Fingerprint Matching on Splash 2

Nalini K. Ratha, Anil K. Jain & Diane T. Rover
Department of Computer Science
and Department of Electrical Engineering

Michigan State University
East Lansing, MI 48824

March 1, 1994

Abstract

Fingerprints are routinely used as a tool for personal identification
and authentication. The process of matching a pair of fingerprints is
usually based on the number and locations of local features known as
‘minutiae’. The matching algorithm needs to be able to handle noisy
data, a large-scale database, and high query load. A special-purpose
hardware accelerator is needed for matching in order to provide rea-
sonable response time. In this paper, we have described a method of
achieving near-ASIC performance for rolled fingerprint matching us-
ing Splash 2. The sequential and parallel algorithms for fingerprint
matching are presented. We obtained a matching speed of the order of
10° matches per second.

1 Introduction and Background

Fingerprints have been used in personal identification applications for a long
time. They have been accepted as a tool for identifying criminals universally.
Manual methods of matching fingerprints vary depending on the problem at
hand. We have two types of situations in the area of criminal identification.
The two categories are characterized on the basis of information available for
matching. In the case of rolled fingerprint matching, the suspect is cooper-
ative and all of his/her fingerprints (called rolled fingerprints) are used for
identification. In a sense, we are trying to establish the suspect’s identity. In
the second category, we have latent fingerprints lifted from a scene-of-crime,
which are characterized by smudgy, unclear, and partial impressions. Obvi-
ously, matching of latent fingerprints is more difficult. For rolled fingerprints,

Henry classification scheme is used where as for the latent fingerprints, Bat-
ley’s formula [1] is used. In both the cases, a human fingerprint expert carries
out the detailed matching.

1.1 Automation in Fingerprint Matching

Usually the number of records with which a test (query) fingerprint image
needs to be matched is very large (=~ 10°). The matching task, being mostly
repetitive, is ideally suited for automation. In the last three decades, sub-
stantial efforts have been made to automate fingerprint identification.

e Semi-automatic methods:
The computer is used to match the Henry Formula of the fingerprints
with minor variations in ridge counts.

e Automatic matching methods:
An image processing system is used to automatically extract features
from a digital image of the fingerprint. The features are then used
for matching against a stored database of fingerprints represented in
terms of the same features. A survey of available commercial automatic
fingerprint identification systems (AFIS) is described in [9].

1.2 Features Used in Matching Fingerprints

A fingerprint is characterized by alternating ridges and valleys. On a closer
analysis, 1t can been seen that the ridges do not always run continuously.
They have various anomalies in terms of ridge bifurcations, ridge endings,
ridge crossovers, and small ridges. Collectively, these are called as ‘minutiae’.
For the purpose of automatic fingerprint matching, the features used are
simply the ridge endings and ridge bifurcations. A minutiae is characterized
by its position (x-y coordinate) and the angle the dominant ridge makes with
the x-axis at the point of interest. No effort is made in the feature extraction
process to distinguish between the two categories (ridge endings and ridge
bifurcations) as one could be easily confused with the other depending on
the inking conditions.

A digital gray scale image of a fingerprint is shown in Figure 1. In Figure
2, the two types of ridge features used for fingerprint identification are shown.

In this paper, we are interested in matching rolled fingerprints against a
database of rolled fingerprints.

1.3 Computational Requirements

As mentioned earlier, a typical database of fingerprints contains millions of
records. The number of queries for identification is also very high. Generally,

\\\\\\\\\\\\\\\\\

.

N

.

e

Figur
el A
grayscale image of a fi

a fin

Ridge Bifurcation Ridge Ending

Figure 2: Features used for matching

the queries need to be answered within a short (say, 24-hour) time period.
This poses a heavy computational load on the matching system. Even if
a single match took, say, 1 millisecond of CPU time, matching against a
database of 1 million fingerprints would require a total of 10° seconds of
CPU time. If we have to process 100 queries per day, we would need 10°
seconds or 27.78 hours of CPU time alone without I/O time involved in
reading the database.

The computational load of matching is high primarily due to the following
three factors: (i) a query fingerprint is usually of poor quality (more so for a
latent fingerprint), (ii) database is very large; and (iii) structural distortion
of the fingerprint images requires complex matching algorithmes.

1.4 Special-Purpose Hardware

A fingerprint matching system can be implemented on any one of the fol-
lowing hardware platforms for high speed matching: (i) supercomputers,
(ii) special-purpose hardware accelerators, and (iii) application specific inte-
grated circuit (ASIC). However, these methods lack: (i) scalability, (ii) good
price/performance, (iii) easy programmability, and (iv) chip level technology
independence. We need a solution which can satisfy these constraints. The
Field Programmable Gate Array (FPGA)-based solution meets most of the
requirements, including: (i) chip level technology independence, (ii) close
to ASIC performance at an affordable price, and (iii) easy programmability
(through Hardware Desciption Languages). Using FPGAs, one can repro-
gram the available hardware and new algorithm can be synthesized on the
same hardware. Instead of a fixed set of instructions as in the case of an array
processor, FPGAs provide flexible “configurable logic blocks (CLBs)” which
can be configured differently on each of the PEs in the array. FPGAs also
provide high-speed custom computing at a much lower price than ASICs.

The paper is organized as follows. In section 2, we describe the sequential
algorithm for matching a pair of rolled fingerprints. Splash 2 architecture and
its features are described in section 3. The parallel version of the matching
algorithm is presented in section 4. The speed of sequential method is pre-
sented and the expected speed for the parallel implementation is discussed
in section 5. Conclusions and future work are mentioned in section 6.

2 Sequential Matching Algorithm

In this section, we describe a sequential algorithm for matching a pair of
fingerprints. A query fingerprint is matched with every fingerprint in the
database, discarding candidates with matching scores below a user-specified
threshold. Rolled fingerprints usually contain a large number of minutiae
(between 50 and 100). Since our interest here is in matching, we assume that
the core point of the fingerprint is known and the fingerprints are oriented
properly. The matching algorithm is summarized below.

1. Input : Query fingerprint feature vector, rolled fingerprint database.

2. Output : All the stored fingerprints and the corresponding matching
scores whose matching score > T, where T is a user-specified threshold.

Let the query fingerprint be represented as a N-dimensional feature vec-
tor (fi1,f3,.......fx). The query fingerprint core point is located at (CZ,
C?). Similarly the ' reference (database) fingerprint is represented as
an M-dimensional feature vector : (f],f5,......f3;). The reference finger-
print core point is located at (C7,C)).

The i'* feature f; is a vector with three components (fi(x), fi(y), f:(0)).

The components of a feature vector are shown geometrically in Figure

3.

3. (a) Normalization or Registration:
For (i=1,M) do
fir(x) = fir(x) - Ca(cz
fz'r(y) = er(y) - C:g

The fingerprints are assumed to be registered with a known orientation.
Hence, there is no need of normalization for rotation.

(b) Bounding Box:

Components of Feature Vector.

Figure 3: Components of features used for matching.

Compute the common bounding box for the query and reference fin-
gerprints (i.e., eliminate the effects of features which do not contribute
to matching).

o Let (2!, y!) and (22,y!) define the bounding box for the query
fingerprint, where z! is the x-coordinate of the top left corner of
the box and xS is the x-coordinate of the bottom right corner of
the box.

o Let (2, y!) and (2?,y’) define the box for reference fingerprint.

e The intersection of these two boxes is the desired box.

Count the minutiae features in this box for both query and ref-
erence fingerprints. Let’s say query print has M? and reference
print has N features in this box.

(c) Tolerance Vector Computation:

Two features ff" and fj' are said to match if
[l(@) = ti(x) < Ji(z) < [(2) + ti(2), and

fily) =tily) < fi(y) < f](y) + 7 (y), and

fl=100) < f1(0) < f1(0) + £7(0).

where ¢/ = (t7(x),t/(y),t7(8)) is the tolerance vector.

Tolerance vector for each feature is computed as follows. If the distance
from the core point to the present feature is less than K then

t(x) = ldeos(@),

/ | asingh)

ldc()s(m

Tolerance Box for X- and Y- Feature Components

Figure 4: Tolerance box for X- and Y-components.

t7(y) = ldsin(¢), and

tr(f) =r.

¢= Angle of the line joining core and " makes with X-axis. where K,
p, q are prespecified constants. Otherwise,

t:(x) = kla
t'(y) = ky,and
ti(0) = ks

where ky, ky and k3 are prespecified constants. Tolerance box is shown
geometrically in Figure 4.
(d) Compute matching score (MS (q,r)):

Set the number of paired features, m, = 0;

For all query features f{*, i=1,2, ... N4 do

If £! matches with any feature in ff' then increment m,.

Mark the corresponding feature in f, as paired (to avoid future pairing
by any other feature).

Matching score between the query fingerprint and the r'* reference
fingerprint is defined as

MS(a.t) = ety

e

. Repeat the procedure for all fingerprints in the database. All the ref-
erence fingerprints with a score greater than T are output.

A similar matching algorithm is described in [8]. Depending on the
desired accuracy, more than one finger could be used in matching. In

that case, a composite score needs to be computed for each set.

3 Splash 2 Architecture

The Splash 2 system is an attached processor developed by the Supercom-
puting Research Center (SRC). The Splash 2 is connected to a Sun SPARC-
station 2 host. It is based on Xilinx 4010 FPGAs. A Splash 2 system could
consist of up to 16 processing boards, each board with 16 FPGAs.

Figure 5 shows a system-level view of Splash 2 architecture. The host
is connected to the Splash 2 through an interface board which extends the
address and data buses from the Sun workstation into the address/data buses
in the backplane. The Sun can read/write to memories and memory-mapped
control registers of Splash 2 via these buses. A detailed description of the
system is given in [2]. We describe the major components below.

Each Splash 2 processing board has 16 processing elements (X; — Xi6) in
addition to a seventeenth Xilinx 4010 (X,) which controls the data flow into
the processor board. There is a 36-bit data path running through all the PEs.
The PEs can get data either from their respective memory or from any other
PE. The PEs are connected through a crossbar which is programmed by Xj.
Each PE has 512 KB of private memory. The Sun host can read/write this
memory. A broadcast path also exists by suitably programming X,. The
processor organization for a PE is shown in Figure 6.

Splash 2 system allows the capability of multiple PEs running the same
instructions and receiving data through a global broadcast bus. The other
advantage of Splash 2 is the superior Xilinx 4010-based FPGA which has
better features than its predecessor Xilinx 3090. The individual memory
available with each PE makes it convenient to store temporary results and
tables.

Programming FPGAs is different from usual high-level programming in
C or C++. The design automation process has two steps, namely: (i) sim-
ulation and (ii) synthesis. In simulation, we are interested in verifying the
designed logic through VHDL. Usually this involves verifying the results as
described in VHDL code. In synthesis, the main concern is to get the best
placement of the logic in FPGA in a fashion which will also minimize the
timing delay. In addition, we obtain timing for the entire logic. In case this
timing is not acceptable, we repeat the design process.

To program Splash 2, we need to program each of the PEs (Xi- Xig),
the crossbar, and the host interface. The host interface takes care of data
transfers in and out of Splash 2 board. The crossbar sets the communication
paths between PEs. A special library is available for these facilities for VHDL
programming as described in [3].

Splash Boards

X1 X2 [X3|Xa|X5|X6|X7|X8
N I I I O
|_xo Crossbar
[1T 1 1T 1
X16|X15|X14[Xx13|X12]| X11|X10(| X9
Interface Board T —— —
[T < Lsuo || X1 X2 [X3|Xa|X5|X6|X7|X8
{"| DMA Bus C T T T T T T 7
Sparc ls5 r
Stationt-—+2 .. ¢ > X0 Crossbar
Host xtension
Lef Quiout [RBus C T T T T T T 1
J X16|X15|X14[Xx13|X12]| X11|X10(| X9
80 .r []
X1 X2 [X3|Xa|X5|X6|X7|X8
| I I I I
rxo Crossbar
[T T T T 1
J X16|X15|X14[X13|X12]| X11|X10| X9

Figure 5: Splash 2 Architecture.

SBusRead | 250k By 16
RD Memory RD

SBus Write

WR WR
SBus Address
Address = & Data
32
18 16
SBus
Data 32
Processor .y | Processing
Inhibit Element (PE)
To Left + + To Right
Neighbor Neighbor

36

To Crossbar

Figure 6: A Processing Element (PE) in Splash 2.

As Splash 2 is an attached slave processor, the host needs to take control
of it. For this purpose a C-language interface is provided on the host. The
host does the necessary disk /O and uses Splash 2 system for the desired
operations. The PEs and the host interface Xilinx bit stream files have to be
generated using the utilities from the VHDL description. We get the speed
estimates from the ‘timing’ utility for the Splash system clock speed.

4 Parallel Implementation

There are two kinds of parallelism which could be applied to the fingerprint
matching problem, namely, at macro and at micro levels. The macro level
involves splitting the fingerprint database over a set of processors each of
which can carry out matching in its respective database to provide the re-
sults. Finally, the results of all the processors are merged at a central place
to provide the answer to the query. At a micro level, each feature is matched
against the set of reference features in parallel. In other words, imagine a
series of processing elements carrying out the matching of features. They
all receive a feature for checking if it could be paired with the feature the
PE owns. If a query feature is matched to multiple reference features, then
we will accept the reference feature with the closest match value. The pro-
cess is repeated until all the features have been checked. In this paper, we
describe a parallel algorithm suitable for micro-level parallelism. The type
of architecture appropriate for micro-level parallelism is SIMD with a global

10

broadcast facility.

In principle, we can take the serial version of the algorithm and translate
it into each PE. But this is not efficient. So, we parallelize the algorithm
such that it utilizes the specific characteristics of the given architecture. The
parallel version of the algorithm is given below:

1. Host operations

e Query fingerprint
The query fingerprint is read first and the following preprocessing
is done:

(a) The core point is assumed to be available. For each feature
£, i=1, 2, ... N, generate a 3-D “tolerance box”. Enumerate
a total of (¢, *t, *1y) grid points in this box, where ¢, is the
tolerance in x, t, is the tolerance in y and #4 is tolerance in 6.

(b) Allocate each feature to one PE in Splash 2. Repeat this
cyclically, i.e., features 1-16 are allocated to PEs X; to Xy,
features 17-32 are allocated to PEs X; to Xyg, and so on.

(¢) Load the grid points in the tolerance boxes in step (a) into
the memory of individual PEs.
e Database fingerprints

The host reads the database of fingerprints and sends the feature
vectors for matching to the Splash 2 board.

For each database fingerprint, the host performs the following op-

erations.

(a) Read the feature vectors.

(b) Compute the common bounding box with the query finger-
print.

(c) Send each of the feature vectors on the broadcast bus to all the
PEs if it is within the bounding box of the query fingerprint.

e Read result: For each database fingerprint, collect the number of
paired features m;, r=1, 2, ... K from Splash 2 system.

e Score computation

Same as in sequential method.

2. Operations on X

Fach feature vector received from the host is broadcast to all the PEs.
If it can be paired, the global XOR bus will be driven low. Hence on
low XOR, increment a counter.

The host reads this counter value (m]), and then resets it to 0.

11

3. Operations on each PE

On receiving the broadcasted feature, compute its address in PE mem-
ory through a bit hashing function. If the data at the computed address
is a ‘17, pull the global XOR bus low.

5 Performance of Sequential and Parallel Al-
gorithms

The sequential algorithm executed on a Sun SPARCstation 10 performs at
the rate of 70 matches per second (database and query fingerprints with
approximately 65 features). The parallel implementation performs match-
ing at the rate of 2.6 * 10° matches per second. This is obtained from the
‘timing’ utility. The host interface part can run at 17.1 MHz and each PE
can run at 33.8 MHz. Hence the overall application will run at the slower
speed of the two, i.e., 17.1 MHz. Assuming 65 minutiae, on an average, in a
database fingerprint, it will be matched at 2.6 * 10° per second. The parallel
implementation is independent of query fingerprint minutiae count. If we
have multiple Splash 2 boards on the same host, each board could cater to
a different query resulting in a higher throughput. The output of the timing
utility, and simulation waveforms are shown in Figures 7-8.

Design Timing Analysis

Figure 7: Timing Result for PE X. Timing Result for PE X;

12

= Edit Jump Yiew Misc

Help
G600 820 840 il 880 500 920 940 960 |

BOARDS(0)/BD/X0/X0_CLK
DYBDIX0AX0_GOR_RESULT

s b b b e b ber s by e by b i

(0)/BD/X0/SIMD{260)(26:0)

MRXOIXBAR_OUT(260)(26:0)

AT_PIPELINE(0)(260)(26:0)

Z16BDBY TFACB7S 22EBDA0 1352874
2ADEB16 216BDBY 1FACETY 22E6DIN
1352874 DES7D84 04D5B0Y T1D3FAC

MXOIFEAT PIPELINE(D)(32)

WXDIFEAT _PIPELINE(D){35)

H(0)/BD/XO/ADDRESS(17:0)

ARDS({0)/BDXODATA(15:0)

ARDB{0)/BDMMIFEATURES

iBOARDS{0WBDAOICOUNT

DIXOICOLLECT_FLAG(15:0)
XPARTS(1 }XPARTIXP_CLK

(1)/XPART/ADDRES S(17:0)

WXPARTIXP_GOR_RESULT

ARTS(1 WXPARTIOUT_FLAG

RTS(1)/XPARTIDATA(15:0)

PARTIXBAR_IN(Z60)(26:0)

Z16BDB7

XPARTS(2WXPART/KP_CLK

(2)/IXPART/ADDRESS(17:0)

WXPARTIXP_GOR_RESULT

ARTS(2)XPARTI/OUT_FLAG

RTS(2)XPARTIDATA(15:0)

¢Ps 0000000 ZADGB16 216BDB7 1FACB79
amln - Pick Center Foint

Figrire Q Qirntilation Wavafarima foar tock data

i lsL,LLC (&) DILIIULAauivlil vyvavolulllly 1Ul LedL uauva.

13

6 Conclusion and Future Work

The Splash 2 architecture is highly suitable for rolled fingerprint matching.
The parallel algorithm has been designed to match the Splash 2 architecture,
thereby resulting in optimum performance.

We are now in the process of building a small (= 100) fingerprint database
to further test our algorithm. In the next phase of the project we plan to
implement a minutiae detection algorithm and a latent fingerprint matching
algorithm. Both these algorithms appear promising for implementing on
Splash 2 architecture.

The speed can be further improved by replacing some of the soft macros
on the host interface part (Xo) by hard macros. To sustain this matching
rate, the data throughput should be at a rate of 0.26 million records per
second from the fingerprint database. This may be a bottleneck for 1/O sub-
system.

Acknowledgment

This research was supported by a grant from the Supercomputing Research
Center, Bowie, Maryland.

14

References

[1] Sir W. J. Herschel, The origin of fingerprinting, AMS Press, NewYork,
1974.

[2] D. A. Buell, A Splash 2 tutorial, Ver 1.2, SRC Tech Report SRC-TR-
92-087, Feb. 1993.

[3] J. M. Arnold, Splash 2 Programmer’s Manual, Ver 0.7, SRC, Dec. 1992.

[4] M. Gokhale, et al., “Building and Using a Highly Parallel Programmable
Logic Array,” IEEE Computer, Jan. 1991, pp. 81-89.

[5] J. M. Arnold, et al., “Splash 2,” Proceedings of 4th Annual Symposium
on Parallel Algorithms and Architectures, 1992, 316-322.

[6] J. M. Arnold and D. A. Buell, “VHDL programming on SPLASH 27,
3rd Intl. Workshop on Field Programmable Logic and its Applications,
Sept. 1993, Oxford, England.

[7] J. M. Arnold, “The Splash 2 software environment”, Proc. of IEEE
Workshop on FPGAs as Custom Computing Machines, April 1993.

[8] J. H. Wegstein, “An automated Fingerprint Identification System”, Na-
tional Bureau of Standards Special Publication 500-89, Feb. 1982.

[9] H. C. Lee, R. E. Gaensslen (Ed.), Advances in Fingerprint Technology,
Elsevier, New York, 1991.

15

