
An FPGA-based Point Pattern Matching Processor with Application
to Fingerprint Matching

Nalini K. Ratha Ani1 K. Jain Diane T. Rover
Department of Computer Science

Michigan State University Michigan State University Michigan State University
East Lansing, MI 48824

ratha@cps.msu.edu j ain@cps. msu .edu rover@ee.msu.edu

Department of Computer Science

East Lansing, MI 48824

Department of Electrical Engineering

East Lansing, MI 48824

Abstract
W e describe the design and synthes is of a high-

per formance coprocessor f o r po in t pa t t e rn matching
wi th application t o f ingerpr in t matching using Splash 2
- a n attached processor for SUN S P A R C s t a t i o n hosts.
E a c h of t h e field programmable gate array (F P G A) -
based processing e lements (PES) i s programmed us-
ing VHDL behavioral modeling. Using the s imula t ion
tools, t he program logic i s verified. T h e f inal control
bit s t ream for the PES is generated using the synthesis
tools. T h e po in t feature matching coprocessor can run
at a peak speed of 17.1 M H z per feature vector of a f in -
gerprint. With 65 f ea tures per f ingerprint, t he ma tch -
ing speed has been projected a t the rate of 2.6 * lo5 f in -
gerprints/sec. T h e synthesized coprocessor was tested
o n a 10,000 f ingerpr in t database.
Keywords: Reconfigurable hardware, finger-
pr int matching, FPGA, hardware-software
codesign, Splash 2

1 Introduction
Point pattern matching, i.e., finding the correspon-

dence between two sets of points in an m-dimensional
space, is a fundamental problem in many computer
vision tasks. For example, rigid object recognition us-
ing point features can be considered as an instance
of point pattern matching. In motion analysis, point
pattern matching is used to solve the correspondence
problem. In remote sensing applications, point pat-
tern matching is used in image registration.

For the general case of point pattern matching,
where no a pr ior i knowledge about the two sets of
points is available, many algorithms have been de-
scribed in the literature [l, 2, 3, 4, 5, 61. Baird’s O(n2)
algorithm, where n is the numbers of points in each of
the two point sets, becomes more complex when the
number of points are not same in the two sets. Vinod
et al. [2] propose a neural network for point pattern
matching after formulating the problem as a 0-1 in-
teger programming problem. A genetic algorithm has

been suggested by Ansari et al. [4]. Most of these
algorithms do not permit distortion of the points.

We restrict our focus only to the following scenario
motivated from the problem of fingerprint matching.
The two point sets can have different number of points.
We do not handle scaling and rotation, but allow elas-
tic distortion. Due to elasticity of the skin and non-
ideal nature of the process involved in collecting fin-
gerprint impressions, distortions of the feature vectors
are inevitable. In fingerprint matching, we are inter-
ested in the set of “paired features” between the query
fingerprint and database (reference) fingerprints. This
process is repeated over all the records in the finger-
print database. Typically, there are millions of finger-
print records in the database. In order to provide a
quick response time, special hardware accelerators are
needed for matching.

Fingerprint-based identification is the most popular
biometric technique used in automatic personal identi-
fication [7]. Law enforcement agencies use it routinely
for criminal identification. Now, it is also being used
in several other applications such as access control for
high security installations, credit card usage verifica-
tion, and employee identification [7]. The main reason
for the popularity of fingerprints as a form of identifi-
cation is that the fingerprint of a person is unique and
remains invariant through age.

A fingerprint is characterized by ridges and valleys.
The ridges and valleys alternate, flowing locally in a
constant direction (see Figure 1). A closer analysis
of the fingerprint reveals that the ridges (or the val-
leys) exhibit anomalies of various kinds, such as ridge
bifurcations, ridge endings, short ridges, and ridge
crossovers. Eighteen different types of fingerprint fea-
tures have been enumerated in [8]. Collectively, these
features are called minut iae . For automatic feature ex-
traction and matching, the set of fingerprint features is
restricted to two types of minutiae: ridge endings and
ridge bifurcations. Ridge endings and bifurcations are

0-8186-7134-3/95 $04.00 0 1995 IEEE
3 94

mailto:ratha@cps.msu.edu
mailto:rover@ee.msu.edu

Figure 1: Gray level fingerprint images and two commonly used fingerprint features : (a) Loop; (b) Whorl; (c)
Ridge bifurcation; (d) Ridge ending.

Figure 2: Complex features as a combination of simple features: (a) Short ridge; (b) Enclosure.

shown in Figures l(c) and l(d). We do not make any
distinction between these two feature types sin.ce data
acquisition conditions such as inking, finger pressure,
and lighting can easily change one type of feature into
another. More complex fingerprint features can be ex-
pressed as a combination of these two basic features.
For example, an enclosure can be considered as a col-
lection of two bifurcations, and a short ridge can be
considered as a collection of a pair of ridge endings.
These features are shown in Figure 2.

In order to provide a reasonable response time for
each query, commercial systems use dedicated hard-
ware accelerators or application-specific integrated cir-
cuits (ASICs). While application-specific architec-
tures and ASICs have been designed to meet the
computing requirements of complex image process-
ing tasks, such designs have the following two ma-
jor limitations: (i) once fabricated, they are diffi-

performance is achieved by exploiting an important
principle: most of the processing time of a compute-
intensive job is spent within a small portion of its ex-
ecution code [9], and if an architecture can provide ef-
ficient computation for the frequently executed code,
then the overall performance can be improved sub-
stantially. Portions of the matching algorithm have
been identified for implementation on Splash 2, an at-
tached processor for Sun hosts, leaving the remainder
to be implemented using software on the host.

In this paper, we describe fingerprint matching as
a special case of point pattern matching. A sequential
algorithm of O(mn) computational complexity for two
point sets with m and n points is presented. We focus
on parallelizing this algorithm using Splash 2. The
mapping process and the performance results are pre-
sented. The parallel algorithm has been implemented
on the hardware and tested on a large database.

cult to modify; and (ii) the cost of building special-
purpose application accelerators is very expensive for
low-volume applications. Both of these limitations ming Models
have been the driving force behind the design of cus-
tom computing machines (CCMs) using reconfigurable
logic arrays known as field programmable gate arrays
(FPGAs). An attached processor built with FPGAs
can overcome the two limitations noted above. High

2 Splash 2 Architecture and Program-

The Splash 2 system consists of an array of Xilinx
4010 FPGAs, improving on the design of the Splash
1 based on Xilinx 3090s [lo]. Figure 3(a) shows a
system-level view of the Splash 2 architecture. Splash
2 is connected to the host through an interface board

395

interface Board

Splash Boards

that extends the address and data buses. The Sun host
can readlwrite to memories and memory-mapped con-
trol registers of Splash 2 via these buses. A detailed
description of the system is given in [ll, 121. We de-
scribe the major components of the Splash 2 system
below. Each Splash 2 processing board has 16 Xilinx
4010s as PES (XI - x16) in addition to a seventeenth
Xilinx 4010 (X O) which controls the data flow into the
processor board. Each PE has 512 KB of memory.
The Sun host can read/write this memory. There is a
36-bit linear data path (SIMD Bus) running through
all the PES. The PES can read/write data from their
respective memory through a private address and data
bus after setting appropriate control signals. The PES
are connected through a crossbar that is programmed
by Xo. A broadcast path also exists by suitably pro-
gramming XO. The processor organization for a PE is
shown in Figure 3(b).

The Splash 2 system supports several models of
computation, including PES executing the single in-
struction on multiple data (SIMD mode) and PES ex-
ecuting multiple instructions on multiple data (MIMD
mode). It can also execute the same or different in-
structions on single data by receiving data through the
global broadcast bus. The most common mode of op-
eration is systolic in which the SIMD Bus is used for
data transfer. Individual memory available with each
PE makes it convenient to store temporary results and
tables.

The Xilinx 4010 consists of 400 (20 x 20) config-

256K 16-bit I R D Memory mk SBus Read

To Right

Neighbor

To Crossbar

(b)

Figure 3: Splash 2: (a) Architecture; (b) One processing element.

396

urable logic blocks. The structure of a CLB is shown in
Figure 4. Programming an FPGA-based computer is
different from usual high-level programming. The de-
sign automation process consists of two steps: simula-
tion and synthesis. The programming flow for Splash 2
is shown in Figure 5. In simulation, the logic designed
using VHDL is verified. This involves comparing the
results of the VHDL simulation with those obtained
manually or by a sequential program. In synthesis,
the main concern is to achieve the best placement of
the logic in an FPGA in order to minimize the timing
delay. At this point in the design process, the logic
circuit may or may not fit on a single FPGA (i.e., be
mappable to the configurable logic blocks (CLBs) and
flip-flops which are available internal to an FPGA). If
it does not fit, the designer needs to revise the logic in
the VHDL code and the process is repeated. If it does
fit, the timing for the entire digital logic is obtained.
In case this timing is not acceptable, the design pro-
cess is repeated.

To program Splash 2, we need to program each of
the PES (XI- x16), the crossbar, and the host inter-
face. The crossbar sets the communication paths be-
tween PES. In case the crossbar is used, XO needs to
be programmed. The host interface takes care of data
transfers in and out of the Splash 2 board. A spe-
cial library is available for these facilities for VHDL
programming as described in [ll]. The synthesis pro-
cess involves the following stages: (i) VHDL to XNF
translation: to obtain a vendor specific netlist from

(Gstelevd

I W X , I I r.

Figure 4: Structure of a Xilinx 4010 CLB.

the VHDL source code; (ii) Partition, Placement and
Routing: to fit the logic generated onto a physical PE;
(iii) Delay and Timing Analysis: to analyze the tim-
ing and delay; (iv) XNF to bit stream translation; and
(v) Bit stream to raw file generation. The raw file is
loaded onto each PE, and a configuration file for the
crossbar is used to describe the crossbar usage. The
host uses these files to control the attached proces-
sor through a set of routines callable by a C program.
Using the host interface, the memory addressable by
each PE can be initialized.

3 Fingerprint Matching Algorithm
The feature extraction process takes the input fin-

gerprint gray-level image and extracts the minutiae
features described in Section 1, making no efforts to
distinguish between the two categories (ridge endings
and ridge bifurcations). In this section, an algorithm
for matching rolled fingerprints against a database of
rolled fingerprints is presented. A query fingerprint is
matched with every fingerprint in the database, dis-
carding candidates whose matching scores are below
a user-specified threshold. Rolled fingerprints usually
contain a large number of minutiae (between 50 and
100). Since the main focus of this paper is on paral-
lelizing the matching algorithm, we assume that the
features (minutiae points) have already been extracted
from the fingerprint images. In particular, we assume
that the core point of the fingerprint is known and
that the fingerprints are oriented properly.
3.1 Minutia Matching

Matching a query and a database fingerprint is
equivalent to matching their minutiae sets. Each
query fingerprint minutia is examined to determine
whether there is a corresponding database fingerprint
minutia. Two minutiae are said to be paired or
matched if their components (2, y, e) are equal within

Timing of

Splash 2

Figure 5 : Programming Flow for Splash 2.

some tolerance after registration, which is the pro-
cess of aligning the two sets of minutiae along a com-
mon core point (see section 3.2 for precise definitions).
Three situations arise as shown in Figure 7.

1. A database fingerprint minutia matches the query
fingerprint minutia in all the components (paired
minutiae) ;

2. A database fingerprint minutia matches the query
fingerprint minutia in the x and y coordinates,
but does not match in the direction (minutiae
with unmatched angle);

3. No database fingerprint minutia matches the
query fingerprint minutia (unmatched minutia).

Of the three cases described above, the minutiae are
said to be paired only in the first case.
3.2 Matching Algorithm

The following notation is used in the sequential and
parallel algorithms described below. Let the query
fingerprint be represented as an n-dimensional fea-
ture vector fq = (f?,f: ,......, f,"). Note that each of
the n elements is a feature vector corresponding to
one minutia, and the ith feature vector contains three

The components of a feature vector are shown ge-
ometrically in Figure 6. The query fingerprint core
point is located at (C:, (7,"). Similarly, let the rth
reference (database) fingerprint be represented as an
m,-dimensional feature vector fr = (ff,f$,, f&),
and the reference fingerprint core point is located at

Let (E:, yi) and (z:, y:) define the bounding box for
the query fingerprint, where x: is the x-coordinate of
the top left corner of the box and z: is the x-coordinate
of the bottom right corner of the box. Quantities yi

components, fi = (fz(z), fz(~) , fz(e))-

(G, c;).

397

i
X -.

Figure 6: Components of a minutia feature.

and yi are defined similarly. A bounding box is the
smallest rectangle that encloses all the feature points.
Note that the query fingerprint fq may or may not be-
long to the fingerprint database fD. The fingerprints
are assumed to be registered with a known orientation.
Hence, there is no need of normalization for rotation.
The matching algorithm is based on finding the num-
ber of paired minutiae between each database finger-
print and the query fingerprint. It uses the concept of
minutiae matching described in Section 3.1. In order
to reduce the amount of computation, the matching
algorithm takes into account only those minutiae that
fall within a common bounding box. The common
bounding box is the intersection of the bounding box
for query and reference (database) fingerprints. Once
the count of matching minutiae is obtained, a match-
ing score is computed. The matching score is used for
deciding the degree of match. Finally, a set of top
scoring reference fingerprints is obtained as a result of
matching. In order to accommodate the shift in the
minutia features, a tolerance box is created around
each feature. The size of the box depends on the ridge
widths and distance from the core point in the finger-
print.

The sequential matching algorithm is described in
Figure 8. In the sequential algorithm, the toler-
ance box (shown in Figure 9 with respect to a query
fingerprint minutia) is calculated for the reference
(database) fingerprint minutia. In the parallel algo-
rithm described in the next section, the tolerance box
is calculated for the query fingerprint (as in Figure 9).
A similar sequential matching algorithm is described
in [13]. Depending on the desired accuracy, more than
one finger could be used in matching. In that case, a
composite score is computed for each set.

4 Parallel Matching Algorithm
We parallelize the matching algorithm exploiting

the specific characteristics of Splash 2 architecture.

i , L,
Paired minlltlee Paired minutme

,..........
I d I
~ '. ;
I ~

Minutiae with
unmatched angle

........ ..7

I . /

L ~

Unmatched minutia
(No pairing possible)

Figure 7: Possible scenarios in minutia matching.

While performing this mapping, we need to take into
account the limitations of the available FPGA tech-
nology. Any preprocessing needed on the query minu-
tiae set is a one-time operation, whereas reference
fingerprint minutiae matching is a repetitive opera-
tion. Computing the matching score involves floating
point division. The floating point operations and one-
time operations are performed in software on the host
whereas the repetitive operations are delegated to the
FPGA-based PES of Splash 2. The parallel version of
the algorithm involves operations on the host, on Xo,
and on each PE.

One of the main constructs of the parallel algorithm
is a lookup table used in translating computations
to lookups. The lookup table consists of all possible
points within the tolerance box that a feature may be
mapped to. The Splash 2 data paths for the parallel
algorithm are shown in Figure 10.
4.1 Preprocessing on the Host

The host processes the query and database finger-
prints as follows. The query fingerprint is read first
and the following preprocessing is done:

1. The core point is assumed to be available. For
each query feature f?, j=1, 2, .. .n, generate a
tolerance box. Enumerate a total of (t, x t , x t o)
grid points in this box, where t , is the tolerance
in x, t , is the tolerance in y and to is tolerance in
6.

2. Allocate each feature to one P E in Splash 2. Re-
peat this cyclically, i.e., features 1-16 are allo-
cated to PES X1 to x16, features 17-32 are al-
located to PES XI to X16, and so on.

3. Initialize the lookup tables by loading the grid
points within each tolerance box in step (1) into
the memory.

In this algorithm, the tolerance box is computed
with respect to the query fingerprint features. The

398

Input: Query feature vector fq and the rolled fingerprint database fD ={fr}r="=l

Output: A list o f top ten records f r o m the database with matching scores > T.
Begin

The rth database fingerprint is represented as an m,-dimensional feature vector and the query feature vector is n-dimensional.

For r=l to N do
1. Register the database fingerprint with respect to the core point (Cz, C,4) of the query fingerprint:

For i=l to m, do
f ,T(x) = f ,T(x) - cz
f l (Y) = f l (Y) - (3

2. Compute the common bounding box for the query and reference fingerprints:
Let (x i , yt) and (x t , y;) define the bounding box for the query fingerprint.
Let (x t , y :) and (511, y:) define the bounding box for the rih reference fingerprint.
The intersection of these two boxes is the common bounding box.
Let the query print have M,4 and reference print have N,' minutiae in this box.

If the distance f rom the reference core point to the current reference feature is less than K then
3. Compute the tolerance vector for i th feature vector f l :

t i (x) = Idcos($),
t r (y) = Idsin($), and
t:(e) = k 3 ,

t : (x) = Icl,

t;(e) = k3 ,

else

t r (y) = Ic2 , and

where 1 , k l , k2 and IC3 are prespecified constants determined
empirically based on the average ridge width,
$ is the angle of the line joining the core point and the ith feature with the x-axis,
and d is the distance of the feature f rom the core point.
Tolerance box is shown geometrically in Figure 9.

Xwo minutiae f: and fjg are said to match i f the following conditions are satisfied:
4. Match minutiae:

fj"W - t T (X) I f , ' (x) I fjQ(4 + C (X) ,

f j " (Y) - t ,T(Y) I f l (Y) 5 f j " (Y) +tY(y) ,and
fj" - t: (0) I f,' (0) I fj" (0) + t: (01,
where t,T = (t ,T(x) , tY(y) , t : (Q)) is the tolerance vector.

Set the number of paired features, mF = 0;
For all query features G, j=l ,2 , . . . M2, do

If fj" matches with any feature in f:, i=l ,2 , . . . , N,T, then increment m;.
Mark the corresponding feature in f' as paired.

5. Compute the matching score (MS (q,r)):
mr*m'

MS(q,r) = &.
Sort the database fingerprants and obtain top 10 scoring database fingerprints.

End

Figure 8: Sequential fingerprint matching algorithm.

399

Y

t

- x T-'
core Ponl

Figure 9: Tolerance box for X- and Y-components.

host then reads the database of fingerprints and sends
their feature vectors for matching to the Splash 2
board.

For each database fingerprint, the host performs the
following operations:

Figure 10: Data flow in parallel algorithm.

address is a 'l', then the feature is paired, and
the P E drives the Global OR Bus high.

5 Performance Analysis
The bit stream files for Splash 2 are generated from

v

the VHDL code using design automation tools from
Synopsys and Xilinx. Using the C interface for Splash
2 , a host version of the fi%erPrint matching aPPlica-
tion is generated. The host version reads the finger-
print database from the disk and obtains the final list
of candidates after matching.

The sequential algorithm, described in Section 3.2,
executed on a Sun SPARCstation 10 performs at the

Read the feature vectors.

Register the features as described in step (1) of
the sequential algorithm in Figure 8 .

Send each of the feature vectors over the Broad-
cast Bus to all PES if it is within the bounding
box of the query fingerprint.

For each database fingerprint, the host then reads the
number of paired features mg that was computed by
the Splash 2 system, r = 1, . . . N, where N is the num-
ber of records in the database. Finally, the matching
score is computed as in the sequential method.
4.2 Computations on Splash

The computations carried out on each P E of Splash
2 are described below. As mentioned earlier, Xo plays
a special role in controlling the crossbar in Splash 2.

1. Operations on Xo:
Each database feature vector received from the
host is broadcast to all PES. If it is matched with
a feature in a lookup table, the P E drives the
Global OR Bus high. When this OR Bus is high,
Xo increments a counter. The host reads this
counter value (m;) after all the feature vectors for
the current database fingerprint have been pro-
cessed.

2. Operations on each PE:
On receiving the broadcasted feature, a P E com-
putes its address in the lookup table through a
hashing function. If the data at the computed

rate of 70 matches per second on database and query
fingerprints that have approximately 65 features. A
match is the process of determining the matching score
between a query and a reference fingerprint. The
Splash 2 implementation should perform matching at
the rate of 2.6 x lo5 matches per second. This match-
ing speed is obtained from the 'timing' utility. The
host interface part can run at 17.1 MHz and each P E
can run at 33.8 MHz. Hence, the entire fingerprint
matching will run at the slower of the two speeds,
17.1 MHz. Assuming 65 minutiae, on an average,
in a database fingerprint, the matching speed is es-
timated at 2.6 x lo5 matches per second. We evalu-
ated the matching speed using a database of 10,000
fingerprints, created from 100 real fingerprints by ran-
domly dropping, adding and perturbing minutiae in a
given set of minutiae. The measured speed on a Splash
2 system running at 1 MHz is of the order of 6,300
matches per second on this database. Our experimen-
tal Splash 2 system has not yet been run at higher
clock rates. Assuming a linear scaling of performance
with an increase in clock rate, we would achieve ap-
proximately 110,000 matches per second at 17.1 MHz
clock speed. We feel that the disparity in the pro-

400

jected and achieved speeds (2.6 x lo5 versus 1.1 x lo5)
is due to different tasks being timed. The time to load
the data buffers onto Splash 2 has not been taken into
account in the projected speed, whereas this time is
included in the time measured by the host in an ac-
tual run. We are in the process of timing only the
matching component of the code on the system.

The matching algorithm can scale well as the num-
ber of Splash 2 boards on the system is increased.
Multiple query fingerprints can be loaded on different
Splash 2 boards, each matching against the database
records as they are transferred from the host. This
would result in a higher throughput from the system.

The processing speed can be further improved by
replacing some of the soft macros on the host inter-
face part (X o) by hard macros, where the latter are
customized configurations that make efficient use of
the FPGA logic. To sustain the matching rate, the
data bandwidth should be at a rate of over 250,000
fingerprint records per second (with an average of 65
minutiae per record). This may be a bottleneck for
the 1/0 subsystem.

6 Conclusions
We have addressed the parallel implementation of a

point pattern matching algorithm applicable to finger-
print matching. The sequential fingerprint matching
algorithm with complexity O(mn) has been success-
fully parallelized with a complexity of O(m), where m
is the average number of minutiae in the database fin-
gerprint and n is the average number of minutiae in a
query fingerprint. The Splash 2 architecture is highly
suitable for rolled fingerprint matching. The parallel
point pattern matching algorithm has been designed
to match the Splash 2 architecture, thereby resulting
in a substantially improved performance. The algo-
rithm applies a hardware-software design approach to
maximize the performance of the overall system.

Acknowledgments
We would like to thank Duncan Buell, Jeff Arnold

and Brian Schott of Supercomputing Research Center,
Bowie, Maryland for their help and suggestions. We
appreciate the assistance provided by the Synopsys
and Xilinx university programs. This research was
supported by a contract from the Institute for Defense
Analyses, Alexandria, Virginia.

References
[I] H. S. Baird, Model-Based Image Matching using

Location. Cambridge, Massachusetts: The MIT
Press, 1985.

[2] V. V. Vinod and S. Ghose, “Point matching using
asymmetrical neural networks,” Pattern Recogni-
tion, vol. 8 , pp. 1207-1214, August 1993.

[3] D. Skea, I. Barrodale, R. Kuwahara, and
R. Poecker, “A control point matching algo-
rithm,” Pattern Recognition#, vol. 26, pp. 269-276,
Feb 1993.

[4] N. Ansari, M.-H. Chen, and E. S. H. Hou, “A
genetic algorithm for point pattern matching,”
in Dynamic, Genetic, and Chaotic Programming
(B. Soucek, Ed.), pp. 353-371, New York: John
Wiley and Sons, 1992.

[5] S. Umeyama, “Parameterized point pattern
matching and its application to recognition of ob-
ject families,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 15, pp. 136-144,
February 1993.

[6] J . Ton and A. K. Jain, “Registering Landsat im-
ages by point matching,” IEEE Trans. on Geo-
science and Remote Sensing, vol. 27, pp. 642-651,
September 1989.

[7] B. Miller, “Vital signs of identity,” IEEE Spec-
trum, vol. 31, pp. 22-30, February 1994.

[8] Federal Bureau of Investigation, U. S. Govern-
ment Printing Office, Washington, D. C., The
Science of Fingerprints: Classification and Uses,
1984.

[9] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach. San Ma-
teo, California: Morgan Kaufman, 1990.

[lo] J. M. Arnold, D. A. Buell, and E. G. Davis,
“Splash 2,” in Proceedings 4th Annual ACM Sym-
posium on Parallel Algorithms and Architectures,
pp, 316-322, 1992.

[ll] J . M. Arnold and M. A. McGarry, “Splash 2 pro-
grammer’s manual,” Tech. Rep. SRC-TR-93-107,
Supercomputing Research Center, Bowie, Mary-
land, 1994.

[12] D. A. Buell, “A Splash 2 tutorial,” Tech. Rep.
SRC-TR-92-087, Supercomputing Research Cen-
ter, Bowie, Maryland, 1992.

[13] J. H. Wegstein, “An automated fingerprint iden-
tification system,” Tech. Rep. 500-89, National
Bureau of Standards, 1982.

40 1

