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Abstract—Latent fingerprints are routinely recovered from
crime scenes and are compared with available databases of known
fingerprints for identifying criminals. However, current proce-
dures to compare latent fingerprints to large databases of full
(rolled or plain) fingerprints are prone to errors. This suggests
caution in making conclusions about a suspect’s identity based on
a latent fingerprint comparison. A number of attempts have thus
been made to measure the utility of a fingerprint comparison in
making a correct accept/reject decision or its evidential value.
These approaches, however, either do not represent the state-
of-the-art in fingerprint matching due to unrealistic modeling
assumptions or they lack simple interpretation. We argue that the
posterior probability of two fingerprints belonging to different
fingers given their match score, referred to as the Non-match
probability (NMP), effectively captures any implicating evidence
of the comparison. NMP is computed using state-of-the-art
matchers and is easy to interpret. To incorporate the effect of
image quality, number of minutiae, and size of the latent on NMP
value, we compute the NMP vs. match score plots separately
for image pairs (latent and full fingerprints) with different
characteristics. Given the paucity of latent fingerprint databases
in public domain, we simulate latent fingerprints using two full
fingerprint databases (NIST SD-14 and Michigan State Police)
by cropping regions of three different sizes. We appropriately
validate this simulation using four latent databases (NIST SD-27
and three proprietary latent databases) and two state-of-the-art
fingerprint matchers to compute their respective match scores.
We also describe the way a latent fingerprint examiner would
use the proposed framework to compute the evidential value of
a latent-full print pair comparison in practice.

Index Terms—Fingerprint matching, latent fingerprint com-
parison, individuality, evidential value, Non-match probability,
genuine match distribution, impostor match distribution

I. INTRODUCTION

Latent fingerprints are extensively used as forensic evidence
in criminal prosecution. This is mainly because i) fingerprint
patterns are highly discriminative, and ii) they are routinely
found at most crime scenes due to inadvertent contact of the
perpetrator’s finger tips with various objects in the crime scene.
In order to use them as evidence in a court of law, the latent
fingerprints are “lifted” from the crime scene and matched
either to full (rolled or plain) fingerprints that are captured
from the suspect or to reference prints in law enforcement
databases. See Figure 1 for a sample latent fingerprint image
and its corresponding (mated) full fingerprint.

Typically, latent fingerprint images have significantly poor
quality compared to full fingerprints. While full print to
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Fig. 1. Example of a latent and the corresponding rolled fingerprint. Based on
NIST SD27, latent fingerprints, on average, have around 20 minutiae whereas
a rolled fingerprint, on average, has around 150 minutiae.

full print matching can be done effectively in a lights out
mode (fully automatic) by Automatic Fingerprint Identification
System (AFIS) (unless the image quality is very poor) [39],
latent to full print matching still requires extensive image
preprocessing and, in many instances, a manual matching by
a latent examiner following a procedure referred to as the
ACE-V protocol [15]. Usually, an AFIS is used to filter a
large database of reference full prints to a small number of
potential mates (typically 50) for further manual examination
by latent experts. Despite the ACE-V protocol available for
latent matching, there have been a number of cases where an
incorrectly identified latent fingerprint resulted in a wrongful
conviction [20]. A prominent case in this regard is that of
Brandon Mayfield, who was incarcerated for the 2004 Madrid
train bombing based on an erroneous latent fingerprint match.
The Federal Bureau of Investigation (FBI) later reviewed this
case [13] and noted that the reasons for the misidentification
included examiner bias due to influence of the knowledge of
Mayfield’s fingerprint while marking features on the latent
fingerprint, and inadequate consideration of fingerprint image
quality. Some other cases have also been brought to light by
the Innocence Project [40] where the erroneous convictions
made based on latent fingerprint matches were later overturned
as a result of DNA evidence. The acquitted individuals,
however, had already spent many years in the prison.

In light of such misidentifications, it is crucial to measure
the accuracy or error rate of a fingerprint comparison and thus
the confidence with which the outcome of a fingerprint com-
parison can be accepted. The latter is usually quantified as the
evidential value of a fingerprint comparison. The importance
of this evidential value was also established by the Daubert
standard set by the United States Supreme Court in Daubert
v. Merrell Dow Pharmaceuticals, 1993 [1]. The Daubert



standard requires that the error rate of the forensic analysis
be available before the related evidence can be admitted in a
court proceeding. An urgent need to properly evaluate the error
rates of latent matching was also expressed in an extensive
study of forensic techniques prevalent in the United States
conducted by the National Research Council (NRC) [32]. The
report highlighted that

“In most forensic science disciplines, no studies have been

conducted on large populations to determine the uniqueness
of marks or features. Yet, despite the lack of a statistical
foundation, examiners make probabilistic claims based on
their experience. A statistical framework that allows quantifi-
cation of these claims is greatly needed. These disciplines also
critically need to standardize and clarify the terminology used
in reporting and testifying about the results and in providing
more information.”
The NRC study essentially recommends that every forensic
science method should undergo substantial research to validate
basic premises and techniques, assess limitations, and discern
the sources and magnitude of error.

The need to estimate the evidential value of latent fingerprint
comparison based on its error rate is urgent, lest undue
challenges to fingerprint evidence in court cases affect timely
deliverance of justice. The use of fingerprints as evidence was
first challenged in 1999 in the case of U.S. v. Byron C. Mitchell
[2] and since then numerous other court cases have seen calls
for motion to exclude fingerprints as evidence. See for example
U.S. v. Llera Plaza [3], [4], in 2002, U.S. v. Crisp [5] in 2003,
State of Maryland v. Bryan Rose [6] in 2007, and U.S. v.
Hamza Keita [7] in 2009.

Numerous studies have been undertaken to date to evaluate
the evidential value of a fingerprint comparison. See Section
IT for a discussion on the past studies. These studies can
be broadly classified as feature modeling and empirical ap-
proaches.! The feature modeling approaches aim to statisti-
cally model the correspondence between certain features of
the two fingerprint images being compared. This statistical
model can thus be used to estimate the probability that the
correspondences are just due to random chance. The empirical
approaches, on the other hand, aim at conducting large-scale
experiments for estimating the error rates under different
circumstances. In this paper, we mainly explore the empirical
approach. Note that it is difficult to accurately model various
fingerprint features, as attempted in a number of published
studies, that are typically used by state-of-the-art fingerprint
matchers as well as identified by latent examiners during
fingerprint comparison.

A fingerprint comparison, as required in an empirical study

'A categorization of approaches that quantify the evidential value of
a forensic evidence has also been proposed in [48]. In [48] the existing
approaches are categorized into generative and discriminative classes, where
a generative approach involves a statistical model of the biometric features
while a discriminative approach does not. However, the term generative is
typically used to describe a classification approach where the distributions of
two classes being distinguished is modeled, whereas a discriminative approach
usually only models the decision boundary [37]. In our context, the two classes
being distinguished are the genuine and impostor match score distributions,
whereas in [48] the generative class encompasses approaches irrespective of
whether the corresponding match scores are statistically modeled or not. For
this reason, we have proposed a new categorization.

assessing the evidential value of a fingerprint comparison, can
be performed either using an automatic matcher or manually
by a latent expert. Both these methods of comparing finger-
prints have their own implications on the accuracy of the
comparison as well as on the evaluation of its evidential value:

1) AFIS-based fingerprint comparison: With the ad-
vancements in fingerprint matching technology, it is
now possible to compare latents with full fingerprints
effectively and automatically. The National Institute of
Standards and Technology (NIST) conducted an evalua-
tion of available automatic latent fingerprint techniques
and reported a rank-1 accuracy of 97.2% on good quality
latent fingerprints when matched with a background
database of 100,000 full fingerprints (see [41]) and an
accuracy of 62% while matching poor quality latents
with a background of 1 million full fingerprints (see
[28]). In [41], the manually marked features on latent
images were used to search the database and the images
with successful retrievals were then used in the fully
automatic testing. Further, the throughput requirement
in [28] was more restricted compared to [41]. This
explains the high matching accuracy reported in [41].
Nevertheless, these promising results from automatic
latent matching experiments support the use of AFIS
in forensic matching of latent fingerprints. The issue of
limited availability of the database for training purposes
is also being addressed. See e.g. [21].

2) Manual fingerprint comparison: Latent fingerprint ex-
aminers typically follow the ACE-V protocol for match-
ing latent fingerprints. While this protocol is considered
to be reasonable, it is difficult to conduct large-scale
experiments with latent examiners in order to evaluate
the error rates associated with the protocol and thus
the evidential value of a manual latent fingerprint com-
parison. In a recent study involving manual fingerprint
matching conducted by Ulery et al. [50], 169 latent
examiners were asked to match latent-full print pairs
from a pool of 744 (520 mated and 224 non-mate) pairs.
Still, Ulery et al. concede that, despite the extensive
nature, their experiment is not representative of all the
latent print examiners and actual casework of latent
matching. Further, a proper design of experiments would
require that fingerprint images are partitioned based on
the image characteristics, but this would further reduce
the already small number of image pairs used in their
experiment. Evaluation of error rates of the ACE-V
protocol is also difficult due to inconsistencies among
its different implementations that arise mainly due to its
imprecise specification [26]. In a study performed by
Dror et. al. [22], the accuracy of latent examiners has
also been shown to be affected by extensive use of AFIS
to select a list of candidate matches before a manual
matching is performed.

Our study mainly focuses on the use of automatic fingerprint
matchers because of the difficulty in conducting large-scale
experiments with latent fingerprint examiners. We use the Non-
Match Probability (NMP) [19] as the quantity that captures
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Fig. 2. A typical NMP-curve. An ideal NMP-curve is shown as the dotted
blue line. Note that the ideal curve can completely separate mated (having an
NMP value 0) and non-mated (having an NMP value 1) fingerprint pairs.

any implicating evidence of a fingerprint comparison. Since
the accuracy of AFIS and thus the relationship between the
NMP and the match score is dependent upon the characteristics
of the fingerprint images, we divide the available fingerprint
database into various partitions, each associated with a dif-
ferent covariate, say, a specific range of number of minutiae,
image quality and the size (area) of the associated fingerprints.
Different NMP vs. match score plots, called the NMP-curves
(see Figure 2), are computed based on these database partitions
and their relationship with the characteristics of the database
is studied. We also compute the significance of evidence
associated with an NMP value, which is referred to as the
conclusiveness of an NMP value. Finally, due to paucity of
public domain latent databases, we utilize and validate the
use of partial fingerprints as a substitute for latent fingerprints
in estimating the NMP-curves.

The main contributions of this paper are as follows:

1) Quantification of the evidential value of a latent finger-
print comparison in terms of conclusiveness of an NMP
value.

2) An analysis of the evidential value of latent fingerprint
comparison as a function of number of minutiae, quality,
and latent area or size.

3) Validation of simulation of latent fingerprints using
partial prints by comparing the associated NMP-curves.

4) A step-by-step procedure that can be followed by a latent
examiner in order to estimate the evidential value of a
latent fingerprint comparison.

5) Extensive experiments using two different Commercial
Off the Shelf (COTS) fingerprint matchers and four
different latent databases.

The rest of the paper is organized as follows. Section
IT presents a summary of previous approaches to estimate
fingerprint evidential value. Section III presents the proposed
framework for analyzing the evidential value based on NMP.
Section IV presents experimental results. A summary of our
work is presented in Section V. A preliminary version of this
paper appeared in [19].

II. BACKGROUND

The various approaches available in literature for formally
assessing the identifying information in fingerprints can be
broadly divided into two main categories: feature-modeling-
based approaches and empirical approaches.

A. Feature-modeling-based Approaches

The first attempt to estimate the evidential value of fin-
gerprints by statistically modeling the fingerprint features
was made by Galton [25]. His model required partitioning
a fingerprint into 24 non-overlapping square regions whose
width was equal to six times the inter ridge distance. He argued
that each of these square regions can be correctly reconstructed
with a probability of % if the information regarding the
surrounding ridges is known. This leads to a probability of
(%)24 that the complete fingerprint can be reconstructed,
given the ridge structure in the region surrounding the square
regions. Galton further noted that the probability that the
correct number of ridges enter and exit the 24 squares is ﬁ
and that the probability of occurrence of a specific type of
finger (e.g. whorl, loop, arch, etc.) is % This assumption
leads to a probability of & x k= x (1)™ = 1.45 x 10~
for correctly reconstructing a full fingerprint. This measure of
fingerprint individuality has been referred to as the Probability
of Fingerprint Configuration (PFC) [25]. In later studies, e.g.
in [42], the PFC values were characterized by the amount of
discriminating information in a fingerprint such as the number
of minutiae, fingerprint quality, etc. The PFC value was also
viewed as the Probability of False Association (PFA) (See e.g.
[14], [30]) which essentially measures the probability that a
given fingerprint configuration will perfectly match one of the
k available fingerprints. Mathematically,

PFA=1-[1-PFC)~. (1)

Note that most of the above approaches involved manual
analysis of fingerprints. Champod and Margot [16] were,
however, the first to use automatically extracted minutiae
for computing PFA. A thorough discussion of other similar
approaches is provided in [44].

One of the limitations of the PFC (and PFA) is that it does
not take into account the characteristics of a fingerprint com-
parison e.g. the number of matching minutiae, size of overlap
between the two fingerprints being matched, number of non-
matching minutiae in the overlapping region, etc. Pankanti
et al. [38] first incorporated these match characteristics in
quantifying the individuality of fingerprints using the so called
Probability of Random Correspondence (PRC). Given a query
fingerprint containing n minutiae, they computed the PRC that
an arbitrary template fingerprint containing m minutiaec will
have exactly s mated minutiae with the query. Thus the PRC
value is computed as

PRC(s) = P(s|I,m,n) (2)

where I refers to the impostor pair of fingerprints, i.e. the two

fingerprints being compared belong to different fingers.
Pankanti et al. assumed a uniform distribution to model

the location and direction of each minutia in a fingerprint



Study Model description

Database

Pankanti et al. (2002) distribution

Modeled minutiae location and orientation using uniform

668 fingers, 4 impressions per finger

Chen and Moon (2007)

Extended Pankanti et al.’s model by using von-Mises
distribution to model the minutiae direction

383 fingers, 1149 fingerprints

Zhu et al. (2007)

Extended Pankanti et al.’s model by using finite mixture
models for minutiae location and direction

NIST SD4 (2,000 fingerprints), FVC2002 DB1 (800
fingerprints) and FVC2002 DB2 (800 fingerprints)

Fang et al. (2007)

Extended Zhu et al.’s model by including fingerprint ridges

FVC2002 DB1 (800 fingerprints)

Su et al. (2009) ridge points

Extended Zhu et al.’s model by including ridge flow and

NIST SD4 (2,000 fingers, 2 impressions per finger)

Chen and Jain (2009)

Extended Zhu et al.’s model by including ridges and pores

NIST SD4 (2,000 fingers, 2 impressions per finger)

Su et al. (2010)

Used Bayesian networks to obtain minutiae correspondence

NIST SD4 (2,000 fingers, 2 impressions per finger), NIST
SD27 (258 latents and mated full fingerprints)

TABLE 1
TECHNIQUES FOR ASSESSING THE EVIDENTIAL VALUE OF FINGERPRINTS BASED ON PRC VALUES.

independently to calculate the PRC value. One limitation of the
uniform distribution model is its relatively poor fit to the true
minutiae distribution in fingerprints. To address this issue, a
number of subsequent studies attempted to improve the model
of Pankanti et al. Chen and Moon [17] extended Pankanti
et al’s model by using von-Mises distribution for minutiae
direction. Based on the observation that the minutiae tend to
form clusters [45], Zhu et al. [51] used finite mixture models
for modeling the minutiae distribution. For each fingerprint,
a Gaussian distribution was fit to the minutiae locations and
a Von-Mises distribution was used for the minutia directions
in each component of the mixture. Fang et al. [24] and Su et
al. [46] extended this framework by incorporating information
regarding the fingerprint ridges. Chen and Jain [18] modeled
three different levels of fingerprint features: level 1 (pattern
type), level 2 (ridges and minutiae) and level 3 (pores). Su et
al. [47] incorporated dependence between neighboring minu-
tiae using Bayesian networks. Despite these developments,
there are two main limitations of these model-based studies:
i) the matching criteria used, e.g. the number of matching
minutiae, is very rudimentary and does not represent the
matching criteria of state-of-the-art algorithms, and ii) intra-
class variations in fingerprints (see Figure 3), a major source
of matching errors, is not explicitly considered in computation
of the PRC value.

B. Empirical Approaches

A number of empirical approaches for computing the evi-
dential value have been reported in the literature. Meagher et
al. [31] were the first to utilize the FBI’s Automated Finger-
print Identification System (AFIS) to compute the evidential
value of fingerprints in response to the first legal challenge
against fingerprint evidence in the courts, namely U.S. v.
Byron C. Mitchell. They simulated latent images by partial
prints obtained by cropping 50,000 different rolled finger-
prints. These partial fingerprint images were compared with
the original rolled images to obtain the genuine and impostor
match scores. Assuming that the genuine and impostor scores
follow a Gaussian distribution, Meagher et al. computed the
probability of finding a pair of two unrelated fingerprints,
whose match score is greater than the smallest of the genuine
match scores observed, as 10797, One major shortcoming of

Fig. 3. Two fingerprints belonging to the same finger that appear to have
different characteristics due to skin distortion during image acquisition. This
illustrates the intra-class variability in fingerprints, a major obstacle in defining
quantitative measures of evidential value. Note that placing a simple bounding
box around each minutia during comparison is not sufficient to account for
the intra-class variation.

this study is that the intra-class variation (see Figure 3) was
not accounted for since only one image per finger was utilized.

Neumann et al. [33], [34], [35] developed a fingerprint
matching procedure based on matching a local neighborhood
of a small number of minutiae and then converting the
resulting similarity value s into a likelihood ratio (LR),

P(s|G)

LR() = BaTH 3)
where I refers to impostor fingerprint pairs (non-mated pairs)
and G refers to genuine fingerprint pairs (mated pairs). This
likelihood value was proposed as a measure of the evidence
captured by a fingerprint comparison. In order to obtain
multiple samples of the same minutiae configuration from a
fingerprint, which is required in estimating the within class
distribution, Neumann et al. artificially applied random non-
linear distortion to the minutiae configuration.

In Egli et al.’s approach [23], the corresponding minutiae
are manually identified between the given latent and full
fingerprint. These corresponding minutiae are then matched
using an automatic matcher and the resulting match score
is used to compute the likelihood ratio. The genuine score
distribution, P(s|G), is obtained by matching the correspond-
ing minutiae from multiple impressions of the fingerprint of
interest, whereas P(s|I) is obtained by matching the minutiae
selected from the latent with those obtained from non-mate
fingerprints. Similar to the techniques developed by Neumann
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for inter-class variability P
NIST SD14 (27,000 fingers, 2 Two Requires large sample
Proposed impressions each), MSP Database different size for database
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PP each), Latent databases (1041 match- quality, area and no. of
latent images with mates) ers minutiae

TABLE I
EMPIRICAL TECHNIQUES FOR ASSESSING THE EVIDENTIAL VALUE OF FINGERPRINTS.

et al., this approach also assumes availability of a multiple
samples of the fingerprint of interest in order to compute the
genuine match score distribution. Note that very few latent
fingerprints from the same finger are available at the crime
scenes and legacy fingerprint databases also have only few
sample images per finger. In a recent publication, Neumann et
al. [36] further developed a framework for incorporating the
finger digit information (index, middle, ring, little, or thumb)
in estimating the evidential value based on the likelihood ratio.

A notable difference among the various LR approaches
published is the method used for estimating the genuine and
impostor densities. In [34], a kernel approach was used to
estimate the genuine and impostor score densities whereas, in
[33], a mixture of Gaussians was used. In [35], a combination
of exponential and beta functions of the score values was
used to compute the likelihood ratio. Egli et al. [23] used
Weibull model for genuine score distribution to accommodate
the limited availability of multiple samples from the same
finger. For the impostor score distribution, they used the log-
normal model.

Tables I and II summarize the different techniques proposed
to evaluate the evidential value of fingerprints based on feature
modeling and empirical approaches, respectively.

III. NMP: THE EVIDENCE OF A FINGERPRINT
COMPARISON

Non-match probability (NMP) is an intuitive quantity that
captures the evidence associated with a fingerprint comparison.
Given a pair of fingerprints, or their match score, NMP
measures the probability that a non-mate decision made for
the pair is correct. Mathematically, NMP for a match score s
between two fingerprints is given by

NMP(s)=P(I|s) =1— P(G|s) “)
where I and G correspond to impostor and genuine pair class,

respectively. Note that NMP follows a colloquial use of prob-
ability. An NMP value of 10~% implies a chance of one in a

million that the given pair of prints does not belong to the same
finger. Further, the range of valid values for NMP is bounded
by the unit interval [0, 1] with a probabilistic interpretation.
An NMP value of 0 indicates that the fingerprint pair, i.e., a
latent and rolled pair under consideration is definitely a mate
whereas a value of 1 indicates that the pair is definitely a
non-mate. The relationship between the match score s and
its associated NMP value can be graphically represented by a
plot, called the NMP-curve (see Figure 2).

Equation (4) provides a compact mathematical representa-
tion of the NMP, but a direct computation of NMP using this
equation is not feasible due to the large number of distinct
possible match score values. However, applying the Bayes
theorem makes the computation of NMP tractable:

P(s|)P(I)
(s|[)P(I) + P(s|G)P(G)

The procedure for computing P(s|G) and P(s|I) is detailed
in Section IV-A. Note that in eq. (4) the prior probabilities for
genuine and impostor classes were implicit in the definition of
P(I|s) and P(G|s), but in eq. (5), the two prior probabilities,
namely P(G) and P(I), are explicit and reflect any additional
evidence that may be available for specific matching scenarios
[49]. This is one of the strengths of the NMP measure
compared to LR and PRC measures. Further, it is easy to
incorporate prior information into an NMP value that has been
computed with equal priors using the following equation:

B NMP x P(I)
 NMP x P(I)+(1—-NMP) x P(G)

where NM P, is the NMP value with priors incorporated.
The importance of incorporating prior information can be
illustrated by a situation where two latent fingerprints are
captured from a crime scene with one fingerprint on the
weapon used in the crime and the other on a stray object.
If the fingerprint on a stray object matches with the suspect,

NMP(s) = P(Ils) = 5 (5)

NMP, (6)



it is more likely that the fingerprint on the weapon will match
the suspect. This information can be incorporated as prior
probability while computing the NMP value associated with
this comparison. Note that one of the factors determining this
prior probability would be the probability that the multiple
latent fingerprints belong to the same person. See [43] for an
analysis of latent to latent capabilities of available fingerprint
matchers.

It is important to note that NMP can be computed from the
match score output by any fingerprint matcher. Furthermore,
the following equations can be used to compute the NMP
values given LR and PRC values:

PRC(s) x P(I)
NMP() = prem <P+ PGOPG
P(I)

NMPG) = ST LREPG) ©

The above expressions require estimates of densities P(G),
P(I), and P(s|G) i.e. the prior values and the genuine score
distribution. Note that the computation of NMP from LR (and
vice-versa) does not require any density estimation. In fact,
computation of LR can be considered as an intermediate step
in computation of the more intuitive NMP value.

A. The Extended NMP

The image characteristics play a major role in determining
the evidential value of a fingerprint comparison. Consider
two different pairs of non-mate fingerprints both with the
same match score, but with fingerprints in one pair having
significantly poor image quality compared to fingerprints in
the other pair. While one may be able to decide with certainty
that the good quality pair belongs to the impostor class, similar
confidence may not be present in making a decision for the
poor quality pair. It is thus natural to assign different NMP
values to these two fingerprint pairs. A similar effect may
also be observed when considering other fingerprint image
characteristics such as the number of minutiae and size of the
fingerprint. We thus extend the definition of NMP to take these
characteristics into account. The mathematical expression of
the extended NMP is given by:

NMP(®y, 1,) = P(I|®y, 1,) )

where f; and f, represent the two fingerprints being compared
and ®y ;, is the set of covariates that can be computed
from f; and fo such as image quality, number of minutiae,
their match score, etc. Based on eq. (9), an NMP-curve can
be obtained by computing the values of NMP(®y, ) for
different values of match score s while keeping the remaining
elements of ®; r fixed based on a specified criteria. Note
that a very restricted criteria is equivalent to estimation of
the multivariate NMP function in eq. (9) at a finer resolution.
However, it is important to maintain a sufficient number of
training fingerprint pairs satisfying the given criteria for a
reliable estimation of the NMP values. Section IV-B details
the various experiments illustrating the effect of different
fingerprint characteristics on the resulting NMP values.

B. Conclusiveness: The Significance of NMP-based Evidence

It is important to quantify the significance of a forensic
evidence for its proper acceptance in a court of law. We
measure the significance of an NMP value using a quantitative
measure, called the conclusiveness. The conclusiveness of a
given NMP value measures the extent to which it deviates
from a completely equivocal value of 0.5. The conclusiveness
(7y) for a given NMP value is computed as:

v =|NMP —0.5] (10)

The concept of conclusiveness can also be extended to a
training database of match scores used to generate an NMP-
curve. Conclusiveness of a database measures the aggregate
discriminative information provided by the associated match
scores. It also indicates the closeness of the shape of NMP-
curve to a step function. The conclusiveness of an NMP-curve
is defined as:

-2 > 105 — NMP(s)| (11)
‘S| sesS
where S is the set of match scores used to construct the NMP-
curve. Note that the value of conclusiveness is in the range
[0,1] and is invariant to any translation/scaling of the match
scores.

C. Simulation of Latent Fingerprints

Databases of latent prints are scarce and seldom large
compared to the available full fingerprint databases. The only
latent-full fingerprint database available for public use, that
we are aware of, is the NIST Special Database-27 which
contains only 258 latent-full print pairs. On the other hand,
databases containing thousands of full-full print pairs are
available; e.g. the NIST Special Database-14 contains 27, 000
full fingerprint pairs. Due to this paucity of latent-full print
databases, we simulate latent fingerprints by cropping small
regions from the full fingerprints. In order to validate the use
of cropped fingerprints as a substitute for latent fingerprints,
we compare the associated NMP-curves generated using a
coarsely quantized set of match score values. The resulting
NMP-curve is expected to be more reliable due to relatively
larger number of samples used to compute each point on the
curve. See Section IV-D for more details.

D. The Complete Framework

We present a step-by-step procedure that can be followed
by a latent examiner to estimate the NMP value of a given
latent-full print pair as follows.

o Simulate a large number of latent fingerprints using any
available full fingerprint database by cropping regions
of different sizes, quality, and number of minutiae. If
sufficiently large number of latent fingerprints and their
known mates are available such that the required NMP
values can be reliably estimated, this step can be avoided.

o Partition the available set of (simulated) latent-full print
pairs based on various fingerprint image characteristics
(e.g., image quality and size); compute NMP-curves for
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Fig. 4. A schematic diagram for computing the NMP value for a latent-
full print pair of interest based on the NMP-curve obtained from a training
database of (simulated) latent-full print pairs.

each partition. An effective partitioning of the database
ensures that a number of critical covariates are considered
and each partition has a sufficient number of latent-full
print pairs. Note that the partitions may not be exclusive.
The goodness of a partition can be computed based on
conclusiveness.

o Given a latent-full print pair of interest, select an ap-
propriate NMP-curve based on the covariates used to
partition the database.

o Use the match score for the given latent-full print pair
to select the NMP value from the associated NMP-curve.
The variance of the NMP value is obtained using the
procedure detailed in Section IV-A.

Figure 4 shows a schematic diagram for computing the
NMP value for a latent-full print pair of interest based on the
NMP-curve obtained from a training database of simulated
latents. Note that the size of training database and the thus
the amount of computation required depends on the precision
of the NMP value required in a trial. Further, no manual
intervention is required in the above procedure.

IV. EXPERIMENTS

We use two full (rolled or plain) fingerprint databases
(NIST Special Database-14 [10] and the Michigan State Police
database [8]) and four latent fingerprint databases (NIST

Database Type Size
. Two rolled impressions for
NIST SD 14 full-full pairs 27,000 fingers
. Plain and rolled impressions for
MSP DB full-full pairs 144, 186 fingers
NIST SD 27 | latent-full pairs Latent and rolleq impressions for
258 fingers
WVU DB latent-full pairs Latent and rolled impressions for
449 fingers
CMC DB latent-full pairs Latent and rolled impressions for
134 fingers
RS&A DB latent-full pairs Latent and rolled impressions for
200 fingers

TABLE III
DETAILS OF THE TWO FULL FINGERPRINT AND FOUR LATENT
FINGERPRINT DATABASES USED IN OUR EXPERIMENTS.

Special Database-27 [10], the West Virginia University (WVU)
latent database [9], the CMC latent database [11], and the
RS&A latent database [12]) in our experiments. The NIST
Special Database-14 contains two rolled impressions for each
of the 27,000 different fingers whereas the Michigan State
Police database contains one plain and the corresponding
rolled impression for each of the 144,186 different fingers.
The NIST Special Database-27, the WVU latent database, the
CMC latent database, and the RS&A latent database contain
258, 449, 134, and 200 latent fingerprints, respectively, along
with their mated full prints. Table III lists the characteristics
of the different databases we have used and Figure 5 shows
sample fingerprint images from these five different databases.

Fig. 6.  Cropped regions of size (b) 400 x 400, (c) 300 x 300, and (d)
200 x 200 from a full fingerprint (a).

In order to simulate partial fingerprints from full fingerprint
images, we cropped subimages of different sizes (400 x 400,
300 x 300, and 200 x 200) from the full fingerprint images (see
Figure 6). For cropping purposes, we first calculate the region
of interest (ROI) of the full fingerprint [27] and then randomly
select four points inside the ROI to be used as the centers of
the cropping window. We crop four partial images of three
different sizes from each full fingerprint. Figure 6 shows a
full fingerprint and its cropped images of three different sizes.

These partial fingerprints were matched to the full finger-
prints (not used in cropping) to obtain a set of 684, 744 genuine
scores for each of the three different sized cropped prints.
To limit the number of impostor scores in our analysis, we
randomly selected 2,000 cropped images and compared them
with randomly selected non-mate full fingerprints to obtain
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Sample latent-full print pairs from the two full fingerprint and four latent databases: (a) NIST SD-14 (two rolled impressions from the same finger),

(b) Michigan State Police database (a rolled and a plain impression of the same finger), (c) NIST SD-27 (latent and its rolled mate), (d) WVU latent database
(latent and its rolled mate), (¢) CMC latent database (latent and its rolled mate), and (f) RS&A latent database (latent and its rolled mate).

2 million impostor scores. Fingerprint feature extraction and
matching were performed using two different matchers (COTS
1 and COTS 2). COTS 1 outputs match scores in the range
[0,1765] whereas COTS 2 outputs match score in the range
[0,21083].

A. Density Estimation

We follow three main approaches to estimate the likelihoods
P(s|G) and P(s|I): Histogram, kernel density estimation, and
parametric density estimation. In the case of the histogram-
based technique, the genuine and impostor score histograms
are separately normalized prior to their use as probability
densities. In the case of kernel density estimation, a Gaussian
kernel with bandwidths of 2.0 and 1.5, respectively, was used
to estimate the genuine and impostor distributions for the
COTS 1 matcher (using the ksdensity function in MATLAB).
For the COTS 2 matcher, a bandwidth of 2.0 was used to
estimate both the genuine and impostor densities. These pa-
rameters used in density estimation were empirically selected
so that the density estimates are as close to the corresponding
match score histograms as possible. In the case of parametric
density estimation, Weibull distribution was used to model the
genuine match scores and log-normal distribution was used
to model the impostor match scores. The choice of these
parametric distributions follows [23].

We compute the bias and variance of the NMP-curves as
a means of comparison between various density estimation
methods. The variance of an NMP-curve can be computed as

1 1< S

¥ = & > 5 > (NMPy(s) - NMP(s))? (12)
seS b=1

where N M P, corresponds to the NMP-curve associated with

the bth bootstrap sample, NM P corresponds to the mean

NMP-curve obtained by averaging the NMP-curves corre-

sponding to B bootstrap samples and S is the set of match

scores used to construct the NMP-curve. In this experiment,
100 bootstrap samples (B = 100) and partial prints of size
400 x 400 were used. The variances of the NMP-curves asso-
ciated with the three density estimation methods are essentially
the same with values of 0.0016, 0.0011, and 0.0008, for his-
togram, kernel density, and parametric estimates, respectively.

The bias of the kth method of density estimation is com-
puted as

e = |T19| > INMPy(s) = NMPy(s)|

ses

13)

where N M Py, corresponds to the NMP-curve obtained using
the kth method for density estimation and N M P, is the NMP-
curve obtained using the histogram-based density estimate.
S is, again, the set of scores used to construct the NMP-
curve. The bias for parametric-density-based NMP estimates
and kernel-density-based estimates are 0.0161 and 0.0003,
respectively (see Figure 7). Due to this large difference in the
bias, we use the kernel-density-method-based NMP estimates
in further experiments.

B. Analysis of Extended NMP

Here, we study the effect of different fingerprint covariates
on the associated NMP-curves.

1) Effect of image size: It is expected that larger partial
fingerprints are more discriminative than smaller partial fin-
gerprints. We verified this by obtaining three different NMP-
curves, one for each partial print size. Figure 8 shows the
NMP-cuves for partial prints of size 200 x 200, 300 x 300,
and 400 x 400. There is a direct correlation between the size
of the partial print and the conclusiveness of the associated
NMP-curve.

2) Effect of number of minutiae: It is expected that if
there are fewer minutiae in the partial fingerprint, the match
score will be less conclusive. To verify this hypothesis, we
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0.9 — histogram density based NMP print size scores scores siveness
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CONCLUSIVENESS OF THE NMP-CURVES BASED ON IMAGE SIZE AND
Fig. 7. A comparison of NMP-curves obtained using three different density NUMBER OF MINUTIAE.

estimation methods. The NMP-curve obtained using the parametric density
estimates deviates largely from that obtained using histogram-based density
estimates. These results are based on 400 x 400 partial prints using COTS
1 matcher. Unless specified otherwise, the results in this paper are obtained
using COTS 1 matcher.
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Fig. 8. NMP-curves for various sizes of partial prints. The conclusiveness
values for 200 x 200, 300 x 300, and 400 x 400 partial prints are 0.988,
0.991, and 0.994, respectively. As expected, the conclusiveness values are
directly proportional to the size of the partial prints.

divided the partial prints obtained from the two databases
(NIST SD 14 and MSP DB) into three groups, each having
small, medium, and large number of minutiae. The range of
minutiae used for partitioning the database into small, medium,
or large number of minutiae category are database specific.
This ensures that there are essentially the same number of
genuine pairs among different partitions. The conclusiveness
associated with different partitions based on the number of
minutiae are shown in Table IV. As expected, for a given
partial print size, the conclusiveness of the evidential value
is higher for larger number of minutiae. Figure 9 shows the
corresponding NMP-curves for partial prints of size 200 x 200.

3) Effect of image quality: Image quality is a well known
covariate of fingerprint matching accuracy [39]. To investigate
the effect of image quality on NMP, we partitioned the genuine
and impostor match scores into two categories: Good and bad.
The good category corresponds to those fingerprint pairs where
both the constituent fingerprints are at least of good quality
according to the NIST Fingerprint Image Quality (NFIQ)
(NFIQ < 3). The remaining fingerprint pairs are assigned to
the bad category. Table V lists the number of genuine and
impostor pairs used in the analysis. Note that NFIQ assigns
one of five quality levels (excellent (1), very good (2), good
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Fig. 9. NMP-curves for 200 x 200 partial prints with small (0-11),

medium (12-16), and large (17-58) number of minutiae. The corresponding
conclusiveness values are shown in Table IV.

(3), fair (4), and bad (5)) to a partial or full fingerprint.

The quality-based NMP-curves are shown in Figure 10.
As expected, the good quality fingerprint pairs provide more
conclusive NMP values than bad quality fingerprint pairs. For
the low match score values, the NMP value for the good
quality fingerprint pairs is higher than those corresponding to
poor quality fingerprints. This is because if the quality is poor,
it is more likely that genuine pairs could lead to low match
scores thereby reducing the NMP values corresponding to low
match scores.

C. Effect of Prior Information

The prior values, P(G) and P(I), of the genuine and
impostor classes also significantly affect the NMP estimates
as can be inferred from eq. (6). Figure 11 depicts the rela-
tionship between an NMP-curve and the associated values
of P(I). Prior values favoring impostor distribution (higher
P(I) values) increase the NMP values whereas those favoring
genuine distribution (lower P(I) values) decrease the NMP
values. Note that prior values allow us to take into account
additional information not available in the scores in making a
match/non-match decision.



Partial print size # Genuine scores # Impostor scores
Good Bad Good Bad
200 x 200 594,793 89,951 1,591,577 | 408,423
300 x 300 592,468 92,276 1,585,496 | 414,504
400 x 400 580,214 | 104,530 | 1,563,917 | 436,083
TABLE V

NUMBER OF GENUINE AND IMPOSTOR PAIRS USED TO CONSTRUCT THE
NMP-CURVES ACCORDING TO DIFFERENT IMAGE QUALITY AND IMAGE
SIZES.
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Fig. 10. NMP-curves for the good and bad quality fingerprint pairs for
200 x 200 partial prints. The conclusiveness of NMP curves corresponding
to good and bad quality pairs is 0.9894 and 0.9854, respectively.

D. NMP Values for Latent Fingerprints

In practice, the need for estimating the evidential value
of a fingerprint comparison usually arises during a forensic
examination of a latent fingerprint. It is thus important to
validate the proposed technique for real latent fingerprints.
Given a latent-full print pair, a database of partial-full print
pairs is assigned to it from which the associated NMP value
can be reliably obtained. The NMP-curve obtained from this
partial-full print database is required to be very similar to
the NMP-curve possibly obtained from a database of latent-
full pairs that have similar characteristics as the latent-full
fingerprint of interest. In this experiment we used the four
latent databases: NIST SD-27, WVU latent database, CMC
latent database, and RS&A latent database. In addition to the
mated full fingerprints available in the four latent databases,
the NIST SD-14 was also used as a background database.
In our experiments, all the latent fingerprints were manually
marked for minutiae whereas minutiae were automatically
extracted from the full fingerprint images. Given this data
we obtained a set of 1041 genuine and 2 million impostor
scores using the two COTS matchers: COTS 1 and COTS 2.
A fusion of the match scores obtained by these two matchers
using a sum rule based on min-max normalization [29] was
also used. See Figure 13 for a comparison of the NMP-curves
obtained using the two individual matchers and their score
fusion. As expected, the conclusiveness of the NMP-curve
using fusion of the two COTS is higher than the individual
COTS, demonstrating the benefit of fusion.

Note that the number of genuine scores (1041) in this
experiment is much smaller compared to the number of
genuine scores (684, 744) obtained using the partial-full print
matching experiment. Thus, to obtain a reliable estimate of the
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Fig. 11. Effect of impostor prior values, P(I), on NMP-curves for 200 x 200
partial prints. As P(I) increases, the NMP value also increases monotonically.
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Fig. 12. Comparison between the NMP-curves obtained based on real latents
and simulated latents with different number of minutiae.

NMP, we divided the match score values into only three bins
such that each bin has an equal number of genuine scores.
The genuine and impostor probabilities were then computed
for these bins in order to obtain an NMP-curve. The NMP-
curve for the partial-full print pairs was also obtained using
three bins for a fair comparison. Figure 12 shows a comparison
of the NMP-curves associated with real latents to the NMP-
curves associated with partial fingerprints with different ranges
of the number of minutiae. It can be observed that the NMP-
curves for the real latents that have large number of minutiae
closely follow the NMP-curve for the partial prints of size
200 x 200 having large number of minutiae for the middle
range of match scores i.e. [25, 82]. The difference between
the corresponding NMP values is only 0.016. For the match
scores in the range [0, 24], the NMP values for the partial-full
print pairs are, however, higher than the NMP values for the
latent-full print pairs. This is probably due to the generally
lower match scores for the latent-full print pairs. In light of
these promising results, it is expected that with a more careful
partitioning of the partial-full and latent-full print databases,
it may be possible to obtain even more similar NMP-curves
for these two scenarios.

Figure 14 shows mated latent-full print pairs from the four
latent databases used in our experiments. The corresponding
values for sum-fusion-rule-based match scores, the NMP, PRC,
and LR values are provided in Table VI. Note that the LR
values that range in [0.029, 9.9 x 10] are difficult to interpret



Image pair Match score # matched minutiae NMP value LR value PRC value
(a) 0.023 5 0.945+1.02 x 103 0.029 £ 0.002 0.187
(b) 0.162 16 25x10°°+28x10~° 2x 107 £2.4 %103 1.82 x 10~ 15
(c) 0.029 2 0921 +1.2x 103 0.043 £ 0.004 0.231
(d) 0.169 11 1.1x10°5+22x%x10° [ 45x 107 +£6.8x10% | 2.92x 109
B) 0.046 3 0.850+2.4 x 10~ 3 0.088 £ 0.006 0.106
® 0.188 12 72x1077+£3.6x 1078 | 6.9 x 10° £2.2 x 10° | 4.74 x 10~ 10
(2) 0.051 6 0.832+2.7x 1073 0.101 £ 0.006 0.092
(h) 0.235 13 5.0x 10785 £2.8x 1077 | 9.9 x 105 £6.3 x 10° | 7.94 x 1010

TABLE VI
MATCH SCORES (SUM FUSION OF COTS 1 AND COTS 2 MATCH SCORES), NUMBER OF MATCHED MINUTIAE, NMP AND LR VALUES ALONG WITH 95
PERCENTILE CONFIDENCE INTERVAL, AND THE PRC VALUES COMPUTED FOLLOWING THE MODEL PROPOSED IN [38] CORRESPONDING TO THE SIX
LATENT-FULL PRINT PAIRS SHOWN IN FIGURE 14. THESE VALUES ARE BASED ON THE PARTIAL-FULL PRINT DATABASE WITH PARTIAL PRINTS OF SIZE
200 x 200. NOTE THAT SINCE THE NMP AND LR VALUES NOTED IN THIS TABLE ARE MEAN VALUES BASED ON 100 BOOTSTRAP SAMPLES, THEY DO
NOT EXACTLY FOLLOW THE TRANSFORMATION NOTED IN EQ. (8).
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Fig. 13. NMP-curves for two different matchers (COTS 1 and COTS 2) and
their fused score for 200 x 200 partial prints. The conclusiveness values for
COTS 1, COTS 2 and their min-max-normalization-based sum score-fusion
are 0.988, 0.989, an 0.991, respectively. In order to plot the three NMP curves
on the same plot, the corresponding impostor match scores are normalized to
the same minimum and maximum values.

here. Further, a PRC value of 1.8 x 10715, as noted in
Table VI, can not be validated since it would require at least
1015 impostor matches. NMP values, on the other hand, are
empirically obtained and confidence in these values can be
easily computed.

We also computed the histogram of NMP values cor-
responding to the genuine matches from the four latent
databases using the two COTS matchers and their min-max-
normalization-based sum score fusion. The NMP values are
measured using the partial fingerprints of size 200 x 200. See
Figure 15. Note that most of the NMP values are close to
0, indicating that these values correspond to genuine pairs.
Further, note that the sum fusion rule in general leads to greater
concentration of NMP values towards 0 and the concentration
of NMP values at the completely equivocal value of 0.5 is
reduced especially compared to the COTS 1 matcher. The
noticable concentration around 0.8 corresponds to the poor
quality latent that generated very low matching score.

E. NMP Values for Top-k Retrievals

Note that the analysis of evidential value performed till this
point corresponds to the scenario when a latent fingerprint
is directly compared with a full fingerprint. However, in
practice, a latent fingerprint obtained from a crime scene is first
automatically matched with a large database of full fingerprints
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Fig. 14. Mated latent-full print pairs from the four latent databases. (a) & (b)
latent-full pairs from NIST SD27, (c) & (d) latent-full pairs from the WVU
latent database, (e) & (f) latent-full pairs from the CMC latent database, and
(g) & (h) latent-full pairs from RS&A latent database. The corresponding
match scores, LR, PRC and NMP values for these fingerprint pairs are shown
in Table VI.

and only the top-k retrieved full fingerprints are considered for
further matching. We simulated this scenario while estimating
the evidential value of latent-full fingerprint comparison. For
this experiment, we matched randomly selected 10,000 query
partial fingerprints of size 200 x 200 with the same number
of full fingerprint templates. For each query, only the top 100
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Fig. 15. Comparison of histograms of NMP values corresponding to match scores of true mates obtained using the sum score fusion of two COTS matchers

for (a) NIST SD-27, (b) WVU latent database, (c) CMC latent database, and (d) RS&A latent database. COTS 2 failed to generate templates for 7 latent
images from NIST SD-27 and 29 images from the WVU latent database. The NMP values are based on partial-full print training database with partial prints

of size 200 x 200.

best matches were used in estimating the NMP-curve. The
corresponding NMP-curve along with the NMP-curve obtained
under direct comparison with all the full prints is shown in
Figure 16. Note that the top-k NMP-curve is shifted to the
right compared to the NMP curve with direct comparison
score. This is because the match score corresponding to the
top-100 retrievals are, in general, expected to be higher than
the original distribution of match scores. Further, the top-100
retrieved fingerprints are in general of good quality leading to
improved conclusiveness. We also estimated the NMP-cuve in
a similar manner for the real latent fingerprints as well. The
corresponding curve is shown in Figure 17.

V. SUMMARY

In light of the empirically demonstrated non-zero error rates
of latent fingerprint matching, and instances of critical errors
leading to undue incarceration of innocent individuals, it is
crucial to establish the evidential value of a latent fingerprint
comparison. We present a framework to capture the evidence
of a given fingerprint match score in terms of non-match
probability (NMP), namely, the posterior probability that the
pair of fingerprints being compared are non-mates. We also
studied the variation of NMP values associated with fingerprint
databases having specific fingerprint characteristics (image
quality, size, and number of minutiac). The NMP values
obtained from different partitions of a fingerprint database
were compared using a measure, called the conclusiveness
that estimates the significance of evidence associated with an
NMP value. Due to paucity of a large training set of latents, we
resort to partial prints obtained by cropping full fingerprints to

0.9F =t
Tosl ™ ™ |
o7 N * |
< .

205" :
o
50.4f j
s y
Eo3 \

C
2020 [oo Direct comparison \
0.1l [==Top 100 retrievals N, \

0 L ‘~.~_ ~o
10° 10' 10°
Match score (log scale)

Fig. 16. The NMP-curves for the top-100 retrieved templates. The blue
NMP-curve is constructed based on the top 100 retrieved templates when
200 x 200 partial fingerprints are matched against a database of 10,000
full fingerprints. The red curve corresponds to the direct-comparison-based
NMP-curve obtained using 200 x 200 partial fingerprints.

simulate latents and demonstrate the effectiveness of this sim-
ulation. Two full fingerprint databases, four latent databases
and two state-of-the-art fingerprint matchers were used in the
experiments. We believe the proposed measures of evidential
value will allow forensic examiners to present evidence based
on latent comparisons in courts of law on a firm footing.

Due to the generic nature of the proposed framework, a
number of future studies can be conducted. Below we list
some of these directions.

1) We plan to automatically determine the latent image
characteristics so that database can be appropriately
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Fig. 17. The NMP-curves for top-100 retrieved templates using latent
fingerprints. The green curve is the NMP-curve obtained based on the top-100
retrieved templates when 200 x 200 partial fingerprints are matched against a
database of 10, 000 full fingerprints. The red curve corresponds to the NMP-
curve obtained based on the top-100 retrieved templates when the real latent
fingerprints were matched against a database of 10,000 full fingerprints.

partitioned to arrive at the most conclusive estimates of
NMP values. Note that these characteristics also severely
affect the discriminative capacity of the matching score.
Such information can potentially allow design of better
ways to combine the outputs of multiple fingerprint
matchers leading to higher matching performance. It
may also be verified whether by conditioning on these
characteristics, the genuine and impostor match score
distributions will follow a simple probabilistic model.

2) There is a need to develop an NMP based evaluation
technique for matchers and compare it with the tradi-
tional Receiver Operating Characteristic (ROC).

3) As one of the major underpinnings of the proposed
framework is the empirical validation of an analytical
model e.g. the kernel density estimation technique for
estimating genuine and impostor match score distri-
butions. We plan to conduct a thorough review and
proper selection among available empirical validation
procedures.

4) In eq. 7 we show that NMP values can be computed
based on the PRC values obtained using a feature mod-
eling approach. We plan to conduct thorough evaluation
of the existing feature modeling based approaches under
the proposed NMP framework.

5) We would also like to explore the avenue of reliably
simulating latent fingerprints for better estimates of
NMP.

6) We also plan to consider additional matching scenarios
similar to the one described in [21], where the difference
between the match scores corresponding to the best
retrieval and the average match scores of the top 2 to
10 retrievals is used as the new match score.

7) We would also like to explore the possibility of combin-
ing evidence from multiple latent fingerprints captured
from a crime scene under the proposed framework.

We are also making attempts to obtain a large database of
latents and mated rolled prints to form a larger and diverse
training set. Availability of a larger database will significantly
improve our ability to perform a more thorough empirical

validation.
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