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Abstract

We present a simple but effective method for auto-
matic latent fingerprint segmentation, called SegFinNet.
SegFinNet takes a latent image as an input and outputs a
binary mask highlighting the friction ridge pattern. Our al-
gorithm combines fully convolutional neural network and
detection-based approaches to process the entire input la-
tent image in one shot instead of using latent patches. Ex-
perimental results on three different latent databases (i.e.
NIST SD27, WVU, and an operational forensic database)
show that SegFinNet outperforms both human markup for
latents and the state-of-the-art latent segmentation algo-
rithms. We further show that this improved cropping boosts
the hit rate of a latent fingerprint matcher.

1. Introduction

Latent fingerprints, also known as fingermarks, are fric-
tion ridge impressions formed as a result of someone touch-
ing a surface, particularly at a crime scene. Latents have
been successfully used to identify suspects in criminal in-
vestigations for over 100 years by comparing the similar-
ity between latent and rolled fingerprints in a reference
database [12]. Latent cropping (segmentation) is the crucial
first step in the latent recognition algorithm. For a given set
of latent enhancement, minutiae extraction, and matching
modules, different cropping masks for friction ridges can
lead to dramatically different recognition accuracies. Un-
like rolled/slap fingerprints, which are captured in a con-
trolled setting, latent fingerprints are typically noisy, dis-
torted and have low ridge clarity. This creates challenges
for an accurate automatic latent cropping algorithm.

We map the latent fingerprint cropping problem to a se-
quence of computer vision tasks as follow: (a) Object de-
tection [17] as friction ridge localization; (b) Semantic seg-
mentation [14] as separating all possible friction ridge pat-
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Figure 1. SegFinNet with visual attention mechanism for two dif-
ferent input latents, one per row: (a) Focused region from Visual
attention module (section 3.2); (b) Original latents overlaid with a
heat map showing the probability of occurrence of friction ridges
(from high to low); (c) Binary mask (boundary marked in red)
used in subsequent modules: enhancement, feature extraction, and
matching.

terns (foreground) from the background; and (c) Instance
Segmentation [8] as separating individual friction ridge pat-
terns in the input latent by semantic segmentation.

Object segmentation can be based on two different ap-
proaches: (i) fully convolutional neural networks (FCN)
based [14] and (ii) object detection based [8]. FCN based
segmentation consists of a series of consecutive receptive
fields in its network and is built on translation invariance.
Instead of computing general nonlinear functions, FCN
builds its nonlinear filters based on relative spatial infor-
mation in a sequence of layers. On the other hand, detec-
tion based segmentation first finds a core and then branches
out in parallel to construct pixel-wise segmentation from re-
gions of interest returned by previous detection.

Our proposed method, called SegFinNet, inherits the
idea of instance segmentation and utilizes the advantages
of FCN [14] and Mask-RCNN [8] to deal with the la-
tent fingerprint cropping problem. SegFinNet uses Faster
RCNN [17] as its backbone while its head comprises of
atrous transposed convolution layers [4]. We utilize a com-



Study Method Database Results Comments

Choi et al. [5] Patch orientation and
ridge frequency

NIST SD27 and WVU;
Background: 32K images

NIST SD27: 14.78% MDR; 47.99% FDR (+)

WVU: 40.88% MDR; 5.63% FDR
Matching: 16.28% on NIST SD27 and
35.1% on WVU with COTS tenprint
matcher (*)

Relies on input image quality
and orientation estimation

Zhang et
al. [19]

Adaptive directional
total variance model

NIST SD27 (1,000 dpi);
Background: 27K images

14.10% MDR; 26.13% FDR;
Matching: 2% on NIST SD27 with Verifin-
ger SDK 6.6

Relies on orientation field and
orientation coherence estima-
tion

Ruangsakul et
al. [18]

Fourier Subbands us-
ing spatial-frequency
information

NIST SD27;
Background: 27K images

31.90% MDR; 32.50% FDR;
Matching: 14% on NIST SD27 with Ver-
ifinger SDK 6.6

Handcrafted subband features;
dilation and erosion used to fill
gaps and eliminate islands

Cao et al. [3]
Patch classification
based on learned
dictionary

NIST SD27 and WVU;
Background: 32K images

Matching: 61.24% on NIST SD27 and
70.16% on WVU with a COTS matcher (*)

Heuristic patch classification;
relies on learned dictionary
quality and convex hull to get
smooth mask

Liu et al. [13]

Linear density on a set
of line segments from
the texture component
of latent images

NIST SD27;
Background: 27K images

13.32% MDR; 24.21% FDR;
Matching: 22% on NIST SD27 with Ver-
ifinger SDK 4.3

Use dilation and erosion for
post-processing and use convex
hull to get smooth mask

Zhu et al. [20]
Neural network as bi-
nary patch based clas-
sifier

NIST SD27;
No background reported

10.94% MDR; 11.68% FDR;
No matching accuracy reported

Relies on neural network clas-
sifier; patch by patch process-
ing is time consuming

Ezeobiejesi et
al. [6]

Patch-based stack of
restricted Boltzmann
machines

NIST SD27, WVU, and
IIITD;
No background reported

NIST SD27: 1.25% MDR; 0.04% FDR (#);
WVU: 1.64% MDR; 0.60% FDR;
IIITD: 1.35% MDR; 0.54% FDR;
No matching accuracy reported

Depends on the stability of
classifier; time consuming

Proposed
approach

Automatic segmenta-
tion based on FCN and
detection based fusion

NIST SD27, WVU, and a
forensic database;
Background: 100K im-
ages

MDR, FDR, and IoU metrics;
Matching: 70.8% on NIST SD27 and
71.3% on WVU with a COTS matcher;
Matching: 12.6% on NIST SD27 and
28.9% on WVU with Verifinger SDK 6.3
on 27K images

Non-patch based approach;
non-warp region of interest;
visual attention mechanism;
voting masks technique

(+) MDR: Missed Detection Rate; FDR: False Detection Rate; IoU: Intersection Over Union
(*) COTS: Commercial off the shelf; The authors did not identify which COTS was used.
(#) This work used a subset of dataset for training and their metrics are defined on patches.

Table 1. Published works related to latent fingerprint segmentation.

bination of a non-warp region of interest technique, a fin-
gerprint attention mechanism, a fusion voting and a feed-
back scheme to take advantage of both the deep information
from neural networks and the shallow appearance of finger-
print domain knowledge (Figure 1). In our experiments,
SegFinNet shows a significant improvement not only in la-
tent cropping, but also in latent search (see Section 4.6 for
more details).

2. Related work
In latent fingerprint recognition literature, it is a common

practice to use a patch based approach in various modules,
(i.e. minutiae extraction [16] and enhancement [19, 3]). In
such cases, the input latent is divided into multiple over-
lapping patches at different locations. The latent segmen-
tation module of latent recognition systems has also been
approached in this patch based manner, both with con-
volutional neural networks (convnet) and non-convnet ap-
proaches. Table 1 concisely describes these methods re-
ported in the literature.

Non-convnet patch-based approaches: Choi et al. [5]
constructed orientation and frequency maps to use as a ref-

erence in evaluating latent patches. Essentially, this is a
dictionary look up map aimed at classifying each individ-
ual patch into two classes. Zhang et al. [19] used an adap-
tive directional total variance model which also relies on
the orientation estimation. From the information in the
spatial-frequency domain, Ruangsakul et al. [18] proposed
a Fourier subband method with necessary post-processing
to fill gaps and eliminate islands. Cao et al. [3] classi-
fied patches based on a dictionary which depends on dictio-
nary quality and needs post-processing to make the masks
smooth. Liu et al. [13] utilized texture information to de-
velop linear density on a set of line segments but requires a
post-processing technique.

The features used in all the above methods are “hand-
crafted” and rely on post-processing techniques. With the
success of deep neural networks in many domains, latent
fingerprint cropping has also been tackled using them.

Convnet patch-based approaches: Zhu et al. [20]
used a classification neural network framework to classify
patches. This approach is similar to existing non-convnet
methods except it simply replaces hand-crafted features by
convnet features. Ezeobiejesi et al. [6] used a stack of re-
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Figure 3. General pipeline of patch-based approaches.

stricted Boltzmann machines in an idea similar to [20].
There are a number of disadvantages to patch-based ap-

proaches. (i) Patch-based methods take significant time to
compute since they need to process every patch into the
framework (Figure 3). Typically, a patch size is around
96 × 96. Thus, on average there are, approximately 500
patches in a latent fingerprint in the NIST SD27 dataset.
That means patch-based approaches process 500 subimages
instead of one. (ii) Patch-based approaches cannot separate
multiple instances of friction ridge patterns, i.e. more than
one latent (overlapping or non-overlapping) in the input im-
age.

Our work combines fully convolutional neural network
and detection based approaches for latent fingerprint seg-
mentation to process the entire input latent image in one
shot. Furthermore, it also utilizes a top-down approach (de-
tection before segmentation) which can also be applied to

segmenting overlapping latent fingerprints. The main con-
tributions of this paper are as follows:
• A fully automatic latent segmentation framework,

called SegFinNet, which processes the entire input im-
age in one shot. It also outputs multiple instances of
fingermark locations.

• NonWarp-RoIAlign is proposed to obtain more pre-
cise segmentation while mapping region of interest
(cropped region) in the feature map to the original im-
age.

• Visual attention technique is designed to focus only on
fingermark regions in the input image. This addresses
the problem of “where to look”.

• Feedback scheme with weighted loss is utilized to em-
phasize the difference in importance of different objec-
tive functions (foreground-background, bounding box,
etc.)

• Majority voting fusion mask is proposed to increase the
stability of the cropped mask while dealing with differ-
ent qualities of latents.

• Experiments demonstrating that the proposed frame-
work outperforms both human latent cropping and
published automatic cropping approaches. Further-
more, the proposed segmentation framework, when in-
tegrated with a latent AFIS, boosts the search accuracy
on three different latent databases: NIST SD27, WVU,
and MSP DB (an operational forensic database).



Algorithm 1 SegFinNet latent fingerprint cropping
Input: Latent fingerprint image
Output: Binary mask

1: Generate different types of grayscale images.
2: procedure PROCESS EACH GRAYSCALE IMAGE
3: Feed the input image to Faster RCNN to obtain the

feature map together with the bounding boxes (coordi-
nates) of fingermarks and attention region candidates.

4: for each box in the candidate list do
5: Regard each box as a friction ridge image to

feed to FCN to obtain Visual attention region (section
3.2) and Voting scheme (section 3.4) results.

6: end for
7: end procedure
8: Fuse results to get the final fingermark probabilities.
9: Apply a hard-threshold to get binary mask for input la-

tent image.

3. SegFinNet
Based on the idea of detection-based segmentation of

Mask RCNN [8], we build our framework upon the Faster
RCNN architecture [17], where the head is a series of atrous
transposed convolutions for pixel-wise prediction.

Unlike previous patch-based approaches which used ei-
ther handcrafted features [18, 3, 13] or a convnet ap-
proach [20, 6], we feed the whole input latent image once
to Faster RCNN and process candidates foreground regions
returned by SegFinNet. This reduces the training time,
and avoids post-processing heuristics to combine results
from different patches. Figure 2 and Table 1 illustrate the
SegFinNet architecture in details.

3.1. NonWarp-RoIAlign

The RoIAlign module in Mask RCNN can handle the
misalignment problem1 while quantizing the region of in-
terest (RoI) coordinates in feature maps by using bilinear
interpolation on fixed point values [10]. However, it warps
the RoI feature maps into a square size (e.g. 96 × 96) be-
fore feeding to the upsampling step. This leads to further
misalignment and information loss when reshaping the ROI
feature map back to original size in image coordinates.

The idea of NonWarp-RoIAlign is simple but effective.
Instead of warping RoI feature maps into squared size and
then applying multiple deconvolution (upsampling) layers,
we only pad zero value pixels to get to a specific size. This
can avoid the loss of pixel-wise information when warp-
ing regions. We use atrous convolution [4] when upsam-
pling for faster processing and saving memory resources
(see Figure 2 for more visualization). The advantage of this

1Due to mapping each point in feature map to the nearest value in its
neighboring coordinate grid. We refer readers to [8] for more details.

method of upsampling is that we can deal with the multi-
scale problem with atrous spatial pyramid pooling proper-
ties and weights of atrous convolution can be obtained from
the transposed corresponding forward layer.

We also adopt the strategy of combining high-level lay-
ers with low-level layers [9, 4, 16] to get finer detail predic-
tion while maintaining high-level semantic interpretation as
multi-scale prediction.

3.2. Where to look? Visual attention mechanism

Latent examiners tend to examine fingermarks, directed
by the RoI, to identify the region of interest (see Figure 4).
Thus, by directing attention to a specific fingerprint, we can
eliminate unnecessary computation for low interest regions.

We reuse feature maps returned by Faster RCNN to lo-
cate the region of interest. Next, we train SegFinNet to learn
two classes: (i) attention region (fingermark region identi-
fied by a black marker by the examiner (Figure 2) and (ii)
fingermark. In the inference phase, a comparison between
returned the fingermarks’ location to the attention region is
used to decide which one needs to be kept using the fol-
lowing criterion: if the overlapping area between the finger-
print bounding box and the attention region is over 70%, the
bounding box is kept.

Our attention mechanism is intuitive, and it helps during
matching (see Section 4.6 for more details) because it elim-
inates background friction ridges which generate spurious
minutiae.

3.3. Feedback scheme

One issue in using a detection-based segmentation ap-
proach is that it segments objects based on candidates (RoI
returned by detector). Thus, a large proportion of pixels
in these bounding boxes belong to the foreground (finger-
marks) rather than the background. The need to have a new
loss function that can handle the imbalanced class problem
is necessary. Let D = {(xi, yi)}i=1,..,N be a set of N

Figure 4. Example images from MSP database (top row) and NIST
SD27 (bottom row) with RoI markup by a latent examiner (by
colored marker).



Figure 5. Different groundtruths for two latents in NIST SD27.
The groundtruth croppings shown in red, green, and blue are used
in Cao et al. [3], Ruangsakul et al. [18], and Zhu et al. [20], re-
spectively.

training samples, where xi is the input image and yi is its
corresponding groundtruth mask. SegFinNet outputs a set
of concatenated C masks 〈(xi, γi1), (xi, γi2), ..., (xi, γiC)〉
for each input xi. We create weights (wj , j = 1, .., C) for
each loss value to solve this problem.

Unlike most popular computer vision datasets that have
a significant number of pixel-wise annotated masks, there
is no dataset available in the fingerprint domain that pro-
vides pixel-wise segmentation. Hence, different published
studies have used different annotations (see Figure 5). Fur-
thermore, since the border of fingermarks is usually not well
defined, it leads to inaccuracies in these manual masks and,
subsequently, training error. To alleviate this concern, we
propose a semi-supervised partial loss that updates the loss
for pixels in the same class while discarding other classes
except the background.

Combining the two solutions together, let LM be the
segmentation (mask) loss which takes into account the pro-
portion of all classes in the dataset:

LM =
∑
j∈C

(
∑
i∈N

wjL (γij , yij) + λl(γij , yij)) (1)

where wj is the soft-max weight number of pixels on the
jth label, yij is corresponding mask label of the ith sam-
ple in the jth class, λ is regularization term, l(.) is cross-
entropy loss w.r.t. background, and L (.) is the per-pixel
sigmoid average binary cross-entropy loss as defined in [8].

In the training phase, we consider the loss function as
a weight sum of the class, bounding box, and mask loss.
Let Lall,LC ,LB ,LM be the total, class, bounding box, and
pixel-wise mask loss, respectively. The total loss for train-
ing is calculated as follows:

Lall = αLC + βLB + γLM (2)

We set α = 2, β = 1, γ = 2 to emphasize the im-
portance of the correctness of predicted class and pixel-
wise instance segmentation. We note that the mask loss,
LM is based on the Intersection over Union (IoU) crite-
ria [14, 8, 4].

3.4. Voting fusion masks

The effect of grayscale normalization. In the computer
vision domain, input images usually have intensity values
in a specific range. Thus, we can easily recognize, detect
or segment objects. However, the fingerprint domain differs
from most traditional computer vision related problems. In
particular, because of the noisy background and low con-
trast of the fingerprint ridge structure, mistakes can be eas-
ily made in detecting fingermarks. Motivated by the various
procedures used by forensic experts to “preprocess” images
when examining latent fingerprints, we tried different pre-
processing techniques on the original latent such as centered
gray scaled, histogram equalized, and inverse image.

Even though the original latent fingerprint is noisy, re-
moving noise via an enhancement algorithm prior to seg-
mentation [3, 19] is not advisable because texture informa-
tion may be lost. To make sure the segmentation result
is reasonable and invariant to the contrast of input image,
we propose a simple but effective voting fusion mask tech-
nique. Given an input latent, we first preprocess it to gen-
erate different types of grayscale images which are subse-
quently fed into SegFinNet to get the corresponding score
maps. The final score map is accumulated over different
grayscale inputs. Each pixel in the image has its own score
value. We set the threshold to K = 3, which means that
each pixel in the chosen region receives at least 3 votes from
the voting masks.

Although this approach seems to increase the computa-
tional requirement, it boosts the reliability of the resulting
mask while keeping the running time of whole system effi-
cient (see Section 4.5 for quantitative running time values).

4. Experiments

4.1. Implementation Details

We set the anchor size in Faster RCNN varying from 8×
8 to 128 × 128. Batch size, detection threshold, and pixel-
wise mask threshold are set to 32, 0.7, and 0.5, respectively.
The learning rate for SegFinNet is set to 0.001 in the first
30k iterations, and 0.0001 in the rest of the 70k iterations.
Mini-batch size is 1 and weight decay is 0.0001. We set the
hyper-parameter λ = 0.8 in Equation 1 .

4.2. Datasets

We have used 3 different latent fingerprint databases:
MSP DB (an operational forensic database), NIST
SD27 [7], and West Virginia University latent database
(WVU) [1]. The MSP DB includes 2K latent images and
over 100K reference rolled fingerprints. The NIST SD27
contains 258 latent images with their true mates while WVU
contains 449 latent images with their mated rolled finger-
prints and another 4, 290 non-mated rolled images.



Figure 6. Example images in the MSP database with the corre-
sponding manual ground truth mask overlaid.

Training: we used the MSP DB to train SegFinNet. We
manually generated ground truth binary masks for each la-
tent. Figure 6 shows some example latents in the MSU DB
with the corresponding groun truth masks. We used a sub-
set of 1000 latent images from MSP DB for training while
using a different set of 1000 latents in MSP DB for test-
ing. With common augmentation techniques (e.g. random
rotation, translation, scaling, cropping, etc. ), the training
dataset size increased to 8K latent images.

Testing: we conducted experiments on NIST SD27,
WVU, and 1000 sequestered test images from the MSP
database. To make the latent search to appear more real-
istic, we constructed a gallery consisting of 100K rolled
images, including the 258 true mates of NIST SD27, 4, 290
rolled fingerprints in WVU, 27K images from NIST14 [2],
and the rest from rolled prints in the MSP database. The
ground truth masks were obtained from [11].

4.3. Cropping Evaluation Criteria

Published papers based on patch-based approach with a
classification scheme reported the cropping performance in
terms of MDR and FDR metrics. The lower values of these
metrics, the better framework is. Let A and B be two sets
of pixels in predicted mask and ground truth mask, respec-
tively. MDR and FDR are then defined as:

MDR =
|B| − |A ∩B|

|B|
;FDR =

|A| − |A ∩B|
|A|

(3)

With the proposed non-patch-based and top-down ap-
proach (detection and segmentation), it is necessary to use
IoU metric, which is more appropriate for multi-class seg-
mentation [14, 8, 4]. In addition, we report our results in
terms of the MDR and FDR metrics for comparison. In
contrast to MDR and FDR metrics, a superior framework
will lead to a higher value of IoU. The IoU metric is defined
as:

IoU =
|A ∩B|
|A ∪B|

(4)

We note that the published methods [18, 20, 5] used their
own individual ground truth information so comparing them
based on MDR and FDR is not fair given these two metrics
critically depend on the ground truth. Figure 5 demonstrates
the variations in ground truths used by existing works2. It is

2We contacted the authors to get their groundtruths.

important to emphasize that a favorable metric value does
not mean that the associated cropping will lead to better
latent recognition accuracy. It simply reveals the overlap
between predicted mask and its manually annotated ground
truth.

4.4. Cropping Accuracy

Table 2 shows a quantitative comparison between
SegFinNet and other existing works using MDR and FDR
metrics on NIST SD27 and WVU databases. The IoU met-
ric was computed based on masks and the ground truth pro-
vided by the authors. Because Ezeobiejesi et al. evaluated
MDR and FDR on patches, it is not fair to include it for IoU
comparison. Table 2 also shows that SegFinNet provides
the lowest error rate in terms of MDR and FDR. This is be-
cause of our use of non-patch based approach. The table
also reveals that the low values of either MDR or FDR only
does not usually lead to high IoU value.

4.5. Running time

Experiments are run on a Nvidia GTX Ti 1080 GPU with
12GB of memory. Table 3 shows a comparison with differ-
ent configurations in computation time on NIST SD27 and
WVU. We note that the voting fusion technique takes longer
time to process an image because it runs on different inputs.
However, its accuracy is better than just using a single im-
age with attention technique.

Figure 7 shows the visualization of SegFinNet compared
to existing works on NIST SD27. These masks were ob-
tained by contacting authors.

4.6. Latent Matching

The final goal of segmentation is to increase the latent
matching accuracy. We used two different matchers for la-
tent to rolled matching: Verifinger SDK 6.3 [15] and a state-
of-the-art latent COTS AFIS. To make a fair comparison to

Table 2. Comparison of the proposed segmentation method with
published algorithms using pixel-wise (MDR, FDR, IoU) metrics
on NIST SD27 and WVU latent databases.

Dataset Algorithm MDR FDR IoU
Choi [5](#) 14.78% 47.99% 43.28%

Zhang [19] 14.10% 26.13% N/A
Ruangsakul [18](#) 24.56% 36.48% 52.05%

NIST Cao [3](#) 12.37% 46.66% 48.25%
SD27 Liu [13] 13.32% 24.21% N/A

Zhu [20] 10.94% 11.68% N/A
Ezeobiejesi [6](*) 1.25% 0.04% N/A

Proposed method 2.57% 16.36% 81.76%
Choi [5] 40.88% 5.63% N/A

WVU Ezeobiejesi [6](*) 1.64% 0.60% N/A
Proposed method 13.15% 5.30% 72.95%

(#) We reproduce the results based on masks and ground truth provided by authors.
(*) Its metrics are on reported patches.
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Figure 7. Visualizing segmentation results on six different (one per row) latents from NIST SD27. (a) Our visual attention with heatmap
(fingermark probability), (b) Proposed method, (c) Ruangsakul et al. [18], (d) Choi et al. [5], (e) Cao et al. [3], (f) Zhang et al. [19]. Images
used for comparison vary in terms of noise, friction ridge area and ridge clarity. Note that Zhang et al. used 1,000 dpi images while others,
including us, used 500 dpi latents.

existing works [19, 18, 13], we also report the matching
performance for Verifinger on 27K background from NIST
14 [2]. In addition, we report the performance of COTS on
100K background. To explain the matching experiments,
we first define some terminologies.

(a) Baseline: Original gray scale latent image.
(b) Manual GT: Groundtruth masks from Jain et al. [3].
(c) SegFinNet with AM: Masked latent images using vi-

sual attention mechanism only.
(d) SegFinNet with VF: Masked latent images using ma-

jority voting mask technique only.

(e) SegFinNet full: Masked latents with full modules.

(f) Score fusion: Sum of score fusion of our proposed
SegFinNet with SegFinNet+AM, SegFinNet+VF, and orig-
inal input latent images.

Table 4 demonstrates matching results using Verifinger.
Since there are many versions of the Verifinger SDK, we use
masks provided by the authors in [5, 19, 3, 18] to make a
fair comparison. However, the authors did not provide their
masks for the WVU database. Note that contrary to popular
belief, the manual groundtruth does not always give better
results than original images.
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Figure 8. Matching results with a state-of-the-art COTS matcher
on (a) NIST SD27, (b) WVU, and (c) MSP database against 100K
background images.

Table 3. Performance of SegFinNet with different configurations.
AM: attention mechanism (Section 3.2), VF: voting fusion scheme
(Section 3.4)

Dataset Configuration Time(ms) IoU
SegFinNet w/o AM & VF 248 46.83%

NIST SegFinNet with AM 274 50.60%
SD27 SegFinNet with VF 396 78.72%

SegFinNet full 457 81.76%
SegFinNet w/o AM & VF 198 51.18%

WVU SegFinNet with AM 212 62.07%
SegFinNet with VF 288 67.33%

SegFinNet full 361 72.95%

Table 4. Matching results with Verifinger on NIST SD27 and
WVU against 27K background.

Dataset Methods Rank-1 Rank-5
Choi [5] 11.24% 12.79%

Ruangsakul [18] 11.24% 11.24%
NIST Cao [3] 11.63% 12.01%
SD27 Manual GT 10.85% 11.63%

Baseline 8.14% 8.52%
Proposed method 12.40% 13.56%

Score fusion 13.95% 16.28%

Manual GT 25.39% 26.28%
WVU Baseline 26.28% 27.61%

Proposed method 28.95% 30.07%
Score fusion 29.39% 30.51%

Figure 8 shows the matching results using state-of-the-
art COTS. We did not use any enhancement techniques like
Cao et al. [3] in this comparison. The combination between
the attention mechanism and the voting technique showed
better performance in our proposed method. Besides, high-
est results of score fusion technique mean that our method
can be complementary to using full image in matching.

5. Conclusion

We have proposed a framework for latent segmentation,
called SegFinNet. It utilizes a fully convolutional neural
network and detection based approach for latent fingerprint
segmentation to process the full input image instead of di-
viding it into patches. Experimental results on three dif-
ferent latent fingerprint databases (i.e. NIST SD27, WVU,
and MSP database) show that SegFinNet outperforms both
human ground truth cropping for latents and published seg-
mentation algorithms. This improved cropping, in turn,
boosts the hit rate of a state of the art COTS latent fin-
gerprint matcher. Our framework can be further developed
along the following lines: (a) Integrating into an end-to-end
matching model by using shared parameters learned in the
Faster RCNN backbone as a feature map for minutiae/non-
minutiae extraction; (b) Combining orientation information
to get instance segmentation for segmenting overlapping la-
tent fingerprints.
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