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incorrectly accepted by a biometrics-based authenti-

While it 1s widely acknowledged that the perfor-

cation system. An improvement in the accuracy per-

mance improvement in current biometrics-based per-
sonal authentication systems 1is necessary, it is not
clear what mechanisms could be used to improve the
performance. In this paper, we formulate the prob-
lem of multiple biometrics integration and examine
whether the improvement wn performance could be
achieved from wintegrating multiple biometrics. For two
practical and commonly used situations of multibio-
metric integration, we analyze the performance gains.
We also demonstrate empirically that integration of
multiple biometrics does indeed result in a consistent
and significant performance improvement.

1 Introduction

Biometrics deals with automatically identifying in-
dividuals based on their distinctive physiological or
behavioral characteristics. It is widely acknowledged
that only biometric identifiers come close to actu-
ally authenticating the person instead of their pos-
sessions (e.g., a passport) or their exclusive knowl-
edge (e.g., passwords). Unlike the possession-based
and knowledge-based identity authentication schemes,
the biometric identifiers cannot be misplaced, forgot-
ten, guessed, or be easily forged. Despite these in-
herent advantages of using biometrics-based personal
authentication, their wide scale deployment has been
hindered due to several reasons.

One of the primary limitations of the biometric
identifiers is their less than desired accuracy perfor-
mance in several application domains. Note that
the presentation of a correct (incorrect) password in
a password-based authentication system always cor-
rectly results in acceptance (denial) of an identity au-
thentication claim. On the other hand, even if a legit-
imate biometric identifier is presented to a biometric-
based authentication system, the correct authentica-
tion may not be guaranteed due to sensor noise and
limitations of feature extractor and matcher. Simi-
larly, there is a possibility that an impostor will be

formance of a biometrics based personal identification
system is, therefore, highly desirable.

How can the performance of a biometrics-based
identification system be improved? There comes a
stage in the development of any biometric authen-
tication system where it becomes increasingly diffi-
cult to achieve significantly better performance from a
given biometric identifier and the need to explore other
sources for improvement becomes a practical necessity.
The wntegration approach to improve performance can
take any number of different forms. One could com-
bine a biometrics scheme with non-biometrics (pos-
session or knowledge) based schemes. For instance,
combining a possession-based (e.g., smart card) au-
thentication with biometric authentication will relieve
the burden of higher performance from the biometrics
component without increasing the risk of an impostor
acceptance. However, these solutions re-introduce the
problems inherent in the possession- and knowledge-
based techniques for personal identification which is
not desirable. This implies that for the desired per-
formance improvement, we may need to rely on inte-
grating multiple biometrics.

Multiple biometrics can alleviate several practical
problems in the biometrics-based personal identifica-
tion. For instance, although a biometric identifier is
supposed to be universal (each person in the target
population should possess it), in practice, no biomet-
ric identifier is truly universal. Similarly, the biometric
identifiers are not always sensed/measured by a prac-
tical biometric identification system. That is, some
small fraction of the target population may possess
biometric identifiers which are not easily quantifiable
by the given biometric system. For instance, a small
fraction of the population may possess fingerprints
which are not easily captured by the representations
(features) adopted by a given system. Consequently,
the authentication system can not handle this frac-



tion of population based on that particular biometric
identifier. Further, different biometrics may not be
acceptable to different sections of the target popula-
tion. In highly secure systems, reinforcement of evi-
dence from multiple independent biometric identifiers
offers increasingly irrefutable proof of the identity of
the authorized person. The assumptions of universal-
ity, collectability, acceptability, and integrity are more
realistically accommodated when the personal authen-
tication is based on information from several biometric
identifiers.

The purpose of this paper is to examine whether
the performance of a biometrics system could indeed
be improved by integrating multiple biometrics. An
analysis of the entire domain of multibiometrics is be-
yond the scope of this paper; we will restrict our study
to typical cases of multiple biometrics integration and
show that the integration of multiple biometric is in-
deed admissible. The rest of the paper is organized
as follows: First, we formulate the problem of multi-
ple biometrics integration and state the assumptions
underlying the integration. Next, we present how in-
formation from multiple biometrics can be combined
at various levels using a number of different methods.
For two typical cases of integration, we prove that inte-
gration schemes can indeed result in an improvement
in performance. We further illustrate the advantages
of integrating multiple sources of information by pre-

rates but also on the value placed by the system ap-
plication on false match/mismatch, and the expected
frequency/nature of the attacks on the system. It is
to be noted that the costs of a false match and a false
mismatch are often not identical and are significantly
different depending on the application domain. For in-
stance, high security access applications are concerned
about break-ins and hence require smaller FA; foren-
sic applications desire to catch a criminal even at the
expense of examining a large number of false accepts
and hence operate their matcher at a high FA [1]. In
a system with different levels of security, it is conceiv-
able that not all errors cost the same (e.g., mistaking
an individual A as impostor versus mistaking B as
an impostor, etc.) — again, for simplicity, we assume
that each false positive poses the same amount of risk
(all impostors are equally dangerous), every false neg-
ative presents identical liability (all authorized users
are equally important), and the system is under ran-
dom attack. Further, we conservatively assume that
an impostor can get away with impunity when system
detects an impostor attack (no scarecrow effect) and
the frequency of impostor attack is the same as the fre-
quency of authorized usage. Finally, we will assume
that offering multiple biometric identifiers presents a
negligible inconvenience to the user.

Formally, a biometrics system, 3, matches an in-
put, ®!, against a template, ®*, obtains a similarity

senting empirical results of a system which integrates

(or distance) assessment based on a (typically) scalar

face and fingerprint.

2 Performance Characterization

For an effective understanding of the advantages
of a multibiometrics approach to a given application,
1t 1s necessary to correctly define the terms “perfor-
mance” and “performance improvement”. A number
of criteria including the accuracy, cost, and speed of
the system may be used to assess its performance. As
the higher speed processors are becoming available at
cheaper prices and as the cost of the biometric sensors
1s dramatically decreasing, we believe that the accu-
racy performance of biometrics systems will become
the predominant focus of the system design. For sim-
plicity, we will assume that the cost and the speed
of the system do not play any significant role in its
performance assessment.

A biometric system can commit two types of er-
rors. A false acceptance (positive or match) refers
to identifying an impostor to be a genuine user. A
false reject (negative or non-match) refers to reject-
ing a genuine user as an impostor. It should be noted
that the error rates of the system are necessary but not
sufficient ingredients for evaluating the system perfor-
mance; the performance depends not only on the error

value (score) to determine which category, wi or ws,
the input ®! belongs to, where w; indicates that ®!
is a genuine user, and wsy indicates that ®! is an im-
postor. It can be formulated as follows:

wy, Zf X € R)
Xe { wy, otherwise, (1)

where X = F(®', ®*) is a random variable indicating
the simalarity between ®' and ®* and R is a set which
consists of similarity values representing genuine users.
The false reject rate, F R(R), and the false acceptance
rate, FA(R), which are functions of the set R are
defined as

FR(R)

1= [ AKX, (@)

FAR) /R F(X|ws)dX, (3)

where f(X|w;) and f(X]|wsz) represent the conditional
probability density functions of genuine users and im-
postors, respectively. The total risk, E(R), is defined
as

E(R) :CFR*FR(R)-I-CFA*FA(R), (4)



where Cpr and Cpas are the cost of the false nega-
tives and cost of authorizing an impostor, respectively.
When Crr = Crpg = 1, the risk is equivalent to the
total error. The minimum total risk, E(Rypin), is de-
fined as

E(Rmm) = MinR{CFR * FR(R) + Cpy * FA(R)} (5)

Let us now formulate a multibiometrics scenario.
For simplicity, we will consider integration of only two
biometrics'. Let B;, i = 1,2, be two biometrics sys-
tems each of which uses a different biometrics indica-
tor. Let X; denote the corresponding similarity ran-
dom variables and f;(X;|w1) and f;(X;|ws) represent
the conditional probability density functions of gen-
uines and impostors, respectively. The false reject
rate, false acceptance rate, total risk, and minimum
total risk of B;, 1 =1, 2, are

FR(R;) = 1- /R [i(Xi|wy)dX;, (6)
FA(R;) = /R fi(Xi|we)dXs, (7)
Ei(Ri) = CFR*FRi(Ri)+
Cra * FA;(Ry), (8)
Ei(Ropin,) Ming {Crr * FR;(R;)+
Cra * FA;(R;)}. (9)

3 Architecture for Integration

Information contained in multiple biometrics could
be integrated using a number of different methods, at
various levels, and in different contexts (see for in-
stance, Figure 1). Here, we will only discuss the inte-
gration based on the extent of the information shared
among multiple biometric identifiers.

The output from multiple biometric sensors could
be used to create a more reliable and/or extensive
(spatially, temporally, or both) input acquisition [4].
The representations extracted from many biometric
sensors could be collated and the decisions could be
made based on the joint feature vector. The inte-
gration at sensor or representation level assumes a
strong interaction among the input measurements and
such integration schemes are referred to as tightly cou-
pled integrations [3]. The loosely coupled systems, on
the other hand, assume a very little or no interac-
tion among the inputs (e.g., face and finger) and inte-
gration occurs at the output of relatively autonomous
agents, each agent independently assessing the input
from its own perspective. We will restrict ourselves to
loosely coupled systems.

!By induction, the results could be extended to integration
of multiple biometrics.
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Figure 1: Multiple choices for integration in a finger-
print based system.

The loosely coupled systems are not only simpler
to implement, they are more feasible in commonly
confronted integration scenarios. A typical scenario
for integration is two biometric systems (often propri-
etary) independently acquiring inputs and making an
autonomous assessment of the “match” based on their
respective identifiers; while the decisions or scores of
individual biometric systems are available for integra-
tion, the features used by one biometric system are
not accessible to the other biometric system. In this
paper, we will analyze two scenarios for integration
based on scores or decisions provided by two different
biometrics systems. In both the cases, we demonstrate
that the integration schemes result in a performance
improvement.

4 Score Level Integration

In this section, we will consider score level integra-
tion of two biometric systems. As mentioned earlier,
we will assume that X;, 7 = 1, 2, are statistically inde-
pendent. As a result, the joint conditional probabil-

1ty density functions for genuine users and impostors,
f(X1,Xz|wy) and f(X1, Xz|ws), can be simplified as

F(Xe, Xafwi) = fi(Xafwi) fo(Xo|wi),  (10)
F(X1, Xafwz) = fi(Xa|wsz) f2(Xa|ws).  (11)

The decision rule can be written as

wy, Zf (X1)X2) < Rmin;
wy, otherwise,

(X1,Xz) € { (12)

where

Crr * f(X1, Xa|w;)
Cra * f(X1, Xz|ws)

Rmi'n. = {(XI,X2)| - 1}) (13)



which can reach a minimum total risk,

E(Rpin) = CFR{l—//R | f(Xl,X2|w1)dX1dX2}

+ CFA// F(X1, Xo|ws)dX1dX,.  (14)
R'm.-i.'n.

Given the above formulation, we would like to prove
that

E(Rmin) S Ei(Rmin,‘);i = 1: 2: (15)

for demonstrating performance improvement due to
multibiometrics.

Without a loss of generality, let us assume that
E1(Rpin,) > E2(Rpin,). For a given value of X,
x1, the above decision rule can be reformulated as

1,00,lw; 105y wip)
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($1)X2) € wi, Zf CFA*f(m1,Xz|w2) Z 1) (16)
wa, otherwise,

which has the following minimum risk

BRpinle) = Ce{1= [ fex Xo)lui)ixs

+ Cra / fon, X)X, (17)

Inequality

Crr * f(z1, X2|wy)

>1 18
Cra * f(x1, Xa|ws) — (18)

is equivalent to inequality

Crr * fi(zi|wi) fo(Xz|w:)
Cra * fi(z1|w2) fo(Xa|ws)

which is further equivalent to inequality

Crr * fo(Xa2|ws)

Cra * f2(Xalwy) —
fi(zi|wz)/(fi(z1|w) + fi(z1|ws))
fi(zy|w)/(fi(z1|wi) + fi(zi|ws))

Since fi(@i|w)/(fi(z1]w1) + fi(@1lws))
and fi(z1|ws)/(fi(z1|wi) + fi(z1|ws)) are the prob-
abilities indicating z; is a genuine user and an im-
postor, respectively and X, is statistically indepen-
dent of X1, fi(zi|wi)/(fi(z1]w1) + fi(z1|wz)) and
fi(zi|wa)/(fi(z1|wi) + fi(z1|ws)) essentially are pri-
ors of random variable (z1,X3). Thus, the reformu-
lated decision rule is exactly the Bayesian rule. The
Bayesian rule guarantees that the resulting total error
due to its application is no greater than the total error
due to any other decision (including the decision which

> 1, (19)

(20)

Figure 2: The (simulated) genuine and impostor dis-
tributions of two different biometrics.

could have resulted in EF(Rn,) at point z;. There-
fore, E(Rmin|z1) < F2(Rymin,) at point z;. Since
this inequality holds for all values of X;, E(Ryin) <
E3(Rnin,). Note that the equality holds only in the
following situations: f;(X;|w1) = f;(X;|wz) or both
X1, X3 can take only a few (say, two) discrete values.

To obtain an idea of the extent of improvement due
to integration, we ran simulation tests for synthetically
generated impostor and genuine probability density
functions under Gaussian assumption as shown in Fig-
ure 2. For example, a simulation test with E;(Rpn;)
of B; and B; equal to 0.002 and 0.02, respectively, and
Cra = Crr = 1, E(Rynin) 1s 0.00012 (a 16 times im-
provement) as per the integration scheme prescribed
by Eq. (12)!
5 Decision Level Fusion

In this section, we will assume that only decisions
made by the individual biometric systems are available
for integration. Noting that the argument of the risk
function (R) now parameterizes the operating point,
the total risk in a decision fusion scenario is

E(R) CFR*FR(R)-I-CFA *FA(R), (21)
E,;(R,;) CFR*FRi(Ri)-I-CFA *FA,;(R,;)(22)

There are two possible integration approaches:
AND and OR. We need to show in both these ap-
proaches that there exists a decision integration sce-
nario for which

E(R) < E,;(R,;),Vi. (23)
5.1 OR Rule

Consider an OR integration scenario where a user
1s required to offer the biometric identifier associated



with By and if By rejects the user, the user is given a
second chance to verify the identity with Bs.
The error rates of the integrated system are:

FA(R) = FA]_(R]_) + FA2(R2)
—FA]_(R]_) * FA2(R2), (24)

Substituting Eqgs. (24) and (25) in Eq. (21) and
dropping (R) for brevity, the requirement for improve-
ment due to integration implies that

Given a matcher By operating at (F Az, FRy),
1s there a matcher B; with some operating point
(F Ay, FRy) which will result in an improvement in
performance?

Rewriting inequalities represented by Egs. (26)
and (27), we obtain

kx FA, FA,
k*(l—FAg)
F ————— x FAl+1 2
Rl FR2 * + 1, (9)

where k = %’_Eﬁ It is easy to see that inequality (28)
represents a linear boundary B represented by the fol-
lowing equation (see Figure 3)

ki FA, FA,
NP A 4k 22
1_FR, TR T T FRy

which divides the (FA, FR) plane into two regions.
The region admissible by inequality (28) is represented
by the area above line B. Similarly, the region admis-
sible by inequality (29) is represented by area below
line A which is represented by

_k*(l—FAg)
FR,

Note that the lines A and B always pass through
(0, 1) and (1, 0), respectively; they have X- and Y-
intercepts of (k*(%ﬁA—z), 1) and (1, k « %i?)’ respec-
tively. In order that intersection of the regions admis-
sible by both inequalities (28) and (29) is non-empty,
it is necessary that either (i) the X-intercept of line A
be greater than 1; (ii) the Y-intercept of line B be less
than 1, or (iii) both. This implies that at least one
of the following two conditions needs to be satisfied
in order for the performance of the integrated system
using OR decision fusion rule to improve:

ko FAy+ FRy > k, (32)
ko« FAy+ FRy < 1. (33)

FRy = (30)

FRy = x FAL+ 1. (31)

For instance, integration of two matchers with (FA,
FR) values of (0.0001,0.001) and (0.001,0.0001) using
an OR-rule decision fusion reduces the total risk (i)
from 0.0011 to approx. 0.0002 (for k = 1); (ii) from
0.00101 to approx. 0.00002 (for k£ = 0.1)!!

5.2 AND Rule

Consider an AND integration scenario where a user
is required to offer the biometric identifiers associated
with both B; and B, and the user is accepted if both
the identifiers are acceptable by their respective bio-
metric systems.

The error rates of the integrated system are:

FR(R) = FR]_(R]_) + FR2(R2)
—FR]_(R]_) * FRz(Rz), (34)

Following the logic similar to that used in Sec-
tion 5.1, it can be proven that at least one of the
following two conditions needs to be satisfied in or-
der for the performance to improve

k+« FAy+ FRy > 1, (36)
k+ FAy + FRy < k, (37)
where k = g& and the feasible operating points

(FA1, FRy) of such a matcher are prescribed by a
region enclosed (Region 1 in Figure 3) by the lines
defined by

kx FA, FA,

FR, —1_FR2*FA1+k*1_FR2,(38)
k*(l—FAg)

FRy >~ B pAleL (3)

6 Empirical Results

Empirical demonstrations of improvement in per-
formance due to integration of multiple biometrics
abound in the literature [2, 8, 7, 6, 5, 4, 3]. Here,
we summarize results from one case study in integra-
tion which is based on our work reported elsewhere [2].
This system implements a score-based decision fu-
sion framework which integrates two biometrics (face
and fingerprint) for an online identification applica-
tion. The integrated system first retrieves the top 5
matches for an identity using face recognition. Then
fingerprint verification is applied to each of the result-
ing top b matches and a final decision is made by the
decision fusion scheme. Experimental results using a
small database of 64 individuals demonstrate that the
multibiometrics system performs better than the iden-
tification performed by either finger or face alone (see
Table 1 and Fig. 4).



FR,

Region 2

FA,

Figure 3: Boundaries of admissibility in a decision fu-
sion system. FA; = 0.5, FR; = 0.7, k = 0.85. Region
1 is admissible under AND fusion rule; Region 2 is ad-
missible under OR fusion rule. Atypical error rates
are used for clearly illustrating admissible regions.

Table 1: False reject rates on the test set with dif-
ferent values of False Acceptance Rates. FR1, FR2,
and FR3 denote face, fingerprint, and integrated false
reject rates, respectively.

FA (%) FR1 (%) FR2 (%) FR3 (%)
(face) (fingerprint) (integrated)

1.0 15.8 3.9 1.8

0.1 42.2 6.9 4.4

0.01 61.2 10.6 6.6

0.001 64.1 14.9 9.8

7 Conclusions

One of the most common barriers against wide-
scale adoption of biometrics-based personal identifi-
cation systems is their less than satisfactory perfor-
mance [1]. Consequently, improving the system per-
formance is a significant research challenge. In this
paper, we formulate the multibiometrics problem. In
two commonly used scenarios, we prove that it is pos-
sible to improve performance by integrating multiple
biometrics. These results are further supported by em-
pirical evidence from our earlier work on integrating
face and fingerprint.
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