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Abstract A fingerprint classification algorithm is presented in this paper. Fingerprints are classified into 
five categories: arch, tented arch, left loop, right loop and whorl. The algorithm extracts singular points (cores 
and deltas) in a fingerprint image and performs classification based on the number and locations of the 
detected singular points. The classifier is invariant to rotation, translation and small amounts of scale 
changes. The classifier is rule-based, where the rules are generated independent of a given data set. The 
classifier was tested on 4000 images in the NIST-4 database and on 5400 images in the NIST-9 database. For 
he NIST-4 database, classification accuracies of 85.4% for the five-class problem and 91.1% for the four-class 
problem (with arch and tented arch placed in the same category) were achieved. Using a reject option, the 
four-class classification error can be reduced to less than 6% with 10% fingerprint images rejected. Similar 
classification performance was obtained on the NIST-9 database. 

Fingerprints Classification Delta Core Directional i ma ge  Poincar+ index 

I. I N T R O D U C T I O N  

Every person is believed to have unique fingerprints/1J 
This makes fingerprint matching one of the most 
reliable methods for identifying people, t21 Fingerprint 
matching is usually carried out at two different levels. 
At the coarse level, fingerprints can be classified into 
six main classes: arch, tented arch, right loop, left loop, 
whorl and twin loop, as shown in Fig. 1. The fine-level 
matching is performed by extracting ridge endings and 
branching points, called minutiae, ~3) from a fingerprint 
image (see Fig. 2). The similarity between two finger- 
prints is determined by comparing the two sets of 
minutiae points. Although the coarse classification 
does not identify a fingerprint uniquely, it is helpful in 
determining when two fingerprints do not match. For 
example, a right loop image should be matched with 
only other right loop images in the database of finger- 
prints. When fingerprints from all the ten fingers are 
available, the coarse level classification of these ten 
prints drastically reduces the proportion of database 
images to be matched at the finer level. A human expert 
can perform coarse-level classification of fingerprints 
relatively easy. For an automatic system, the problem 
is much more difficult because the system must take 
into account the global directions of the ridges as well 
as their local connectivity to make its decision. 

The fingerprint classification problem has been ad- 
dressed by many researchers in the past/4-6) A syntac- 
tic method is presented by Rao et al/5~ The approach 
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taken by Srinivasan et al. {6) is similar to our approach 
except that we use a different method to locate core 
and delta points. The Poincar6 index has been used by 
Kawagoe and Tojo ~4) to detect singular points in the 
image. Wilson et a lF '8) have used a neural network to 
classify fingerprint images. 

In this paper we are interested in the coarse-level 
classification. An algorithm for classifying an input 
fingerprint image into one of the six classes is de- 
scribed. The algorithm consists of three major steps: (i) 
computation of the ridge directions, ~9~ (ii) finding the 
singularities in the directional image ~4~ and (iii) classifi- 
cation of the fingerprint based on the detected singular 
points. A high-level diagram of the algorithm is shown 
in Fig. 3. Each step of the algorithm is discussed in 
the following sections. The method can, in principle, 
be used to classify fingerprints into six categories, 
but since the NIST databases ~1°'11) do not contain 
any twin loop images (or they are labeled as whorls), 
the algorithm was tested only on images from five 
classes. 

In Sections 2 and 3 we present the algorithms for 
computing the directional image, finding singular 
points and classifying the fingerprint. Section 4 deals 
with fingerprint registration for fine-level matching. 
We show that the extracted singular points can be used 
as registration points for fingerprint normalization. 
Section 5 presents experimental results and compares 
them with other classification results reported in the 
literature. ~7'8~ There are not many fingerprint classifi- 
cation algorithms reported in the literature that have 
been tested on such a large data set as the NIST-4 
database which contains 4000 images or the NIST-9 
database with 5400 images. 
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Arch Tented Arch 

Le~ Loop Right Loop 
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Fig. 1. Six classes of fingerprints. 
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(b) 

Fig. 2. Minutiae points. (a) Input image; (b) result of the minutiae point detector proposed by Ratha et  al. TM 
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Fig. 3. Block diagram of the fingerprint classification 
algorithm. 

slit sum s 1 at position (i,j) is computed as: 

s l  = l ( i  - -  2 , j  - -  4) + l ( i  - -  1,j - 2) 

+ l ( i +  1 , j + 2 ) + I ( i + 2 , j + 4 ) .  

Similar expressions can be written for the other slit 
sums. Finding the sums So, S l , . . . , s  7 is equivalent to 
convolving the image with eight 9 x 9 masks, 
too, m1,. . . ,  m 7, where the mask m i has values of 1 at 
positions where the mask shown in Fig. 4 has values 
i and zero everywhere else. 

Let 0 _< p, q _< 7 be indices such that: 

sp = min si, 
i = 0,,..,7 

sq= max si, 
i = 0,...,7 

The direction at a pixel is defined to be p if the center 
pixel is located on a ridge (dark area) and q if the center 
pixel is located in a valley (light area). If the center pixel 
has a value C,  then its direction is given by: 

J'p if ( 4 C + s p + s q ) > 3 ~ = o S i  
= (1) 

otherwise. 

2. C O M P U T I N G  T H E  D I R E C T I O N A L  I M A G E  

The method for finding the ridge direction at each 
[gixei of an input image is adopted from the paper by 
Stock and Swonger tg~ [see also reference (8)]. To com- 
pute the direction at a pixel, the 9 x 9 m~isk shown in 
Fig. 4 is centered at the pixel of interest. The gray 
values of pixels in eight directions (at positions marked 
by numbers  0, 1, . . . ,  7) are added together to obtain the 
slit sums s o, s 1 . . . . .  s 7. For  example, if the gray value of 
the image at position ( i , j )  is denoted by I ( i , j ) ,  then the 

6 5 4 3 2 

7 6 5 4 3 2 1 
7 1 

0 0 0 0 
1 7 

1 2 3 4 5 6 7 

2 3 4 5 6 

Fig. 4. The 9 x 9 mask to compute the slit sums. 
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The computations in equation (1) give us a direction 
at each pixel, quantized to eight values. These direc- 
tions are usually very noisy and, therefore, they need to 
be smoothed and averaged in a local neighbourhood. 
There is an inherent difficulty in averaging direction 
values since these values are determined modulo 8 and 
a simple addition does not give the correct results. 
However, there is a nice representation of directions as 
vectors. 18~ For each pixel, we compute its direction 7 in 
degrees (~e [0, 180°)), multiply this by two and repre- 
sent it as a unit vector in this direction v-- 
(cos 2a, sin 2~). An image in this representation can be 
smoothed by averaging the two components of the 
vectors separately. As a by-product, we also obtain the 
confidence value in the estimated direction as the 

length of the averaged vector. It is easy to transform 
the vector representation (x, y) to directional represen- 
tation by setting d = ½arctanffx). However, it is conveni- 
ent to work directly with vectors and convert them 
back to directions only when necessary. 

After computing the directional image, we convert 
the directions to vectors of unit length. The 512 × 512 
vector image is then tiled into windows of size 8 x 8 
and the vectors in each window are averaged so that 
the output is a vector image of size 64 x 64. This 
relatively small image can be smoothed further (by 
smoothing each vector component separately). We 
have used a 3 × 3 averaging box filter. The filter can be 
implemented very efficiently and by applying it several 
times we obtain a Gaussian-like smoothing of the 

(b) 

(c) 

Fig. 5. Computation of the directional image of the input whorl image in Fig. l; (a) directional image before 
smoothing; (b) directional image smoothed once; (c) directional image smoothed l0 times. 
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reduced vector image. One of the most crucial prob- 
lems in the fingerprint classification algorithm is to 
determine the amount of smoothing which should be 
applied to the 64 x 64 vector image. We have taken an 
iterative approach, where we smooth the image once 
and then try to classify it. If the classifier fails, we 
smooth the image once more and try to classify the 
image again. This process eventually terminates be- 
cause any image, when smoothed sufficiently many 
times, becomes a constant directional image and this 
image is classified as an arch pattern. 

Figure 5(a) shows the directional image obtained 
with the method described above. Figures 5(b) and (c) 
show the same directional image [Fig. 5(a)] smoothed 
once and 10 times, respectively. 

3. CLASSIFICATION 

To classify a 64 x 64 input image of direction vec- 
tors, we first find the singular points (cores and deltas) 
and then classify the image by the number and loca- 
tions of these singularities. ¢4~ The definition of cores 
and deltas that is used here may differ from their 
customary use in fingerprint analysis. (For example, 
Henry ¢12) defines a core point as the uppermost point 
of the innermost ridge. Using this definition, there are 
no core points defined for arch and tented arch type 
fingerprints.) A point in the directional image is classi- 
fied as an ordinary point, core or delta by computing the 
Poincar6 index along a small closed curve around the 
point. The Poincar6 index is computed by summing 

/ 

_ /  

O r d i n a r y  po in t  D e l t a  po in t  
0 o _ 1 8 0  ° 

Core  po in t  Double -core  po in t  
180 ° 360 ° 

Fig. 6. Computation of the Poincar~ index and the definition of ordinary, core and delta points. The circle is 
centered at the point of interest, denoted as "X". 
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Arch Tented Arch 
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Left Loop Right Loop 

J 

Whorl Twin Loop 

Fig. 7. Cores ( c ) and deltas (A) in fingerprint images belonging to different classes. 
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up the changes in the direction angle around the curve. 
When making a full counter-clockwise turn around the 
curve in a directional image, we see that the direction 
angle turns 0, + 180 and +360°, . . .dur ing this trip. 
A point is termed ordinary if the angle has turned 0 °, 
core if it has turned 180 ° and delta if it has turned 
- 1 8 0  ° (Fig. 6). Lower or higher values of directional 
change could be called double-core, double-delta and 
so on, but in discretized representations, as described 
later, these values never occur. 

In a 64 x 64 image, we compute the Poincar6 index 
at every pixel (i,j) in a 2 x 2 rectangle, where the upper 
left corner is placed at the pixel of interest. The rec- 
tangle is traversed in the counterclockwise direction: 

( i , j )~ ( i  + 1,j)--*(i + 1,j  + 1)--*(i,j + 1)--*(i,j). 

When computing the difference between two angles 
(which is determined up to + 180°), we take the differ- 
ence which is smallest in the absolute value. 

After locating all the core and delta points, we 
classify the fingerprint image based on the number and 
locations of these points. As can be seen in Fig. 7, an 
arch fingerprint image contains no cores or deltas, 
loops and tented arches contain one core and one 
delta, and whorls and twin loops have two cores and 
two deltas. We discriminate a tented arch from a loop 
by connecting the core and delta points with a straight 
line. In a tented arch image, this line's orientation is 
along the local direction vectors, while in a loop image 
the line intersects local directions transversally (see 
Fig. 8). Let/~ be the slope of the line connecting the core 
and delta points, and let ~1,~2 . . . . .  ~, be the local 

J 

Ten ted  Arch  Loop  

J 

W h o r l  Twin  Loop  

Fig. 8. Discriminating tented arches from loops and whorls from twin loops. 
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L e ~  Loop  L e ~  Loop  

Right  Loop  

Fig. 9. Discriminating left loops from right loops. 

direction angles on this line segment. If the averaged 
s u m :  

5 
sin(cq- fl) 

F/i= 1 

is less than a threshold (0.2 was used in our experi- 
ments), then the image is classified as tented arch, 
otherwise it is a loop image. The same technique can be 
used to distinguish a whorl from a twin loop. In 
a whorl image, the two core points can be connected 
along direction vectors, while in a twin loop image they 
cannot be connected (see Fig. 8). Left loops are dis- 
criminated from right loops as follows. When starting 
from a core point and moving along the direction 
vectors, the delta point remains to the left in a left-loop 
image and to the right in a right-loop image (see Fig. 9). 
More precisely, denoting the core point by C and delta 

point by D, we start from C and follow the direction 
vectors until meeting the boundary of the image at 
point B (Fig. 9). The image is classified as a right loop if 
the difference: 

( B  r - -  C r ) ( D  c - Co)  - ( B c  - C c ) ( D  , - C , )  

is larger than zero and left loop otherwise. (The sub- 
scripts r and c denote the row and column coordinates 
of a point.) 

4. FINGERPRINT REGISTRATION 

As described in Section 1, fingerprint matching is 
performed by matching the minutiae points extracted 
from the query fingerprint image and database images. 
In order to do this matching accurately in the presence 
of translation, rotation or scale changes, the finger- 
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L e ~  Loop  Right  Loop  

W h o r l  Tented  Arch  

Arch  Ten ted  A r c h / A r c h  

Fig. 10. Examples of detected core (E]), delta (A) and registration ( x ) points. 
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print images have to be normalized. This normaliz- 
ation could be carried out, for example, by finding two 
distinguished points in every fingerprint image. In our 
test database, called NIST-4, tl°l the images are at the 
same scale and approximately with the same orienta- 
tion. Normalization must, therefore, account for trans- 
lation only and one distinguished point is sufficient for 
this purpose. Wegstein t13~ suggests the use of center 
points for registration. 

Core and delta points extracted from the fingerprint 
images are good candidates for registration points. In 
loop and tented arch images, we select the core point as 
the registration point. In a whorl image, the core point 
having the smaller row coordinate is used for registra- 
tion. In an arch image, the registration point is found 
as follows. For  each row i in the directional image we 
compute the sum: 

Ci= ~] Idl,j-di.j-ll, 

where di j  is the direction at location (i, j) and the sum is 
over all the pixels in the ith row. The row coordinate of 
the registration point is determined as the index i for 
which c~ is maximal. In this ith row, the column 
coordinate is found as the index j which minimizes the 
absolute value: 

k=~_2 d j ' i + k  • 

The detected column coordinate j corresponds to the 
horizontal part of the ridges, where the positive and 
negative slopes sum up to almost zero. 

Figure 10 shows a few examples of fingerprint im- 
ages with the detected core, delta and registration 
points. 

5. EXPERIMENTAL RESULTS 

Our fingerprint classification algorithm was first 
tested on the NIST-4 database which contains 4000 
images, equally distributed between five classes--  
arches, tented arches, left loops, right loops and 
whorls. The images are 512 x 512 in size with eight bits 
per pixel and the fingerprints have been manually 
labeled. The classification algorithm given in Fig. 3 is 
invariant to translation, rotation and moderate 
amounts of scale changes in the fingerprint. The NIST- 

4 database consists of mostly centered and horizon- 
tally aligned fingerprint images, so our algorithm can 
be simplified as follows: 

(1) Since the border areas of the 512 x 512 images 
contain mainly background and sometimes hand-writ- 
ten text, the directions in the 40 pixel wide strip along 
the borders were set to zero degrees. This also ensures 
that core and delta points are in pairs. 

(2) Since we are more interested in locating cores 
and deltas in the center of the image, the vectors in the 
64 x 64 direction image were divided by their distance 
to the center of the image. When smoothing such an 
image, noise in the border areas is eliminated prior to 
the undesired smoothing of the singularities in the 
middle of the image. 

(3) No core points were allowed in the 80 pixel wide 
strip along the borders. 

(4) If a core point was less than 8 pixels (24 pixels in 
border areas) from its nearest delta point, then this 
core-delta pair was removed. 

The error in classifying the 4000 fingerprint images 
into five classes was 14.6%. The confusion matrix is 
given in Table 1. The columns in Table 1 do not sum up 
to 800, because some of the fingerprints in the database 
were assigned two different classes. Even fingerprint 
experts are sometimes unable to classify a fingerprint 
image uniquely. For example, the last image in Fig. 10 
was labeled as both a tented arch and an arch. When 
any one of the true labels matched the result of 
our algorithm, the classification was assumed to be 
correct. 

Most of the classification error can be attributed to 
images of poor quality and images containing addi- 
tional lines or tabulations (see Fig. 11). The largest 
source of error, however, is due to the classification of 
about half of the tented arches as arches. Figure 12 
shows that there are two different types of tented 
arches. Our algorithm classifies the first type of tented 
arch as a tented arch, while the second type is classified 
as an arch. In fact, it is extremely difficult to discrimi- 
nate the second type of tented arches from arches 
based on the directional image only. If we combine 
arches and tented arches into the same class, then the 
classification error for the resulting four-class problem 
reduces to 8.6% and the resulting confusion matrix is 
given in Table 2. 

Table l. Five-class classification results on NIST-4 database 

Assigned 
class 

True class 
Whorl Left loop Right loop Arch Tented arch 

Whorl 731 35 30 1 10 
Left loop 33 780 6 10 79 
Rightloop 23 3 672 7 7 
Arch 5 36 37 912 197 
Tented arch 4 11 45 5 321 
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(a) (b) 

(c) (d) 

Fig. 11. Examples of poor quality fingerprint images; (a) an arch image, classified as arch; (b) an arch image, 
classified as a tented arch; (c) a tented arch image, classified as an arch; (d) a left loop image classified as 

a whorl. 

Images of poor quality, such as those in Fig. I l, are 
difficult to classify even for a fingerprint expert. It 
would be desirable if our algorithm could reject these 
images or classify them as "unknown". We have con- 
sidered two strategies to reject fingerprint images. The 
first method computes the "quality" of a fingerprint 
image and rejects the image if the quality is below 
a certain threshold. When computing the directional 
image we obtain a 64 x 64 image of vectors, where the 
direction of a vector corresponds to the ridge direction 
and the length of the vector gives the confidence value 
of that particular ridge direction. We average the 
lengths of the 64 x 64 vectors and call it the quality of 
the image. The second rejection method sets an upper 

limit on the amount of smoothing that can be applied 
to the directional image. Figure 3 shows that the 
directional image is smoothed until no more than two 
core-delta pairs are left. When limiting the number of 
smoothing operations to n, we reject the image if after 
n iterations the image still contains more than two 
core-delta pairs. Figure 13 shows the error rates for the 
four-class classification problem as functions of the 
reject rate. Plots (a) and (b) in Fig. 13 show the error 
rates when rejection based on the image quality and 
amount of smoothing, respectively, was used. The plot 
(c) combines the two rejection criteria, allowing no 
more than three smoothing operations and varying the 
image quality threshold. 
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Fig. 12. Two types of tented arches. 

Table 2. Four-class classification results on NIST-4 database 

Assigned 
class 

True class 
Whorl Left loop Right loop Arch 

Whorl 731 35 30 l l  
Left loop 33 780 6 89 
Rightloop 23 3 672 14 
Arch 9 33 73 1458 

0 ' )  

E 

W 

() ' ' :30 ' ' 10  2 0  4 0  5 0  

Reject  Percen tage  

Fig. 13. Four-class error-reject plots of the NIST-4 database; (a) rejection was based on image quality; 
(b) rejection was based on the amount of smoothing; (c) rejection was based on a combination of image 
quality and the amount of smoothing (three smoothing operations were allowed and the threshold for image 

quality was varied). 
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Fig. 14. Five-c•asserr•r-rejectp••ts•ftheNIST-4database•usingpri•rpr•babi•ities;(a)rejecti•nwasbased 
on image quality; (b) rejection was based on the amount of smoothing; (c) rejection was based on 
a combination of image quality and the amount of smoothing (three smoothing operations were allowed and 

the threshold for image quality was varied). 

In the NIST-4 database, fingerprint images from the 
five classes are equally distributed. However, the prior 
probabilities of observing a fingerprint from these 
classes are as follows: ts) whorl = 27.9%, left loop = 
33.8%, right loop= 31.7%, arch = 3.7% and tented 
arch = 2.9%. The error-reject plots of the five-class 
problem, when taking into account these prior prob- 
abilities, are shown in Fig. 14. The three plots (a), (b) 
and (c) are similar to those in Fig. 13, except that the 
prior probabilities were used to compute the total 
error and reject rates as the weighted sums of the error 
and reject rates of the individual classes. The classifier 
itself was not adjusted to the prior probabilities. The 
use of prior probabilities decreases the error for the 
five-class problem, but not for the four-class problem. 
In the four-class problem, the error in classifying 
arches and tented arches is less than the error from the 
other types of fingerprints. Therefore, using a low 
a priori class probability (5%) for the arches and tented 
arches increases the total error. 

The fingerprint classification algorithm was also 
tested on the NIST-9 database, tl 1) This database con- 
tains 5400 labeled fingerprint images which are not 
always centered and properly oriented. As a pre- 
processing step, we extracted the darkest 512 x 512 
region in the original 768 x 832 image as the expected 
fingerprint location and applied our algorithm to this 
subimage. Figure 15 shows an example image from the 
NIST-9 database and the extracted 512 x 512 subim- 
age. The five-class classification error from the 5400 
images was 12.4% and the confusion matrix is given in 
Table 3. Error rate versus reject rate is plotted in 
Figure 16. Results of classifying images in NIST-4 and 

NIST-9 databases into four or five classes, with and 
without a priori class probabilities, are summarized in 
Table 4. Fingerprints in the NIST-9 database are 
already naturally distributed and no other a priori 
probabilities can be applied. 

Classification of a fingerprint image currently takes 
less than 3 s of CPU time on a Sparc-20 workstation. 
Most of this time (ca 2.8 s) is spent on.computing the 
direction at each pixel of an input image and averaging 
these directions in 8 × 8 windows. Operations with the 
reduced 64 x 64 image, such as smoothing, finding the 
singularities and classifying them, are substantially 
faster (ca 0.1 s). 

For the five-class classification problem, Wilson 
et al38~ have used a neural network-based classifier. 
The classifier was tested on the same NIST-4 database 
and the best reported error rates were 17% with the 
equally spaced grid, 14% with the unequally spaced 
grid and 9.8% with 10% rejects. For the unequally 
spaced grid, statistical knowledge about the core- 
delta locations was used to obtain a finer mesh at 
the expected positions of cores and deltas. When 
taking into account prior probabilities of the five 
classes, an error rate of 4.6% was achieved with 10% 
rejected fingerprints. Our algorithm uses the same 
method for computing the directions. However, 
the major difference is that the neural network 
of Wilson et al. ts~ is first trained on 2000 finger- 
print images and then tested on the other 2000 images 
of the same fingers. Our rule-based classification algo- 
rithm does not depend on a particular data set and it 
was tested on the entire database consisting of 4000 
images. 
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q 

7 ̧  

Fig. 15. An example image form the NIST-9 database and the extracted subimage. 

Table 3. Five-class classification results on NIST-9 database 

Assigned 
class 

True class 
Whorl Left loop Right loop Arch Tented arch 

Whorl 1305 95 79 8 5 
Left loop 78 1485 8 15 11 
Right loop 67 13 1447 17 4 
Arch 8 26 31 "314 30 
Tented arch 16 48 109 40 134 
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Fig. 16. Five-class error-reject plots of the NIST-9 database; (a) rejection was based on image quality; 
(b) rejection was based on the amount of smoothing; (c) rejection was based on a combination of image 
quality and the amount of smoothing (five smoothing operations were allowed and the threshold for image 

quality was varied). 

Table 4. Summary of the error percentages from different classification results 

Number of Prior Rejection 
classes probabilities (10%) NIST-4 NIST-9 

14.6 12.4 
5 x/ 11.9 

13.6 9.9 
x/ 8.7 

8.6 11.7 
4 ~/ 9.4 

6.1 8.6 
x/ 7.0 

6. CONCLUSIONS AND FUTURE WORK 

Currently acceptable fingerprint classification per- 
formance as set by FBI is 1% error with a 20% reject 
rate. " ~  Error in classifying individual fingerprints 
must be small because when classifying fingerprints 
from all the 10 fingers, the errors from single finger- 
print classifications will accumulate. Figure 13(c) 
shows that our classification error for the four-class 
problem is ca 5% with 20% rejects. In order to reduce 
this error rate, input image quality must be improved 
either by preprocessing or by using better fingerprint 
capturing methods. Wilson et al. ts~ used a Fourier- 
transform-based image enhancement  to remove noise. 
While this method improves the quality of images in 
Figs 11 (a) and (c), it does not  improve the classification 
accuracy of images which contain tabulations [Fig. 
1 l(d)] or broken lines [Fig. 1 l(b)l, because the tabu- 
lation and lines are also enhanced. Currently, the 
algorithm seldom fails with images of good contrast 

and images which contain no written text. The reject 
criteria that we have used are not very effective and 
should be improved. As the plots in Figs 13, 14 and 16 
show, 10% of rejected patterns results in a ca 1 2% 
decrease in the error rates. We are presently studying 
better methods for rejecting fingerprint images. 
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