or matched if their 
components or features (x, y, 8) are equal (within some tol- 
erance) after registration. Three situations arise as shown in 
Fig. 13: 
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1) A database fingerprint minutia matches the query 
fingerprint minutia in all the components (paired 
minutiae); 

PROCEDURE Hough 
A ( k ,  1, m, n) := 0, 
k = 1, ..., K; 
1 = 1, ..., L; 
m = 1, ..., M; 
n = 1, ..., N 

FOR (qxr qyr p) E 9 DO 
FOR ( p X ,  pY, a) t F' DO 

FOR @ E I@,, ..., DO 
IF a + 6' = p THEN 

FOR s t {s,, ..., s,} DO 

Add evidence for Fs,,@ Ax,Ay 
1' 

END FOR 
END I F  

END FOR 
END FOR 

END FOR 
Result := arg maxk,l,m,n A ( k ,  1, m, n) 

END PROCEDURE 

Fig. 12. Registration algorithm. 

f q  = (f:,Gq ,...,eq). Note that each of the nq elements is a 

feature vector containing three components, 

The components of a feature vector are shown geometri- 
cally in Fig. 4. Similarly, let the rth reference (database) fin- 
gerprint be represented as a set of ny minutiae points 

f' = (f:,fI ,..., cr). Let (xi ,yi)  and (x i ,y i )  define the 

bounding box for the query fingerprint, where xi is the x- 

coordinate of the top left corner of the box and xi is the x- 
coordinate of the bottom right corner of the box. Quantities 
y i  and y i  are defined similarly. A bounding box is the 
smallest rectangle that encloses all the feature points. 

2) A database fingerprint minutia matches the query fin- 
gerprint minutia in the x and y coordinates, but does 
not match in the direction (minutiae with unmatched 
angle); 

3) No database fingerprint minutia matches the query 
fingerprint minutia (unmatched minutia). 

Of the three cases described above, the minutiae are said 
to be paired only in the first case. 

Core Point 

Unmatched minutia 
(Lying outside tolerance box) 

i ......... I 
Minutiae with 
unmatched angle 
I - - - - - - - - - -  : . ;  

Unmatched minutia 
(No pairing possible) 

- 1  

8. I - Tolerance box 

0 - Query fingeprint minutia 
0 -Database fingerprint minutia 

Fig. 13. Possible outcomes in minutia matching 

4.1.3 Matching Algorithm 
The following notation is used in the sequential and paral- 
lel matching algorithms described below. Let the query fin- 
gerprint be represented as a set of nq minutiae points 

Minutia point 

Idsin(@,) 

Fig. 14. Tolerance box for X- and Y-components. 

The matching algorithm is based on finding the number of 
paired minutiae between each database fingerprint and the 
query fingerprint. A tolerance box is shown graphically in 
Fig. 14. In order to reduce the amount of computation, the 
matching algorithm takes into account only those minutiae 
that fall within a common bounding box. The common 
bounding box is the intersection of the bounding box for 
query and reference (database) fingerprints. Once the count 
of matching minutiae is obtained, a matching score is com- 
puted. The matching score is used for deciding the degree of 
match. Finally, a set of top 10 scoring reference fingerprints is 
obtained as a result of matching. Note that the query finger- 
print fq may or may not belong to the fingerprint database f . 

In order to accommodate the shift in the minutia fea- 
tures, a tolerance box is created around each feature (see 
Fig. 14). The size of the box depends on the ridge widths 
and distance from the core point in the fingerprint. The se- 
quential matching algorithm is described in Fig. 15. De- 
pending on the desired matching accuracy, more than one 
finger could be used in matching. In that case, a composite 
score is computed for each set of fingerprints for a person. 

D 
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5 EXPERIME~NTAL RESULTS 
To test our approach, we created the following databases: 

Test Set : I :  Two hundred live scan images of finger- 
prints captured using inkless fingerprint scanners. 
The database contains 10 different versions of each 
fingerprint that have been rotated and translated ran- 
domly during acquisition. 
Test Set 2: A database of 1,800 fingerprints chosen 
from NIST-9 1451 database. The NIST-9 database con- 
sists of a( total of 1,350 mated fingerprint card pairs 
(10 fingerprints per card) with a total of 27,000 finger- 
prints. For each fingerprint there are two different 
impressions available in the database. Our database 
has been created with the feature vector sets from the 
first set and tested using the second set. 

On a SPARiCstation 20, our feature extraction algorithm 
takes 31.7 seconds for a 768 x 832 image. The registration 
step takes less than one second for a query fingerprint and 
the matching time for a query fingerprint with a single da- 
tabase record is about 15 msecs. For Test Set 1, a leave-one- 
out method has been used for testing the matching tech- 
nique. A fingerprint is said to be matched if the correct 
match appears in the shortlist (of 10) obtained by the 
matching algorithm. We achieved 100% accuracy with this 
method. 

A random sample of 100 fingerprints was chosen to test 
the matching algorithm on the NIST-9 database. With a 
reject rate of lo%, we could achieve an 80% accuracy on this 
database. The overall accuracy can be improved by using 
more than one fingerprint per person. It can be easily seen 
that by using two fingerprints, the error rate falls sharply to 
less than five ;percent. Using the fingerprint class informa- 
tion, the search space could be reduced to 25% of the data- 
base and the use of ridge counts reduced the number of 
records by another 50%. 

Although the matching step takes about one second per 
match, the total time taken to match against a large database 
can be very high since the registration has to be done first for 
each record in the database. For example, for our database of 
1,800 records, registration with the query image can take up 
to 30 minutes without using the fingerprint class and ridge 
count information. To carry out a leave-one-out method over 
this database will take several days! In order to speedup the 
matching process, we need to use special hardware accel- 
erators. Many ]parallel implementations of Hough Transform 
have been reported, including one on Splash 2 [2]. Hence, we 
chose to implement the matching algorithm on Splash2-a 
novel custom computing machine. 

6 PARALLEIL MATCHING ALGORITHM ON 
SPLASH 2 

Custom computing machines are becoming popular with 
the advent of field-programmable gate arrays (FPGAs). 
Using FPGA-based custom computing machines, applica- 
tion specific instructions can be generated on the hardware 
[17]. We have used Splash 2-a Xilinx 4010 based custom 
computing machine developed by the Supercomputing 
Research Center. In this section, the parallel matching algo- 

Input: A set of nq minutiae points in the 
query fingerprint fq and the rolled 

fingerprint database fD = (f')" . Let the 
rth database fingerprint have n, 

r=l 

minutiae points f r  
Output: A list of top 10 records from the 
database with matching score greater 
than a threshold T. 

FOR r = 1 to N DO 
Begin 

1. 

2 .  

3 .  

4 .  

5 .  

Register the database fingerprint 
with respect to the query 
fingerprint. 
Compute the common bounding box for 
the query and reference 
fingerprints. Let the query print 
have ng" and reference print have n,b 
minutiae in this box. 
Set the number of paired minutiae 
for the rth database fingerprint 

r m to zero. 
FOR i = 1 to ng" DO 
Compute the tolerance vector 
for the ith minutiae points in 
the rth database fingerprint 
feature vector q'. 
If it can be paired with a 
query minutiae, then increment 
mr and mark the query minutia 
paired. A paired query minutiae 
will not be paired again. 

END FOR 
Compute the matching score 

mr *mr 
(MS (q,r) ) : 

~ ~ ( q , r )  = n. 
nr * n g  

Update a list of top 10 scoring 
database fingerprints. 

END FOR 
END 

Fig. 15. Sequential fingerprint matching algorithm. 

rithm on Splash 2 is described after a brief introduction to 
Splash 2 architecture. 

6.1 Splash 2 Architecture 
The Splash2 system consists of an array of Xilinx 4010 
FPGAs [8]. Fig. 16a shows a system-level view of the 
Splash 2 architecture. Splash 2 is connected to the host 
through an interface board that extends the address and 
data buses. The Sun host can read/write to memories and 
memory-mapped control registers of Splash 2 via these 
buses. Each Splash 2 processing board has 16 Xilinx 4010s 
as PES (X, - X16) in addition to a 17th Xilinx 4010 (X,) 
which controls the data flow into the processor board. 
Each PE has 512 KB of memory. The Sun host can 
read/write this memory. There is a 36-bit linear data path 
(SIMD Bus) running through all the PES. The PES can 
read/write data from their respective memory through a 
private address and data bus after setting appropriate 
control signals. The PES are connected through a crossbar 
that is programmed by X,. A broadcast path also exists by 
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suitably programming X,. The processor organization for is different from usual high-level programming. The design 

Inhibit " 
To Left / 
Neighbor / 

36 

a PE is-shown in Fig. 16b. 

Element (PE) 
Xilinx 4010 / To Right 

/ Neighbor 

36 

Splash Boards 

256K 16-bit SBus Read 

SBus Wnte 

To Crossbar 

(b) 
Fig. 16. Splash 2: (a) architecture; (b) one processing element. 

The Splash 2 system supports several models of computa- 
tion, including PES executing the single instruction on multi- 
ple data (SIMD mode) and PES executing multiple instruc- 
tions on multiple data (MIMD mode). It can also execute the 
same or different instructions on single data by receiving 
data through the global broadcast bus. The most common 
mode of operation is systolic in which the SIMD Bus is used 
for data transfer. Individual memory available with each PE 
makes it convenient to store temporary results and tables. 

The Xilinx 4010 consists of 400 (20 x 20) configurable 
lopic blocks (CLB). Propramming an FPGA-based comnuter 

automation process consists of two steps: simulation and 
synthesis. The programming flow for Splash 2 is shown in 
Fig. 17. In simulation, the logic designed using VHDL is 
verified. This involves comparing the results of the VHDL 
simulation with those obtained manually or by a sequential 
program. In synthesis, the main concern is to achieve the 
best placement of the logic in an FPGA in order to minimize 
the timing delay. 

To program Splash 2, we need to program each of the PES 
(XI. XI,), the crossbar, and the host interface. The crossbar 
sets the communication paths between PES. In case the 
crossbar is used, X, needs to be programmed. The host in- 
terface takes care of data transfers in and out of the Splash 2 
board. A special library is available for these facilities for 
VHDL programming as described in [8] The synthesis 
process involves the following steps: 

Obtain a vendor specific netlist from the VHDL 
source code; 

0 Partition, Placement, and Routing: to fit the logic gen- 
erated onto a physical PE; 
Delay and Timing Analysis: to analyze the timing and 
delay; 
Control bit stream generation; and 
Bit stream to raw file generation. 

The raw file is loaded onto each PE, and a configuration 
file for the crossbar is used to describe the crossbar usage. 
The host uses these files to control the attached processor 
through a set of routines callable by a C program. 

1 VHDL +4 Simulation Source 

Logic Synthesi 
(Gate level i description) 

and Route 

Timing of 

.7 Splash 2 

Fig. 17. Programming flow for Splash 2. 

6.2 Parallel Elastic Matching Algorithm 
We parallelize the matching algorithm by exploiting the 
specific characteristics of Splash 2 architecture. While per- 
forming this mapping, we need to take into account the 
limitations of the available FPGA technology. Any pre- 
processing needed on the query minutiae set is an one- 
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time operation, whereas reference fingerprint minutiae 
matching is a repetitive operation. Computing the 
matching score involves floating point division. The 
floating point operations and one-time operations are per- 
formed in software on the host whereas the repetitive op- 
erations are delegated to the FPGA-based PES of Splash 2. 
The parallel version of the algorithm involves operations 
on the host, on X,, and on each PE. 

One of the main constructs of the parallel algorithm is a 
lookup table which consists of all possible points within the 
tolerance box that a feature may be mapped to. 

6.3 Preprocessing on the Host 
The host processes the query and database fingerprints as 
follows. The query fingerprint is read first and the follow- 
ing preprocessing is undertaken: 

1) 

2) 

3) 

In 

For each query feature (minutiae point) $q, j = 1, 2, . . . 

n4, generate a tolerance box. Enumerate a total of 
(t ,  x t, x to) grid points in this box, where t, is the toler- 
ance in x,. t,, is the tolerance in y and t o  is tolerance in B. 
Allocate each feature to one PE in Splash2. Repeat 
this cycliically, i.e., features 1-16 are allocated to PES 
X, to X16, features 17-32 are allocated to PES X, to X16, 
and so 017. 

Initialize the lookup tables by loading the grid points 
within each tolerance box in Step 1 into the memory. 

this algorithm, the tolerance box is computed with re- 
spect to the-query fingerprint features. The host then reads 
the database of fingerprints and sends their feature vectors 
for matching to the Splash 2 board. 

For each database fingerprint, the host performs the fol- 
lowing operations: 

1) Read the feature vectors. 
2) Register the features as described in Step 1 of the se- 

quential algorithm in Fig. 15. 
3) Send each of the feature vectors over the Broadcast 

Bus to all1 PES if it is within the bounding box of the 
query fingerprint. 

For the rth database fingerprint, the host then reads the 
number of paired features my, Y = 1, ... N, that was com- 
puted by the Splash2 system, where N is the number of 
records in the database. Finally, the matching score is com- 
puted as in the sequential method. 

6.4 Computations on Splash 
The computations carried out on each PE of Splash2 are 
described below. As mentioned earlier, X o  plays a special 
role in controlling the crossbar in Splash 2. 

1) Operations on X,: 
Each database feature vector received from the host is 
broadcast to all PES. If it is matched with a feature in a 
lookup table, the PE drives the Global OR Bus high. 
When this OR Bus is high, X, increments a counter. 
The hosi reads this counter value (m') after all the 
feature vectors for the current database fingerprint 
have been processed. 

2) Operations on each PE: 

On receiving the broadcast feature, a PE computes its 
address in the lookup table through a hashing function. 
If the data at the computed address is a '1,' then the 
feature is paired, and the PE drives the Global OR Bus 
high. 

The Splash2 data paths for the parallel algorithm are 
shown in Fig. 18. 

Lookup 

Table 

X 
16 

I \  1 I ,  I Broadcast Bus (Using crossbar) 
V V A V  V 

Giobai OR Bus 

L- 
count) 

Fig. 18. Data flow in parallel algorithm. 

6.5 Performance 
Using Splash 2, the point pattern matching under the con- 
ditions described earlier can be executed at the rate of 
110,000 matches per second. This high speed has been 
achieved by using an instruction set specifically designed 
for our matching algorithm and an optimal mapping of the 
sequential algorithm on the Splash 2 architecture. Details of 
the implementation are described in 181. 

7 CONCLUSIONS AND FUTURE WORK 

We have described a method for structural feature-based 
indexing into large fingerprint image databases. The ap- 
proach has been tested using a large public domain data- 
base from NIST. Our multilevel matching algorithm em- 
ploys an elastic matching technique as a central component. 
The elastic matching has been implemented on a special- 
purpose hardware to show that desired matching speeds 
needed to access large fingerprint databases can be 
achieved. Although the feature extraction, indexing, and 
retrieval techniques described here have been tested with 
fingerprint images, we strongly believe that these tech- 
niques can be applied to other similar images such as fluid 
flow images and lumber images. 

Currently, we are in the process of enlarging our data- 
base. In feature extraction, we are examining measures to 
assign a ccnfidence level to a feature. Often, poor quality 
images lower the system accuracy. Hence, an evaluation of 
image quality at the input stage to accept or reject an input 
is being considered. More complex and robust matching 
algorithms are also under evaluation. 
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