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Abstract--A reliable method for extracting structural features from fingerprint images is presented. Viewing 
fingerprint images as a textured image, an orientation flow field is computed. The rest of the stages in the 
algorithm use the flow field to design adaptive filters for the input image. To accurately locate ridges, 
a waveform projection-based ridge segmentation algorithm is used. The ridge skeleton image is obtained and 
smoothed using morphological operators to detect the features. A large number of spurious features from the 
detected set of minutiae is deleted by a postprocessing stage. The performance of the proposed algorithm has 
been evaluated by computing a "goodness index" (GI) which compares the results of automatic extraction 
with manually extracted ground truth. The significance of the observed GI values is determined by 
comparing the index for a set of fingerprints against the GI values obtained under a baseline distribution. The 
detected features are observed to be reliable and accurate. 

Fingerprints Feature extraction Texture Flow orientation Minutiae 
Segmentation Skeleton 

1. INTRODUCTION 

Fingerprint matching is the most popular biometric 
technique used in automatic personal identification. ~1~ 
Law enforcement agencies use it routinely for criminal 
identification. Now it is also being used in several other 
applications such as access control for high security 
installations, credit card usage verification and 
employee identification, tl~ The main reason for the 
popularity of fingerprints as a form of identification is 
that the fingerprint of a person is unique and remains 
invariant with his/her age. The law enforcement 
agencies have developed a standardized method for 
manually matching rolled fingerprints and latent or 
partial fingerprints (lifted from the scene of crime). 
However, the manual matching of fingerprints is 
a highly tedious task for the following reasons. As the 
features used for matching are rather small in size 
compared with the image size, a human expert often 
has to use a magnifying glass'to obtain a better view of 
the fingerprint impression. The fingerprint matching 
complexity is a function of the size of the image 
database, which can vary from a few hundred records 
to several million records. Even though the standard 
Henry formula ~2~ for fingerprint recognition can be 
used to cut down the search time, manual matching 
can still take several days in some cases. These prob- 
lems can be easily overcome by automating the finger- 
print-based identification process. 

t Research supported by a contract from the Institute for 
Defense Analyses. 

:~ Author to whom correspondence should be addressed. 

An automatic fingerprint identification system 
(AFIS) consists of various processing stages as shown 
in Fig. 1. For the purpose of automation, a suitable 
representation (feature extraction) of fingerprints is 
essential. This representation should have the follow- 
ing desirable properties: 

(1) Retain the discriminating power (uniqueness) of 
each fingerprint at several levels of resolution (detail). 

(2) Easily computable. 
(3) Amenable to automated matching algorithms. 
(4) Stable and invariant to noise and distortions. 
(5) Efficient and compact representation. 

The compactness property of representation often 
constrains its discriminating power. Clearly, the raw 
digital image of a fingerprint itself does not meet these 
representational requirements. Hence, high-level 
structural features are extracted from the image for the 
purpose of representation and matching. 

The ridges and valleys in a fingerprint alternate, 
flowing in a local constant direction (see Fig. 2). 
A closer analysis of the fingerprint reveals that the 
ridges (or the valleys) exhibit anomalies of various 
kinds, such as ridge bifurcations, ridge endings, short 
ridges and ridge crossovers. Eighteen different types of 
fingerprint features have been enumerated in reference 
(3). Collectively, these features are called minutiae. For 
automatic feature extraction and matching, the set 
of fingerprint features is restricted to two types of 
minutiae: ridoe endings and ridoe bifurcations. Ridge 
endings and bifurcations are shown in Fig. 3. We do 
not make any distinction between these two feature 
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Fig. 1. Stages in an AFIS. 

(a) (b) 

Fig. 3. Two commonly used fingerprint features: (a) ridge 
bifuraction; (b) ridge ending. 

types since various data acquisition conditions such as 
inking, finger pressure and lighting conditions can 
easily change one type of feature into another. More 
complex fingerprint features can be expressed as 
a combinat ion of these two basic features. For  
example, an enclosure can be considered as a collection 
of two bifurcations and a short ridge can be considered 
as a pair of ridge endings, as shown in Fig. 4. In a good 
quality rolled fingerprint image, there are 70-80 
minutiae points and in a latent fingerprint the number  
of minutiae is much less (approximately 20-30). 

{c) 

Fig. 2. Gray level fingerprint images of different types of patterns: (a) Arch; (b) Left loop; (c) Right loop; 
(d) Whorl. 
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Fig. 4. Complex features as a combination of simple features: (a) short ridge; (b) enclosure. 

Commercially available fingerprint identification 
systems typically use ridge bifurcations and ridge 
endings as features. Because of the large size of the 
fingerprint database and the noisy fingerprints 
encountered in practice, it is very difficult to achieve 
a reliable one-to-one matching in all the test cases. 
Therefore, the commercial systems provide a ranked 
list of possible matches (usually the top ten matches) 
which are then verified by a human expert. Details 
of commercial fingerprint recognition systems from 
NEC, PRINTRAK and MORPHO are presented in 
reference (2). 

One of the main problems in extracting structural 
features is due to the presence of noise in the finger- 
print image. Commonly used methods for taking finger- 
print impressions involve applying a uniform layer of 
ink on the finger and rolling the finger on paper. This 
causes the following types of problems: (i) over-inked 
areas of the finger create smudgy areas in the image, (ii) 
breaks in ridges are created by under-inked areas and 
(iii) the skin being elastic in nature can change the 
positional characteristics of the fingerprint features 
depending upon the pressure being applied on the 
fingers. Although inkless methods for taking finger- 
print impressions are now available, these methods 
still suffer from the positional shifting caused by the 
skin elasticity. The noncooperative attitude of suspects 
or criminals also leads to smearing in parts of the 
fingerprint impressions. Thus, a substantial amount of 
research reported in the literature on fingerprint 
identification is devoted to image enhancement tech- 
niques. 

This paper proposes a reliable method for feature 
extraction from fingerprint images. The matching 
stage uses the position and orientation of these 
features, and the total number of such features. As 
a result, the accuracy of feature extraction is crucial in 
the overall success of fingerprint matching. Reliable 
and robust features can make matching algorithms 
simpler and the manual verification stage redundant. 
The orientation field of the input gray-level fingerprint 
image plays an important role in our algorithms to 
design adaptive filters. A new method, based on projec- 
tion of the image in the direction of the orientation 

field, for segmenting the ridges from the fingerprint 
image is described. The quality of the extracted fea- 
tures is evaluated quantitatively. 

The rest of the paper is organized as follows. In 
Section 2, we briefly summarize the previous work 
reported in the literature. The details of our feature 
extraction algorithm which includes the segmentation 
of ridges, minutiae extraction and feature postprocess- 
ing are presented in Section 3. We have tested our 
algorithm on a number of input images. The results of 
feature extraction using the proposed algorithm are 
analysed in Section 4. A quantitative method to evalu- 
ate the performance of the algorithm is also presented 
in Section 4. Our conclusions and plans for future 
work are described in Section 5. 

2. BACKGROUND AND RELATED WORK 

The structural features which are commonly 
extracted from the gray-level input fingerprint image 
are the ridge bifurcations and ridge endings. Each of 
the two features has three components, namely, the x- 
coordinate, the y-coordinate and the local ridge direc- 
tion at the feature location, as shown in Fig. 5. Many 
other features have been derived from this basic three- 
dimensional feature vector. ~4~ 

Current research in the design of AFIS research is 
being carried out in the following areas: (i) preprocess- 
ing, (ii) feature extraction, (iii) matching algorithms, (iv) 
compression of fingerprint images and (v) special- 
purpose architectures for real-time feature extraction 
and matching. A substantial amount of research in 
fingerprint analysis has been reported in the literature. 
We provide a brief survey of some recently published 
literature in preprocessing and feature extraction. 
A brief history of automation efforts in fingerprint 
recognition is available in reference (2). The papers by 
Sherlock e t  al., ~5~ Mehtre, 16~ Coetzee and Botha, ~7~ 
Hung, t8~ Xiao and Raafat, ~9~ and O'Gorman and 
Nickerson tt°~ are relevant to our proposed feature 
extraction scheme. 

Sherlock et  al. TM enhance fingerprint images by a 
directional Fourier filtering. The direction of the filter- 
ing is decided by the local ridge orientation. A 32 x 32 
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Fig. 5. Components of a minutiae feature. 
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window is used to obtain a projection of the pattern in 
16 directions. The projection with the maximum vari- 
ance is the desired ridge direction for the window. The 
result of the enhancement is compared with feature 
extraction techniques used in a system currently used 
by the U.K. Home office. Performance evaluation is 
carried out by comparing features obtained with the 
enhancements proposed by this method with the fea- 
tures obtained using the available software in the 
Home office system. Mehtre 16) computes the direc- 
tional image, representing the local ridge direction, in 
a block of size 16 x 16 pixels. For this purpose, local 
gray-level intensity variances along eight different di- 
rections are computed. The direction with the least 
variance is the desired ridge direction. A set of eight 
7 x 7 convolution masks is applied to the input image 
for ridge enhancement. The fingerprint area is seg- 
mented from the background before applying stan- 
dard locally adaptive thresholding and thinning 
operators. Features are obtained based on the compu- 
tation of the connection number (CN) described in 
reference (11). A postprocessing stage based on a set of 
heuristics eliminates the spurious minutiae. 

Coetzee and Botha ~rl obtain the ridges by using the 
Marr-Hildreth edge operator. This edge map along 
with the gray scale image is used to binarize the 
fingerprint image. The thresholded image is smoothed 
before applying the thinning operation. The direc- 
tional image is computed in a fashion similar to the one 
described in reference (6). No feature extraction stage is 
described. Xiao and Raafat ~9~ assume that the skeleton 
image has already been derived from the fingerprint 
images. They describe methods to identify spurious 
minutiae and eliminate them using the structural defi- 
nition of minutiae. For each minutia, statistics of ridge 
width and ridge attributes such as ridge length, ridge 

direction and minutiae direction are used to decide the 
spurious minutiae. Hung ~8~ enhances fingerprint 
images by equalizing the ridge widths. The input image 
is assumed to be a binary image. Directional enhance- 
ment of ridges is done after estimating the local direc- 
tion in a small window using a method similar to that 
in reference (6). The enhancement process has two 
steps: (i) direction-oriented ridge shrinking, followed 
by (ii) direction-oriented ridge expanding. The skel- 
eton of the enhanced image is obtained by Baja's 
algorithm. This paper also describes methods for de- 
tecting bridges and breaks as separate features. 

The main theme of O'Gorman and Nickerson's tl°~ 
work is to design filters for fingerprint image enhance- 
ment. The k x k mask coefficients are generated based 
on the local ridge orientation. Only three orientation 
directions are used. Four model parameters derived 
from ridge width (Wmax, Wmi,), valley width (l~ma x, 
lg'ml,) and minimum radius of curvature are used 
to describe a fingerprint. It is assumed that 
Wmax q'- Wrain = ]'~Zmax + ['Vmin" The mask is convolved 
with the input image. The enhanced image is binarized 
and postprocessed. An application-specific integrated 
circuit (ASIC) has been designed to meet the comput- 
ing requirements of this algorithm. No description of 
feature extraction or postprocessing is given. 

To summarize, most of the published approaches for 
feature extraction use local ridge directions and a 
locally adaptive thresholding method. To improve 
fingerprint image quality, directional, ridge enhance- 
ment is also commonly employed. The thinning step 
involves a standard operator. Few published papers 
describe a methodology to evaluate the performance 
of image enhancement and feature extraction stages. 
Often, only portions of the overall feature extrac- 
tion module are implemented. Various approaches 
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described in the literature can be compared based on 
the following factors: 

(1) Does the method describe all the stages of 
feature extraction? 

(2) What kind of input does it handle? 
(3) How is the local ridge direction computed? 
(4) What are the preprocessing/enhancement steps? 
(5) What is the binarization/segmentation ap- 

proach? 
(6) Which thinning operator is used? 
(7) Is there a postprocessing stage? 
(8) Does the system describe a performance evalua- 

tion methodology? 

Table 1 contains a comparison of the six papers re- 
viewed earlier with reference to our approach. The first 
column in the table describes the features used in the 
comparison. The next six columns describe the scheme 
adopted in each of the six papers. The last column 
describes the proposed method, 

While our approach uses many of the well-known 
ideas proposed in the earlier studies, the ridge flow 
orientations form the basis for adapting parameters in 
all the stages of our feature extraction algorithm. We 
also propose a technique for performance evaluation 
of the feature extraction process by computing a good- 
ness index (GI) with reference to the ground truth for 
a set of 100 fingerprint images. 

3. PROPOSED ALGORITHM 

The salient features of our approach for feature 
extraction can be described as follows. We view a 
fingerprint image as a flow pattern with a definite 
texture. An orientation field for the flow texture is 
computed.l~21 To accurately determine the local orien- 
tation field, the input image is divided into equal-sized 
blocks (windows) of 16 x 16 pixels. Each block is 
processed independently. The gray-level projection 
along a scanline perpendicular to the local orientation 
field provides the maximum variance. We locate the 
ridges using the peaks and the variance in this projec- 
tion. The ridges are thinned and the resulting skeleton 
image is enhanced using an adaptive morphological 
filter. The feature extraction stage applies a set of 
masks to the thinned and enhanced ridge image. The 
postprocessing stage deletes noisy feature points. The 
schematic flow of the proposed feature extraction algo- 
rithm is shown in Fig. 6. The overall process can be 
divided into three main operations: (i) preprocessing 
and segmentation, (ii) thinning and feature extraction 
and (iii) postprocessing. The details of various stages in 
feature extraction are described in this section. 

3.1. Preprocessing and segmentation 

The purpose of preprocessing and segmentation is 
to obtain a binary segmented fingerprint ridge image 
from an input gray-scale fingerprint image, where the 
ridges have a value "1" (white) and the rest of the image 

has the value "0". This is achieved through the follow- 
ing four steps: (i) computation of orientation field, (ii) 
foreground/background separation, (iii) ridge segmen- 
tation and (iv) directional smoothing of ridges. 

3.1.1. Computation of orientation field. Fingerprint 
images can be considered as an oriented texture 
pattern. As per the taxonomy described in reference 
(12), fingerprints can be classified as a weakly-ordered 
texture. The orientation field O2) is used to compute 
the optimal dominant ridge direction in each 16 x 16 
window or block. The following steps are involved 
in the computation of the orientation field for each 
window. 

(1) Compute the gradient of the smoothed block. 
Let Gx(i,j) and Gy(i,j) be the gradient magnitude in 
x and y directions, respectively, at pixel (i,j) obtained 
using 3 × 3 Sobel masks. 

(2) Obtain the dominant direction in a 16 x 16 
block using the following equation: 

I i(Y~:-6-~E~6x2G:'(i'j)G'(i'J) 
0 a = ~ tan - \ E : 6  ' E)  6 t(G,,(i,j) 2 _ G~(i, j ) z ) j '  

Gx ~:0 and Gy :~ 0. (1) 

Note that if either Gx or Gy is zero then the estimate of 
the dominant direction is trivial (0 ° or 90°). The angle 
0 a is quantized into 16 directions. The orientation field 
obtained using this method is shown in Fig. 7. The 
orientation field serves to select the parameters of 
adaptive filters in subsequent stages. Ridge directions 
have also been used in deciding the pattern class of the 
input fingerprint image: 13) 

3.1.2. Foreground~background segmentation. A fin- 
gerprint image usually consists of a region of interest 
(ridges and valleys of fingerprint impressions) along 
with a printed rectangular bounding box, smudgy 
patches of ink and blurred areas of the pattern and 
background. We need to segment the fingerprint area 
(foreground) to avoid extraction of features in noisy 
and background areas of the fingerprint. We compute 
the variance of gray levels in a direction orthogonal to 
the orientation field in each block. The underlying 
assumption is that the noisy image regions have no 
directional dependence, whereas regions of interest 
(fingerprint area) exhibit a very high variance in a di- 
rection orthogonal to the orientation of the pattern 
and a very low variance along the ridges. In other 
words, the background has low variance in all the 
directions. Since our computation of the orientation 
field is quite robust, we use this information directly in 
the segmentation process. Mehtre 161 uses the variance 
at every pixel in a set of known directions to decide if 
the pixel is in the foreground. 

The variance can also be used to decide the "quality" 
of the fingerprint image in terms of the image contrast 
of the block (16 x 16 subimage) under consideration. 
The quality field value for a window is defined to have 
one of the following four values: "good", "medium", 
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Fig. 6. Stages in the proposed feature extraction algorithm. 

Fig, 7. Computation of orientation field; (a) input fingerprint image (512 x 512); (b) orientation field (for each 
16 x 16 window); (c) orientation field superimposed on the input image. 

"poor" and "background". A high contrast area is 
assigned the value "good" and a low contrast area the 
value "poor". This quality field is used in performance 
evaluation of our feature extraction algorithm. The 
variance field for the input image in Fig. 8(a) is shown 
in Fig. 8(b) and the corresponding quality field is 

shown in Fig. 8(c). The segmented image is shown in 
Fig. 8(d). A high gray value in the quality field image 
implies a better quality of that image block. We assign 
the same quality value to all the pixels in a block. 
Fig. 8(d) shows that our algorithm eliminates most of 
the background in the fingerprint image. 
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Fig. 8. Foreground/background segmentation: (a) original image; (b) variance field; (c) quality image; (d) 
segmented image. 

3.1.3. Ridge segmentation. After the foreground 
and background regions have been identified, the next 
step is to locate the ridges. A new technique has been 
implemented to locate the ridges. Consider an image 
window (in our case 16 × 16 pixeis) and its projection 
in the direction orthogonal to the orientation field for 
the window. A ridge center maps itself as a peak in the 
projection. The projection waveform facilitates the 
detection of ridge pixels. Two neighboring pixels on 
either side of the peak are also retained along the 
direction perpendicular to the orientation field. For  an 
ideal model of the ridges as shown in Fig. 9(a), we 
should get a projection waveform shown in Fig. 9(b). 
The waveform for a 16 × 16 window of a real finger- 
print image [Fig. 9(c)] is shown in Fig. 9(d). Before 
projecting the image, the image is smoothed using 
a one-dimensional averaging mask on each line 
oriented along a direction orthogonal to the orienta- 
tion field of the window. 

Sherlock et al. (5) used several different projections to 
determine the local ridge orientation, whereas we use 

the orientation field to obtain a single projection. 
A commonly used technique for segmentation is to 
threshold the image to obtain a binary image. (6) 
A fuzzy thresholding algorithm for locating ridges in 
fingerprints was proposed in reference (14). The thresh- 
olding technique uses a large window to ensure that at 
least one ridge and one valley is included in a window 
at every pixel, but does not use the directional informa- 
tion. Our approach is much better than a locally 
adaptive thresholding scheme, both in terms of the 
computational efficiency and performance by appro- 
priately using the orientation field. The ridge pixels are 
assigned a value "1" (white) and the remaining pixels 
are assigned a value "0". Figure 10 shows that the 
resulting binary ridge image is very good for feature 
extraction purposes, even though the full widths of the 
ridges are not retained. 

3.1.4. Directional smoothing. Once the ridges are 
located, directional smoothing is applied to smooth 
the ridges. A 3 x 7 mask is placed along the orientation 
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Fig. 9. Ridge segmentation: (a) ideal model for ridges; (b) projection wavefrom for the ridges in (a); (c) 
a typical 16 x 16 window from a fingerprint image. Also shown is the axis orthogonal to the ridge direction; 

(d) projection waveform for ridges in (c). 

Fig. 10. Segmented ridges: (a) input fingerprint image [same as Fig. l(b)]; (b) identified ridges. 
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I~i : 

Fig. 11. Thinned ridges: (a) before spike removal; (b) after spike removal. 

field for each window. The mask containing all "l"s 
enables us to count the number of "l"s in the mask 
area. If the count of "l"s is more than 25 % of the total 
number of pixels (21 in this case), then the ridge point 
is retained. The size of the mask was determined 
empirically. 

3.2. Minut iae extraction 

The binary ridge image needs further processing 
before the minutiae features can be extracted. The first 
step is to thin the ridges so that they are single-pixel 
wide. A skeletonization method described in reference 
(15) and available in the HIPS library ¢16~ is used. 
Unfortunately, the ridge boundary aberrations have 
an adverse impact on the skeleton, resulting in "hairy" 
growths (spikes) which lead to spurious ridge bifurca- 
tion and endings. Hence, the skeleton needs to be 
smoothed before minutiae points can be extracted. The 
spikes are eliminated using an adaptive morphological 
filtering. The filter used is a binary "open" operator 
with a box-shaped structuring element with all " l"s  of 
size 3 x 3. The structuring element is rotated in the 
direction orthogonal to the orientation field in the 
window. The ridge skeletons before spike removal and 
after spike removal are shown in Fig. 11. 

Locating minutia points in the thinned (skeleton) 
image is relatively easy. A count of the number of"on" 
neighbors at a point of interest in a 3 x 3 window is 
sufficient for this purpose; this is similar to the connec- 
tion number described in reference (11). A ridge end 
point has only one neighbor in the window and a ridge 
bifurcation has at least three neighbors. All the ridge 
end points and ridge bifurcation points detected with 
this method are not always true features, but the 
method does seem to identify most of the true feature 
points. A postprocessing stage filters out the un- 
desired feature points based on their structural char- 
acteristics. 

3.3. Postprocessing 

The preprocessing stage does not eliminate all 
possible defects in the input gray-scale fingerprint 
image. For  example, ridge breaks due to insufficient 
amount of ink and ridge cross-connections due to 
overinking are not totally eliminated. In fact, the prep- 
rocessing stage itself occasionally introduces some 
artifacts which later lead to spurious features. The 
postprocessing stage eliminates spurious feature 
points based on the structural and spatial relationships 
of the minutiae. For  instance, two minutiae in a real 
fingerprint cannot occur within a very short distance of 
each other. The following heuristics are used to vali- 
date minutia points found in Section 3.2. 

(1) Ridge break elimination: Two end points with 
the same orientation and within a distance threshold 
T 1 are eliminated. 

(2) Spike elimination: An end point which is con- 
nected to a bifurcation point and is also within a dis- 
tance threshold T2 is eliminated. 

(3) Boundary effects: The minutiae detected within 
a specified border of the boundary of the foreground 
areas are deleted. 

The connectivity property contained in the second 
heuristics is verified by tracking the ridges starting 
from a ridge bifurcation. The tracking directions are 
shown in Fig. 12. 

Fig. 12. 

y 
Three ridge tracking directions. 
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Fig. 13. Extracted minutiae points: (a) before postprocessing; (b) after postprocessing. 

A large number of spurious minutiae are deleted 
with these rules. The feature points detected before 
postprocessing and after postprocessing are shown in 
Fig. 13. The number of feature points in Figs 13(a) and 
(b) are 97 and 71, respectively. 

3.4. Algorithmic parameters 

In our implementation, we have used the following 
parameters in the various stages described in the previ- 
ous sections: 

(1) Window (block) size: 16 x 16 pixels, resulting in 
1024 total windows in an input image of size 512 x 512. 

(2) Number of quantized directions in orientation 
field: 16. 

(3) Ridge smoothing mask size: 7 x 3. 
(4) Threshold on sum of variances in a window to 

decide background/foreground: 2,500. 
(5) Size of the structuring element: 3 x 3. 
(6) Parameters in postprocessing: T 1 = 10, T 2 = 15, 

border size = 32. 

4. E X P E R I M E N T A L  R E S U L T S  

The feature extraction algorithm described above 
has been implemented and tested on 100 fingerprint 
images of varying quality. The results of intermediate 
stages and the detected minutiae features for a typical 
fingerprint are shown in Fig. 14. 

Currently, the entire feature extraction module runs 
on a SPARCstation 20 model 30 with a total execution 
time of 32.2s for a 512 x 512 gray-level image. Table 
2 shows the execution times for the important steps in 
the algorithm. 

The algorithmic parameters such as the variance of 
the Gaussian smoothing windows, the size of the struc- 
turing element, and the number of directions in the 

orientation field were empirically determined by run- 
ning the algorithm on a set of test images. 

Visually, the results of ridge segmentation and final 
feature detection are quite acceptable for matching 
purposes. In the next section, we will describe a quanti- 
tative method to evaluate the quality of the extracted 
features. 

4.1. Performance evaluation 

The performance of our feature extraction 
algorithm has been evaluated by comparing the 
detected minutiae with the set of minutiae obtained 
from the same image by a human expert (ground 
truth). Although this is a laborious process, in our 
opinion, it provides an essentially unbiased per- 
formance evaluation measure. Note that different 
human experts will often find different sets of minutiae 
points in the same fingerprint image and that is one of 
the motivations for developing an automatic feature 

= (f,~, f . . . . . .  f~ ) be the set extraction algorithm. Let F,  1 2 N 
of N minutiae points detected by the algorithm and 

- -  1 2 Fg - fig, f~ . . . . .  fgu) be the set of M minutiae points in 
the ground truth for a given fingerprint image. For  the 
purpose of computing the goodness index (GI), the 
following definitions are needed. 

• Paired minutia: A minutia detected by the algor- 
ithm, f,, and a ground truth minutia, fg are said to be 
paired if f, lies within a tolerance box centered around 
fg. A graphical representation is shown in Fig. 15. 
In our experiments, the size of the tolerance box is 
8 x 8 .  

• Missing minutia: A minutia which has to be in- 
serted in the set F.  (not detected by the algorithm), to 
allow it to be paired with some minutiae present in the 
set Fg. 
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Fig. 14. Results of various stages in feature extraction: (a) original image; (b) orientation field; (c) smoothed 
orientation field; (d) vanance field (continued). 

• Spurious minutia: A minutia  in the set F,  that 
needs to be deleted because it cannot  be paired with 
any ground truth minut ia  in Fg. 

The goodness index (GI) is defined by the following 
equation. 

~,~= 1Qi[Pi  - Di - l i]  
GI - , (2) 

~'~= t QiMi  
where 

L = number  of 16 x 16 windows in the input im- 
age, 

P~ = number  of minutiae paired in the ith window, 
Q~ = quality factor of the ith window (good = 4, 

medium = 2, poor = 1), 
Di = number  of deleted minutiae in the ith window, 
I~ = number  of inserted minutiae in the ith window, 

M~ = number  of ground truth minutiae in the ith 
window. 

Define variables P, D, I and M as follows: 

O = Z P  i, O = ~ O  i, l = ~ l l ,  a n d M = ~ M , .  
i i i i 

Note that we have chosen a value of 4 instead of 3 for 
the quality index Qi of the "good" areas to give larger 
weight to correct and incorrect matches in the good 
quality portions of fingerprint images. 

The m a x i m u m  value of GI  equals + 1, which is 
obtained when D i = Ii = 0 and N~ = M~, i.e. all the 
detected minutiae are paired. This index penalizes 
both the missing minutiae and spurious minutiae. 
Note that the number  of matches in each window is 
weighted by its quality. Thus, a mistake (missing or 
spurious minutiae) in a good-contrast window is 
weighted more heavily compared with the same mis- 
take in a noisy area of the fingerprint image. If we 
assume that the total number  of detected minutiae in 
a window is at most twice the "true" number  of minu- 
tiae, then the minimum value of GI  is - 3. This value is 
obtained when N i = 0, Di = 2 .  M~, and li = M~, i.e. no 
detected minutiae could be paired and the number  of 
detected minutiae is two times the number  of ground 
truth minutiae. 

A large value of GI  for a fingerprint image implies 
that the feature extraction algorithm has done a good 
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Fig. 14. (Continued) Results of various stages in feature extraction: (e) foreground/background segmenta- 
tion; (f) ridges after masking out the background; (g) skeleton with minutiae points marked; (h) muintiae 

superimposed on the input grey level image. 

Table 2. Execution times for important steps 
in the algorithm 

Step Time (s) 

Flow orientation 1.25 

Smoothing, 11.9 
variance computation, and 
image enhancement 

Ridge detection 5.1 

Thinning 5.0 

Morphological filtering 5.5 

Minutiae detection and 1.8 
postprocessing 

How significant are these observed values of GI? In 
order to determine the significance of the observed 
values, we compared them against the GI values ob- 
tained under a baseline distribution. ~171 We have used 
the following procedure to obtain the baseline dis- 
tribution of GI. 

(1) Generate a pair of random integers (x,y), 
x, ye[0,511].  Note that the image size is 512 × 512. 

(2) If (x, y) is a foreground point in the input image, 
then accept the point as a random minutiae point. 

(3) If the total number of random minutiae points is 
equal to the number of minutiae points obtained from 
the feature extraction algorithm, then stop; otherwise 
go to step 1. 

job on that image. The GI values for a representative 
subset of 10 fingerprint images is shown in Table 3. The 
average value of GI using the proposed feature extrac- 
tion method is 0.24. The maximum and minimum 
values of GI obtained on this dataset are 0.48 and 0.1, 
respectively. 

The values of GI computed with a set of random 
number of N points with the fixed M ground truth 
points can be used to evaluate the observed value of 
GI. The baseline distribution for the fingerprint 
numbered 'u1421' (based on 100 sets of random points) 
is shown in Fig. 16. For  the 10 fingerprints used in 
Table 3, we also provide the values of baseline GI 
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Minutia located by our algorithm 

~ G r o u n d  truth minutia 

X 

Fig. 15. Pairing of minutiae using a tolerance box. 

Table 3. GI values for a sample of 10 fingerprint images 

Fingerprint 
number P D I M GI pn D B i a GI  8 

u1421 57 16 9 62 0.48 15 58 51 -1 .24 
1023 40 23 2 42 0.475 5 58 37 --2.06 
t013 50 23 9 59 0.34 14 59 45 -1 .30  
s018 43 22 9 52 0.285 7 58 45 -1 .94 
u1420 50 20 18 68 0.263 9 61 59 -1 .19 
u1373 48 35 11 59 0.135 13 70 46 -,1.375 
s024 30 18 8 38 0.118 2 46 36 - 1.64 
s23 36 21 10 49 0.11 6 51 43 -1 .69 
u13a7 36 21 10 46 0.102 7 50 39 -2.38 
109 49 28 17 66 0.10 8 69 58 -1.68 

O 

-3 o2 -1 0 1 

GI 

Fig. 16. Baseline distribution for fingerprint image 'u1421'. 
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(denoted as GIS). Note that the variables pB, D n and I B 
correspond to P, D and B, respectively, for the baseline 
distribution. The values of GI n varied from - 2.38 to 
- 1.19 with an average value of - 1.65. (Note that the 
average GI  value is 0.24), Compar ing the values of G1 n 
with the values of GI  computed from the extracted 
minutiae, we can conclude that the proposed feature 
extraction method is robust and accurate, 

5. CONCLUSIONS AND FUTURE WORK 

We have proposed a new method for robust feature 
extraction from fingerprint images based on ridge flow 
orientations. The main contributions of this paper are: 
(i) a novel segmentation method, (ii) an adaptive en- 
hancement of the thinned image and (iii) quanti tat ive 
performance evaluation. The input image quality did 
not adversely affect the performance of our technique. 
Ridge segmentation based on peak detection of the 
projected waveform and morphological  filtering re- 
sults in a good skeleton image. A performance evalu- 
ation technique has been described which compares 
the detected features with the ground truth. The algo- 
rithm has been tested on 100 fingerprint images and 
the goodness index has been computed to substantiate 
our claim of robustness. We are currently in the pro- 
cess of running the feature extraction algori thm on the 
NIST fingerprint database, ~ls) which contains several 
thousand fingerprint images. 

In order for the proposed method to be acceptable 
for commercial  use, the execution time of the algorithm 
must be substantially reduced. We are currently port- 
ing the feature extraction algorithm on Splash 2 - - a  
field programmable  gate array (FPGA)-based array 
processorJ TM A FPGA-based  fingerprint matching al- 
gori thm has already been implemented. ~2°~ 

REFERENCES 

1. B. Miller, Vital signs of identity, IEEE Spectrum 31(2), 
22-30 (February 1994). 

2. Henry C. Lee and R.E. Gaensslen, eds, Advances in 
Fingerprint Technology. Elsevier, New York (1991). 

3. Federal Bureau of Investigation, The Science of Finger- 
prints: Classification and Uses. U.S. Government Printing 
Office, Washington, DC (1984). 

4. Application briefs: Computer graphics in the detective 
business, I EEE Comput. Graphics Appl. 5(4), 14-17 (April 
1985). 

5. B.G. Sherlock, D. M. Monro and K. Millard, Finger- 
print enhancement by directional Fourier filtering, IEEE 
Proc. Vis. Image Signal Processing 141(2), 87-94 (April 
1994). 

6. B. M. Mehtre, Fingerprint image analysis for automatic 
identification, Mach. Vis. Appl. 6, 124-139 (1993). 

7. L. Coetzee and E. C. Botha, Fingerprint recognition in 
low quality images, Pattern Recognition 26(10), 1441 
1460 (1993). 

8. D. C. Douglas Hung, Enhancement and feature purifica- 
tion of fingerprint images, Pattern Recognition 26(11), 
1661-1671 (1993). 

9. Q. Xiao and H. Raafat, Fingerprint image postprocess- 
ing: A combined statistical and structural approach, Pat- 
tern Recognition 24(10), 985-992 (199 l). 

10, L.O'Gorman and J. V. Nickerson, An approach to finger- 
print filter design, Pattern Recognition 22(1), 29 38 
(1989). 

11. H. Tamura, A comparison of line thinning algorithms 
from digital geometry viewpoint. In Proc. 4th Int. Joint 
Conf. Pattern Recognition, pp. 715 719 Kyoto, Japan 
(1978). 

12. A. Ravishankar Rao, A Taxonomy for Texture Descrip- 
tion and Identification. Springer-Verlag, New York 
(1990). 

13. M. Kawagoe and A. Tojo, Fingerprint pattern classifica- 
tion, Pattern Recognition 17(3), 295-303 (1984). 

14. M. R. Verma, A. K. Majumdar and B. Chatterjee, Edge 
detection in fingerprints, Pattern Recognition 20(5), 513- 
523 (1987). 

15. T. Sakai, M. Nagao and H, Matsushima, Extraction of 
invariant picture sub-structures by computer, Comput. 
Graphics Image Process 1(1), 81 96 (1972). 

16. Sharplmage Software, New York. The HIPS Image Pro- 
cessing Software (1993). 

17. A. K. Jain and R.C. Dubes, Algorithms for Clustering 
Data. Prentice-Hall, Englewood Cliffs, New Jersey (1988). 

18. C.I. Watson, NIST special database 9: Mated Finger- 
print Card Pairs. Advanced Systems Division, Image 
Recognition Group, National Institute for Standards and 
Technology, February 1993. 

19. J. M. Arnold, D. A. Buell and E. G. Davis, Splash 2, in 
Proc. 4th Ann. ACM Symp. Parallel Alg. Architect. 316- 
322 (1992). 

20. N.K. Ratha, A. K. Jain and D.T. Rover, Fingerprint 
matching on Splash 2, in D. A. Buelll, J. M. Arnold and 
W.J. Kleinfelder, eds, Splash 2: FPGAs in a Custom 
Computing Machine. IEEE Computer Society Press, 
IEEE (1995). To be published. 

S U M M A R Y  

In this paper, we have proposed a reliable method for 
feature extraction from fingerprint images, The flow direction 
of the ridges is computed viewing the fingerprint image as 
a textured image. The ridge flow direction plays an important 
role in adapting filters for the rest of the stages in our 
algorithm. A waveform projection-based algorithm is 
described for extracting the ridges. Using morphological 
filters, the thinned skeleton of the ridges are smoothed. The 
structural features are extracted from the skeleton image. 
A postprocessing stage deletes spurious minutiae. The 
performance of the proposed algorithm is evaluated by 
computing a "goodness index" (GI). The extracted features 
have been shown to be reliable and accurate on the basis 
of the significance of the observed GI values of a set of 
fingerprints in comparison with the GI values obtained under 
a baseline distribution. 
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