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Abstract 
W e  describe the  design and synthes is  of a high- 

per formance  coprocessor f o r  po in t  pa t t e rn  matching  
wi th  application t o  f ingerpr in t  matching  using Splash 2 
- a n  attached processor for SUN S P A R C s t a t i o n  hosts.  
E a c h  of t h e  field programmable gate array ( F P G A ) -  
based processing e lements  (PES) i s  programmed us- 
ing  VHDL behavioral modeling. Using the  s imula t ion  
tools, t he  program logic i s  verified. T h e  f inal control 
bit s t ream for the  PES is generated using the  synthesis 
tools. T h e  po in t  feature matching  coprocessor can  run 
at  a peak speed of 17.1 M H z  per  feature vector of a f in -  
gerprint.  With 65 f ea tures  per  f ingerprint,  t he  ma tch -  
ing speed has  been projected a t  the  rate of 2.6 * lo5 f in -  
gerprints/sec.  T h e  synthesized coprocessor was  tested 
o n  a 10,000 f ingerpr in t  database. 
Keywords: Reconfigurable hardware,  finger- 
pr int  matching, FPGA, hardware-software 
codesign, Splash 2 

1 Introduction 
Point pattern matching, i.e., finding the correspon- 

dence between two sets of points in an m-dimensional 
space, is a fundamental problem in many computer 
vision tasks. For example, rigid object recognition us- 
ing point features can be considered as an instance 
of point pattern matching. In motion analysis, point 
pattern matching is used to solve the correspondence 
problem. In remote sensing applications, point pat- 
tern matching is used in image registration. 

For the general case of point pattern matching, 
where no a pr ior i  knowledge about the two sets of 
points is available, many algorithms have been de- 
scribed in the literature [l, 2, 3, 4, 5, 61. Baird’s O(n2)  
algorithm, where n is the numbers of points in each of 
the two point sets, becomes more complex when the 
number of points are not same in the two sets. Vinod 
et al. [2] propose a neural network for point pattern 
matching after formulating the problem as a 0-1 in- 
teger programming problem. A genetic algorithm has 

been suggested by Ansari et al. [4]. Most of these 
algorithms do not permit distortion of the points. 

We restrict our focus only to the following scenario 
motivated from the problem of fingerprint matching. 
The two point sets can have different number of points. 
We do not handle scaling and rotation, but allow elas- 
tic distortion. Due to elasticity of the skin and non- 
ideal nature of the process involved in collecting fin- 
gerprint impressions, distortions of the feature vectors 
are inevitable. In fingerprint matching, we are inter- 
ested in the set of “paired features” between the query 
fingerprint and database (reference) fingerprints. This 
process is repeated over all the records in the finger- 
print database. Typically, there are millions of finger- 
print records in the database. In order to  provide a 
quick response time, special hardware accelerators are 
needed for matching. 

Fingerprint-based identification is the most popular 
biometric technique used in automatic personal identi- 
fication [7]. Law enforcement agencies use it routinely 
for criminal identification. Now, it is also being used 
in several other applications such as access control for 
high security installations, credit card usage verifica- 
tion, and employee identification [7]. The main reason 
for the popularity of fingerprints as a form of identifi- 
cation is that the fingerprint of a person is unique and 
remains invariant through age. 

A fingerprint is characterized by ridges and valleys. 
The ridges and valleys alternate, flowing locally in a 
constant direction (see Figure 1). A closer analysis 
of the fingerprint reveals that the ridges (or the val- 
leys) exhibit anomalies of various kinds, such as ridge 
bifurcations, ridge endings, short ridges, and ridge 
crossovers. Eighteen different types of fingerprint fea- 
tures have been enumerated in [8]. Collectively, these 
features are called minut iae .  For automatic feature ex- 
traction and matching, the set of fingerprint features is 
restricted to two types of minutiae: ridge endings and 
ridge bifurcations. Ridge endings and bifurcations are 
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Figure 1: Gray level fingerprint images and two commonly used fingerprint features : (a) Loop; (b) Whorl; (c) 
Ridge bifurcation; (d) Ridge ending. 

Figure 2: Complex features as a combination of simple features: (a) Short ridge; (b) Enclosure. 

shown in Figures l(c) and l(d). We do not make any 
distinction between these two feature types sin.ce data 
acquisition conditions such as inking, finger pressure, 
and lighting can easily change one type of feature into 
another. More complex fingerprint features can be ex- 
pressed as a combination of these two basic features. 
For example, an enclosure can be considered as a col- 
lection of two bifurcations, and a short ridge can be 
considered as a collection of a pair of ridge endings. 
These features are shown in Figure 2. 

In order to  provide a reasonable response time for 
each query, commercial systems use dedicated hard- 
ware accelerators or application-specific integrated cir- 
cuits (ASICs). While application-specific architec- 
tures and ASICs have been designed to meet the 
computing requirements of complex image process- 
ing tasks, such designs have the following two ma- 
jor limitations: (i) once fabricated, they are diffi- 

performance is achieved by exploiting an important 
principle: most of the processing time of a compute- 
intensive job is spent within a small portion of its ex- 
ecution code [9], and if an architecture can provide ef- 
ficient computation for the frequently executed code, 
then the overall performance can be improved sub- 
stantially. Portions of the matching algorithm have 
been identified for implementation on Splash 2, an at- 
tached processor for Sun hosts, leaving the remainder 
to  be implemented using software on the host. 

In this paper, we describe fingerprint matching as 
a special case of point pattern matching. A sequential 
algorithm of O(mn) computational complexity for two 
point sets with m and n points is presented. We focus 
on parallelizing this algorithm using Splash 2. The 
mapping process and the performance results are pre- 
sented. The parallel algorithm has been implemented 
on the hardware and tested on a large database. 

cult to modify; and (ii) the cost of building special- 
purpose application accelerators is very expensive for 
low-volume applications. Both of these limitations ming Models 
have been the driving force behind the design of cus- 
tom computing machines (CCMs) using reconfigurable 
logic arrays known as field programmable gate arrays 
(FPGAs). An attached processor built with FPGAs 
can overcome the two limitations noted above. High 

2 Splash 2 Architecture and Program- 

The Splash 2 system consists of an array of Xilinx 
4010 FPGAs, improving on the design of the Splash 
1 based on Xilinx 3090s [lo]. Figure 3(a) shows a 
system-level view of the Splash 2 architecture. Splash 
2 is connected to the host through an interface board 
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interface Board 

Splash Boards 

that extends the address and data buses. The Sun host 
can readlwrite to  memories and memory-mapped con- 
trol registers of Splash 2 via these buses. A detailed 
description of the system is given in [ll, 121. We de- 
scribe the major components of the Splash 2 system 
below. Each Splash 2 processing board has 16 Xilinx 
4010s as PES (XI - x16) in addition to a seventeenth 
Xilinx 4010 ( X O )  which controls the data flow into the 
processor board. Each PE has 512 KB of memory. 
The Sun host can read/write this memory. There is a 
36-bit linear data path (SIMD Bus) running through 
all the PES. The PES can read/write data from their 
respective memory through a private address and data 
bus after setting appropriate control signals. The PES 
are connected through a crossbar that is programmed 
by Xo. A broadcast path also exists by suitably pro- 
gramming XO. The processor organization for a PE  is 
shown in Figure 3(b). 

The Splash 2 system supports several models of 
computation, including PES executing the single in- 
struction on multiple data (SIMD mode) and PES ex- 
ecuting multiple instructions on multiple data (MIMD 
mode). It can also execute the same or different in- 
structions on single data by receiving data through the 
global broadcast bus. The most common mode of op- 
eration is systolic in which the SIMD Bus is used for 
data transfer. Individual memory available with each 
PE makes it convenient to store temporary results and 
tables. 

The Xilinx 4010 consists of 400 (20 x 20) config- 
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Figure 3: Splash 2:  (a) Architecture; (b) One processing element. 
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urable logic blocks. The structure of a CLB is shown in 
Figure 4. Programming an FPGA-based computer is 
different from usual high-level programming. The de- 
sign automation process consists of two steps: simula- 
tion and synthesis. The programming flow for Splash 2 
is shown in Figure 5. In simulation, the logic designed 
using VHDL is verified. This involves comparing the 
results of the VHDL simulation with those obtained 
manually or by a sequential program. In synthesis, 
the main concern is to achieve the best placement of 
the logic in an FPGA in order to minimize the timing 
delay. At this point in the design process, the logic 
circuit may or may not fit on a single FPGA (i.e., be 
mappable to the configurable logic blocks (CLBs) and 
flip-flops which are available internal to an FPGA). If 
it does not fit, the designer needs to  revise the logic in 
the VHDL code and the process is repeated. If it does 
fit, the timing for the entire digital logic is obtained. 
In case this timing is not acceptable, the design pro- 
cess is repeated. 

To program Splash 2, we need to  program each of 
the PES (XI- x16), the crossbar, and the host inter- 
face. The crossbar sets the communication paths be- 
tween PES. In case the crossbar is used, XO needs to  
be programmed. The host interface takes care of data 
transfers in and out of the Splash 2 board. A spe- 
cial library is available for these facilities for VHDL 
programming as described in [ll]. The synthesis pro- 
cess involves the following stages: (i) VHDL to XNF 
translation: to obtain a vendor specific netlist from 
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Figure 4: Structure of a Xilinx 4010 CLB. 

the VHDL source code; (ii) Partition, Placement and 
Routing: to  fit the logic generated onto a physical PE; 
(iii) Delay and Timing Analysis: to  analyze the tim- 
ing and delay; (iv) XNF to bit stream translation; and 
(v) Bit stream to raw file generation. The raw file is 
loaded onto each PE,  and a configuration file for the 
crossbar is used to  describe the crossbar usage. The 
host uses these files to  control the attached proces- 
sor through a set of routines callable by a C program. 
Using the host interface, the memory addressable by 
each PE can be initialized. 

3 Fingerprint Matching Algorithm 
The feature extraction process takes the input fin- 

gerprint gray-level image and extracts the minutiae 
features described in Section 1, making no efforts to  
distinguish between the two categories (ridge endings 
and ridge bifurcations). In this section, an algorithm 
for matching rolled fingerprints against a database of 
rolled fingerprints is presented. A query fingerprint is 
matched with every fingerprint in the database, dis- 
carding candidates whose matching scores are below 
a user-specified threshold. Rolled fingerprints usually 
contain a large number of minutiae (between 50 and 
100). Since the main focus of this paper is on paral- 
lelizing the matching algorithm, we assume that the 
features (minutiae points) have already been extracted 
from the fingerprint images. In particular, we assume 
that the core point of the fingerprint is known and 
that the fingerprints are oriented properly. 
3.1 Minutia Matching 

Matching a query and a database fingerprint is 
equivalent to  matching their minutiae sets. Each 
query fingerprint minutia is examined to determine 
whether there is a corresponding database fingerprint 
minutia. Two minutiae are said to be paired or 
matched if their components (2, y, e)  are equal within 

Timing of 

Splash 2 

Figure 5 :  Programming Flow for Splash 2. 

some tolerance after registration, which is the pro- 
cess of aligning the two sets of minutiae along a com- 
mon core point (see section 3.2 for precise definitions). 
Three situations arise as shown in Figure 7. 

1. A database fingerprint minutia matches the query 
fingerprint minutia in all the components (paired 
minutiae) ; 

2. A database fingerprint minutia matches the query 
fingerprint minutia in the x and y coordinates, 
but does not match in the direction (minutiae 
with unmatched angle); 

3. No database fingerprint minutia matches the 
query fingerprint minutia (unmatched minutia). 

Of the three cases described above, the minutiae are 
said to  be paired only in the first case. 
3.2 Matching Algorithm 

The following notation is used in the sequential and 
parallel algorithms described below. Let the query 
fingerprint be represented as an n-dimensional fea- 
ture vector fq = (f?,f: ,......, f,"). Note that each of 
the n elements is a feature vector corresponding to 
one minutia, and the ith feature vector contains three 

The components of a feature vector are shown ge- 
ometrically in Figure 6. The query fingerprint core 
point is located at (C:, (7,"). Similarly, let the rth 
reference (database) fingerprint be represented as an 
m,-dimensional feature vector fr = (ff,f$, ....., f&), 
and the reference fingerprint core point is located at 

Let (E:, yi) and (z:, y:) define the bounding box for 
the query fingerprint, where x: is the x-coordinate of 
the top left corner of the box and z: is the x-coordinate 
of the bottom right corner of the box. Quantities yi 

components, fi = (fz(z), fz( ~ ) ,  fz(e))- 

(G, c;). 
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Figure 6:  Components of a minutia feature. 

and yi are defined similarly. A bounding box is the 
smallest rectangle that encloses all the feature points. 
Note that the query fingerprint fq  may or may not be- 
long to  the fingerprint database fD.  The fingerprints 
are assumed to be registered with a known orientation. 
Hence, there is no need of normalization for rotation. 
The matching algorithm is based on finding the num- 
ber of paired minutiae between each database finger- 
print and the query fingerprint. It uses the concept of 
minutiae matching described in Section 3.1. In order 
to reduce the amount of computation, the matching 
algorithm takes into account only those minutiae that 
fall within a common bounding box. The common 
bounding box is the intersection of the bounding box 
for query and reference (database) fingerprints. Once 
the count of matching minutiae is obtained, a match- 
ing score is computed. The matching score is used for 
deciding the degree of match. Finally, a set of top 
scoring reference fingerprints is obtained as a result of 
matching. In order to accommodate the shift in the 
minutia features, a tolerance box is created around 
each feature. The size of the box depends on the ridge 
widths and distance from the core point in the finger- 
print. 

The sequential matching algorithm is described in 
Figure 8. In the sequential algorithm, the toler- 
ance box (shown in Figure 9 with respect to a query 
fingerprint minutia) is calculated for the reference 
(database) fingerprint minutia. In the parallel algo- 
rithm described in the next section, the tolerance box 
is calculated for the query fingerprint (as in Figure 9). 
A similar sequential matching algorithm is described 
in [13]. Depending on the desired accuracy, more than 
one finger could be used in matching. In that case, a 
composite score is computed for each set. 

4 Parallel Matching Algorithm 
We parallelize the matching algorithm exploiting 

the specific characteristics of Splash 2 architecture. 

i ......... , L ........., 
Paired minlltlee Paired minutme 

,.......... 
I d I  
~ '. ; 
I ......... ~ 

Minutiae with 
unmatched angle 

........ ..7 

I . /  

L ......... ~ 

Unmatched minutia 
(No pairing possible) 

Figure 7: Possible scenarios in minutia matching. 

While performing this mapping, we need to  take into 
account the limitations of the available FPGA tech- 
nology. Any preprocessing needed on the query minu- 
tiae set is a one-time operation, whereas reference 
fingerprint minutiae matching is a repetitive opera- 
tion. Computing the matching score involves floating 
point division. The floating point operations and one- 
time operations are performed in software on the host 
whereas the repetitive operations are delegated to the 
FPGA-based PES of Splash 2. The parallel version of 
the algorithm involves operations on the host, on Xo,  
and on each PE. 

One of the main constructs of the parallel algorithm 
is a lookup table used in translating computations 
to lookups. The lookup table consists of all possible 
points within the tolerance box that a feature may be 
mapped to. The Splash 2 data paths for the parallel 
algorithm are shown in Figure 10. 
4.1 Preprocessing on the Host 

The host processes the query and database finger- 
prints as follows. The query fingerprint is read first 
and the following preprocessing is done: 

1. The core point is assumed to  be available. For 
each query feature f?, j=1, 2, .. .n, generate a 
tolerance box. Enumerate a total of (t,  x t ,  x t o )  
grid points in this box, where t ,  is the tolerance 
in x, t ,  is the tolerance in y and to is tolerance in 
6. 

2. Allocate each feature to  one P E  in Splash 2. Re- 
peat this cyclically, i.e., features 1-16 are allo- 
cated to PES X1 to x16, features 17-32 are al- 
located to PES XI to X16, and so on. 

3.  Initialize the lookup tables by loading the grid 
points within each tolerance box in step (1) into 
the memory. 

In this algorithm, the tolerance box is computed 
with respect to the query fingerprint features. The 
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Input: Query feature vector fq and the rolled fingerprint database fD ={fr}r="=l 

Output: A list o f  top ten  records f r o m  the database with matching scores > T.  
Begin 

The rth database fingerprint is represented as an m,-dimensional feature vector and the query feature vector is n-dimensional. 

For r=l to N do 
1. Register the database fingerprint with respect to the core point (Cz, C,4) of the query fingerprint: 

For i=l to m, do 
f ,T(x)  = f ,T(x)  - cz 
f l ( Y )  = f l ( Y )  - (3 

2. Compute the common bounding box for  the query and reference fingerprints: 
Let ( x i ,  yt) and ( x t ,  y;) define the bounding box for  the query fingerprint. 
Let ( x t , y : )  and (511, y:) define the bounding box for  the rih reference fingerprint. 
The intersection of these two boxes is the common bounding box. 
Let the query print have M,4 and reference print have N,' minutiae in this box. 

If the distance f rom the reference core point to the current reference feature is less than K then 
3. Compute the tolerance vector for  i th  feature vector f l :  

t i ( x )  = Idcos($), 
t r ( y )  = Idsin($), and 
t:(e) = k 3 ,  

t : ( x )  = Icl, 

t;(e) = k3 ,  

else 

t r ( y )  = Ic2 ,  and 

where 1 ,  k l ,  k2 and IC3 are prespecified constants determined 
empirically based on the average ridge width, 
$ is the angle of the line joining the core point and the ith feature with the x-axis, 
and d is the distance of the feature f rom the core point. 
Tolerance box is shown geometrically in Figure 9. 

Xwo minutiae f: and fjg are said to match i f  the following conditions are satisfied: 
4. Match minutiae: 

fj"W - t T ( X )  I f , ' ( x )  I fjQ(4 + C ( X ) ,  

f j " ( Y )  - t ,T(Y)  I f l ( Y )  5 f j " (Y)  +tY(y) ,and  
fj" - t: (0) I f,' (0) I fj" (0) + t: (01, 
where t,T = ( t ,T(x) , tY(y) , t : (Q))  is the tolerance vector. 

Set the number of paired features, mF = 0; 
For all query features G, j=l ,2 ,  . . . M2, do 

If fj" matches with any feature in f:, i=l ,2 ,  . . . , N,T, then increment m;. 
Mark the corresponding feature in f' as paired. 

5.  Compute the matching score (MS (q,r)): 
mr*m' 

MS(q,r) = &. 
Sort the database fingerprants and obtain top 10 scoring database fingerprints. 

End 

Figure 8: Sequential fingerprint matching algorithm. 
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Figure 9: Tolerance box for X- and Y-components. 

host then reads the database of fingerprints and sends 
their feature vectors for matching to the Splash 2 
board. 

For each database fingerprint, the host performs the 
following operations: 

Figure 10: Data flow in parallel algorithm. 

address is a 'l', then the feature is paired, and 
the P E  drives the Global OR Bus high. 

5 Performance Analysis 
The bit stream files for Splash 2 are generated from 

v 

the VHDL code using design automation tools from 
Synopsys and Xilinx. Using the C interface for Splash 
2 ,  a host version of the fi%erPrint matching aPPlica- 
tion is generated. The host version reads the finger- 
print database from the disk and obtains the final list 
of candidates after matching. 

The sequential algorithm, described in Section 3.2, 
executed on a Sun SPARCstation 10 performs at the 

Read the feature vectors. 

Register the features as described in step (1) of 
the sequential algorithm in Figure 8 .  

Send each of the feature vectors over the Broad- 
cast Bus to  all PES if it is within the bounding 
box of the query fingerprint. 

For each database fingerprint, the host then reads the 
number of paired features mg that was computed by 
the Splash 2 system, r = 1, . . . N, where N is the num- 
ber of records in the database. Finally, the matching 
score is computed as in the sequential method. 
4.2 Computations on Splash 

The computations carried out on each P E  of Splash 
2 are described below. As mentioned earlier, Xo plays 
a special role in controlling the crossbar in Splash 2. 

1. Operations on Xo: 
Each database feature vector received from the 
host is broadcast to all PES. If it is matched with 
a feature in a lookup table, the P E  drives the 
Global OR Bus high. When this OR Bus is high, 
Xo increments a counter. The host reads this 
counter value (m;) after all the feature vectors for 
the current database fingerprint have been pro- 
cessed. 

2. Operations on each PE: 
On receiving the broadcasted feature, a P E  com- 
putes its address in the lookup table through a 
hashing function. If the data at the computed 

rate of 70 matches per second on database and query 
fingerprints that have approximately 65 features. A 
match is the process of determining the matching score 
between a query and a reference fingerprint. The 
Splash 2 implementation should perform matching at 
the rate of 2.6 x lo5 matches per second. This match- 
ing speed is obtained from the 'timing' utility. The 
host interface part can run at 17.1 MHz and each P E  
can run at 33.8 MHz. Hence, the entire fingerprint 
matching will run at  the slower of the two speeds, 
17.1 MHz. Assuming 65 minutiae, on an average, 
in a database fingerprint, the matching speed is es- 
timated at 2.6 x lo5 matches per second. We evalu- 
ated the matching speed using a database of 10,000 
fingerprints, created from 100 real fingerprints by ran- 
domly dropping, adding and perturbing minutiae in a 
given set of minutiae. The measured speed on a Splash 
2 system running at 1 MHz is of the order of 6,300 
matches per second on this database. Our experimen- 
tal Splash 2 system has not yet been run at higher 
clock rates. Assuming a linear scaling of performance 
with an increase in clock rate, we would achieve ap- 
proximately 110,000 matches per second at  17.1 MHz 
clock speed. We feel that the disparity in the pro- 
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jected and achieved speeds (2.6 x lo5 versus 1.1 x lo5) 
is due to  different tasks being timed. The time to load 
the data buffers onto Splash 2 has not been taken into 
account in the projected speed, whereas this time is 
included in the time measured by the host in an ac- 
tual run. We are in the process of timing only the 
matching component of the code on the system. 

The matching algorithm can scale well as the num- 
ber of Splash 2 boards on the system is increased. 
Multiple query fingerprints can be loaded on different 
Splash 2 boards, each matching against the database 
records as they are transferred from the host. This 
would result in a higher throughput from the system. 

The processing speed can be further improved by 
replacing some of the soft macros on the host inter- 
face part ( X o )  by hard macros, where the latter are 
customized configurations that make efficient use of 
the FPGA logic. To sustain the matching rate, the 
data bandwidth should be at a rate of over 250,000 
fingerprint records per second (with an average of 65 
minutiae per record). This may be a bottleneck for 
the 1/0 subsystem. 

6 Conclusions 
We have addressed the parallel implementation of a 

point pattern matching algorithm applicable to finger- 
print matching. The sequential fingerprint matching 
algorithm with complexity O(mn) has been success- 
fully parallelized with a complexity of O(m), where m 
is the average number of minutiae in the database fin- 
gerprint and n is the average number of minutiae in a 
query fingerprint. The Splash 2 architecture is highly 
suitable for rolled fingerprint matching. The parallel 
point pattern matching algorithm has been designed 
to match the Splash 2 architecture, thereby resulting 
in a substantially improved performance. The algo- 
rithm applies a hardware-software design approach to 
maximize the performance of the overall system. 
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