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ABSTRACT  

Fingerprints are being extensively used for person identification in a number of commercial, civil, and forensic 
applications. Most of the current fingerprint verification systems utilize features that are based on minutiae points and 
ridge patterns. While minutiae based fingerprint verification systems have shown fairly high accuracies, further 
improvements in their performance are needed for acceptable performance, especially in applications involving very 
large scale databases. In an effort to extend the existing technology for fingerprint verification, we propose a new 
representation and matching scheme for fingerprint using Scale Invariant Feature Transformation (SIFT). We extract 
characteristic SIFT feature points in scale space and perform matching based on the texture information around the 
feature points using the SIFT operator. A systematic strategy of applying SIFT to fingerprint images is proposed. Using 
a public domain fingerprint database (FVC 2002), we demonstrate that the proposed approach complements the minutiae 
based fingerprint representation. Further, the combination of SIFT and conventional minutiae based system achieves 
significantly better performance than either of the individual schemes. 
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1. INTRODUCTION 
When the Home Ministry Office, UK formally conceded in 1893 that no two individuals have the same fingerprints, it  
set in motion a chain of events that culminated in widespread use of fingerprint pattern recognition systems, called AFIS 
(Automatic Fingerprint Identification Systems) that are being used by law enforcement agencies world wide for over 40 
years [1,9]. In fact these fingerprint matching systems are so spectacularly successful in nailing down perpetrators that 
the term fingerprint has become synonymous with the uniqueness/inherent characteristic itself (e.g., “DNA 
fingerprinting”).  This success has spurred on an ever widening spiral of its applications beyond its original forensic 
domain. Forensic fingerprint recognition systems graduated to a second generation fingerprint matching technology 
geared for civilian applications such as deterring welfare disbursement fraud. These second generation “civilian” large 
scale fingerprint matching systems typically operate completely automatically and are being deployed in significantly 
more mainstream applications dealing with a larger cross-section of society.  It now appears that we are poised for 
witnessing development of a third generation ubiquitous large scale fingerprint recognition systems that will involve all 
of us. The magnitude of identity theft and security threats has reached an unprecedented epidemic proportion threatening 
to destroy the very core fabric of our society.   The question that is being asked of biometric technologies in general and 
of fingerprints in particular is that whether these technologies can work all the time, everywhere, and  in all contexts for 
reliable person identification and authentication.  

One of the design criteria for building such completely automatic, and reliable fingerprint verification systems is that 
the underlying sensing, representation, and matching technologies must also be very robust and it is essential that these 
individual components degrade their performance gracefully in the presence of unwanted “noise”, atypical fingerprint 
impressions, and unusual or adverse imaging situations.  One way to address these requirements of robust performance is 
to adopt robust representation schemes that capture the discriminatory information in fingerprint impressions.  

The most popular method for fingerprint representation is based on local landmarks called minutiae. This scheme 
evolved from an intuitive system design tailored for forensic experts who visually match the fingerprints. The minutiae-
based systems first locate the points, often referred to as minutiae points, in fingerprint image where the fingerprint 
ridges either terminate or bifurcate and then match minutiae relative placement in a given finger and the stored template. 
A good quality fingerprint contains between 25 and 80 minutiae depending on sensor resolution and finger placement on 
the sensor. It is well known that it is difficult to automatically and reliably extract minutiae based representations from 
poor quality fingerprint impressions arising from very dry fingers or from fingers mutilated by scars, scratches due to 
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accidents, injuries,  or  profession-related (e.g., electrician, mason, musician) work.  Also, there is anecdotal evidence 
that a fraction of the population may have fingers that have relatively small number of minutiae thereby making 
fingerprint-based identification more vulnerable to failures for the corresponding individuals.   

There are three typical categories of fingerprint verification methods: i) minutiae, ii) correlation, and iii) ridge 
features. However, considering the types of information used, a method can be broadly categorized as minutiae based or 
texture based. While the minutiae based fingerprint verification systems have shown high accuracy [10,11,14,5], they 
ignore the rich information in ridge patterns which can be useful to improve the matching accuracy. Most of the texture 
based matchers use the entire fingerprint image or local texture around minutiae points [2,3,8,6]. Using local texture is 
more desirable because the global texture will be more sensitive to non-linear and non-repeatable deformation of 
fingerprint images. When the local texture is collected based on the minutiae points, the texture based fingerprint 
representation is again limited and its performance depends upon the reliability of extracted minutiae points. It is not 
obvious how one could capture the rich discriminatory texture information in the fingerprints that is not critically 
dependent on finding minutiae points [3] or core points [8].  

For the purpose of extending characteristic feature points of fingerprint beyond minutiae points, we adopt Scale 
Invariant Feature Transformation (SIFT) [4]. SIFT extracts repeatable characteristic feature points from an image and 
generates descriptors representing the texture around the feature points.  In our work, we demonstrate the utility of SIFT 
representation for fingerprint-based identification.  Since the SIFT feature points have already demonstrated their 
efficacy in other generic object recognition problems, it is expected that this representation is also stable and reliable for 
many of the matching problems related to the fingerprint domain. Further, since SIFT feature points are based on texture 
analysis of the entire scale space, it is hoped that these feature points will be robust to the fingerprint quality and 
deformation variation. 

The rest of this paper is composed as follows. Section 2 describes the SIFT algorithm. Section 3 describes our 
fingerprint matching scheme using SIFT, section 4 describes experimental results, and section 5 provides conclusions 
and future work. 

2. SCALE INVARIANT FEATURE TRANSFORMATION 
Scale Invariant Feature Transformation (SIFT) [4] was originally developed for general purpose object recognition. SIFT 
detects stable feature points in an image and performs matching based on the descriptor representing each feature point. 
A brief description of the SIFT operator is provided below.   

2.1 Scale Space Construction 

A scale space is constructed by applying a variable scale Gaussian operator on an input image. Difference of Gaussian 
(DOG) images are obtained by subtracting subsequent scales in each octave. The set of Gaussian-smoothed images and 
DOG images are called an octave. A set of such octaves is constructed by successively down sampling the original 
image. A typical number of scales and octaves for SIFT operation is 5 and 6, respectively. Fig. 1 shows 4 successive 
octaves with 5 scales and the corresponding difference images. 

2.2 Local Extrema 

Local extrema are detected by observing each image point in DOG space. A point is decided as a local minimum or 
maximum when its value is smaller or larger than all its surrounding neighboring points by a certain amount. 

2.3 Stable Local Extrema 

A local extrema is observed if its derivative in scale space is stable and if it is on an apparent edge. More detailed 
description of this process can be found in the original paper by Lowe [4]. If an extremum is decided as unstable or is 
placed on an edge, it is removed because it can not be reliably detected again with small variation of viewpoint or 
lighting changes.   
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Figure 1.  Scale space construction for SIFT operation. 
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2.4 Assigning Descriptor 

A 16x16 window is used to generate a histogram of gradient orientation around each local extremum. To make the 
descriptor orientation invariant, all gradient orientations are rotated with respect to the major orientation of the local 
extremum. 

2.5 Example Figure 

Matching is performed by comparing each local extrema based on the associated descriptors. Suppose we want to match 
two images I1 and I2. Given a feature point p11 in I1, its closest point p21, second closest point p22, and their distances d1 
and d2 are calculated from feature points in I2.  When the ratio d1/d2 is sufficiently small, p11 is considered to match with 
p21. The matching score between two images can be decided based on the number of matching points and their geometric 
configuration. 

3. SIFT ON FINGERPRINT IMAGES 
3.1 Characteristic feature points in fingerprints 

Minutiae points are strictly defined by the ridge ending and bifurcation points. Therefore, the number of minutiae points 
appearing in a fingerprint image is limited to a small number (<100). However, SIFT points are only limited by the 
condition of local minima or maxima in a given scale space, resulting in a large number of feature points. The number of 
SIFT feature points are affected by a set of parameters such as the number of octaves and scales. Typical fingerprints 
may contain up to a few thousand SIFT feature points. Fig. 2 shows an example of minutiae points and SIFT feature 
points on the same fingerprint image. There are only 36 minutiae points, but the number of SIFT feature points is 
observed to be 2,020. The SIFT parameter values we used are the number of octaves = 4, number of scales = 5, width of 
Gaussian kernel = 3, and the initial value of the standard deviation of the Gaussian kernel = 1.8. 

3.2 Fingerprint verification using SIFT 

3.2.1  Preprocessing 
Even though SIFT was originally developed for general purpose object recognition and does not require image pre 
processing, we have performed a few preprocessing steps on fingerprint images to obtain better matching performance. 
The preprocessing is performed in two steps: i) adjusting the graylevel distribution, and (ii) removing noisy SIFT feature 
points. When the fingerprint images show similar texture, the performance is expected to be improved because SIFT 
utilizes texture information both for extracting feature points and matching. For the same reason, noisy SIFT feature 
points are removed to obtain better matching performance. First, to overcome some apparent differences in gray level 

(a) 36 minutiae points            (b) 2020 SIFT feature points 
 

Figure 2.  Minutiae and SIFT feature points extracted from the same image (a) minutiae points (b) SIFT feature points. 



 
 
 
 
SPIE Defense and Security Symposium, Orlando, Florida, 2008  

Preprocessing 
Local Extrema & 

Descriptor Extraction 
Point wise 
Matching 

Trimming false 
matches 

Figure 3.  Flow chart of fingerprint matching using SIFT operator. 

Figure 4.  Description of fingerprint matching process using SIFT operator.  
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distributions, we measure the image intensity in the central area of fingerprint and adjust the histogram. Second, the 
boundary area of a fingerprint always causes some feature points to be detected because they are local extrema. 
However, the boundary region is different for every fingerprint impression even for the same finger. Therefore, feature 
points on the fingerprint boundary usually result in false matches. We construct a binary mask that includes only the 
inner part of a fingerprint and use it to prevent any noisy feature points from being detected on the boundary. Example 
binary masks are shown in green color in Fig. 4 (b). 

3.2.2  Point wise Matching 
The first step in matching is to directly compare each feature point based on the descriptor using Euclidean distance 
metric. The point wise matching process is described in Sec. 2.5. 
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3.2.3  Trimming False Matches 
The point wise matching generates some erroneous matching points which increase the false accept rate. Therefore, it is 
necessary to remove spurious matching points using geometric constraints. The typical geometric variations appearing in 
fingerprint images are limited to small rotations and translations. Therefore, when we place two fingerprint images side 
by side and draw matching lines as shown in Fig. 4 (d), all true matches appear as parallel lines with similar lengths. 
Based on this observation, we select a value of majority orientation and length and keep the matching pairs that have the 
majority orientation and length. This reduces the number of matching points as shown in Figs. 4 (d) and (e). 

4. EXPERIMENTAL RESULTS 
4.1 Database 

The performance of the proposed SIFT based fingerprint verification has been evaluated on FVC2002 DB1 and DB2 
fingerprint databases [7]. Both the databases contain images of 100 different fingers with 8 impressions for each finger. 
More detailed characteristics of these two databases are summarized in Table 1. The same set of parameters described in 
Sec. 3.1 are used for both the databases.  

 

Table. 1. Description of FVC 2002 DB1 and DB2 databases 

 
 Sensor Type Image Size Number of images Resolution

DB1 Optical Sensor 388x374 (142K pixels) 100x8 500 dpi 

DB2 Optical Sensor 296x560 (162K pixels) 100x8 569 dpi 

 

 

 

 

Figure 5.  Performance of minutiae and SIFT matchers and their fusion result. 

(a) DB 1 (a) DB 2

 
 

 



 
 
 
 
SPIE Defense and Security Symposium, Orlando, Florida, 2008  

4.2 Fingerprint matching 

We have performed all pair genuine matchings and a subset of all possible imposter matchings following the guideline 
of FVC 2002. As a result, the number of genuine matchings is 2,800 and the number of imposter matchings is 4,950. Fig. 
5 shows the performance of SIFT matching using DET curve. By trimming out false matches using geometric 
constraints, the EER of SIFT matcher is almost reduced by about 50% for both the databases. We also performed a 
fusion of the SIFT and minutiae based matchers [15]. Fig. 5 shows the performance of minutiae and the fusion using 
weighted sum-rule with min-max normalization. The weights are empirically chosen as 0.92 for SIFT and 0.08 for 
minutiae for both databases. The fusion of matchers resulted in better performance than either of the two matchers. Table 
2 summarizes the equal error rates (EER) computed from Fig. 5. Fig. 6 shows example matching pairs where minutiae 
matcher failed but SIFT succeeded in matching them correctly. 

 
Table. 2. EER of SIFT, Minutiae, and Fusion matchers 

 SIFT Minutiae SIFT + Minutiae

DB1 8.44 % 1.79 % 0.99 % 

DB2 10.76 % 2.13 % 1.07 % 

 

5. CONCLUSIONS AND FUTURE WORK 
We have shown that the SIFT operator can be used for fingerprint feature extraction and matching. Even though there 
have been a few studies using SIFT for face verification [12,13], there have been no prior studies on fingerprint 
matching using SIFT. We performed fingerprint matching in two steps: i) point-wise match and ii) trimming false 
matches with geometric constraints. The fusion with a minutiae based matcher shows significant performance 
improvement on two public domain databases. We believe the performance improvement due to fusion is possible 
because the sources of information used in minutiae and SIFT based matchers are significantly different. SIFT shows a 
good possibility of extending minutiae based or minutiae related fingerprint representations. It is possible to further 
improve the performance of SIFT if proper preprocessing is performed on the input image that can reduce the noise in 
the images. The typical preprocessing in minutiae based technique involves connecting broken ridges and extracting 
skeletons of the ridge pattern, which removes all the texture information that is used in the SIFT operator. A proper 
preprocessing for the SIFT operator would require reducing noise in such a way as to preserve the inherent texture 
information. The average matching speed of the SIFT matcher, including feature extraction, is ~4 seconds on a 3.2GHz 
Pentium 4 PC. 

Our future work will concentrate on improving the performance of SIFT by developing a proper preprocessing step, 
better representation of each feature point, and better matching schemes. A good combination of SIFT operator with 
other texture or minutiae based operations will also be developed to improve the performance. 
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Figure 6.  Example genuine pairs where minutiae matcher failed, but SIFT successfully matched given the threshold values 
corresponding to the EER. These pairs remained as correct matches after the fusion.   

(a) 6_4, 6_5 pair in DB1, SIFT matching score = 59 

(b) 16_5, 16_7 pair in DB1, SIFT matching score = 79 

(c) 17_2, 17_5 pair in DB1, SIFT matching score = 63 

 



 
 
 
 
SPIE Defense and Security Symposium, Orlando, Florida, 2008  

REFERENCES 

1. A. K. Jain, P. Flynn, and A. Ross (eds.), Handbook of Biometrics, Springer, 2007. 
2. D. Roberge, C. Soutar, and B. V. Kumar, High-speed fingerprint verification using an optical correlator, in 

Proceedings SPIE, vol. 3386, 242-252, 1998. 
3. S. Chikkerur, S. Pankanti, A. Jea, N. Ratha, and R. Bolle, Fingerprint Representation Using Localized Texture 

Features, International Conference on Pattern Recognition, 521-524, 2006 
4. D. Lowe, Distinctive image features from scale-invariant key points, International Journal of Computer Vision, 

60(2), 91-110, 2004. 
5. A. K. Jain, S. Prabhakar, and S. Chen, Combining Multiple Matchers for a High Security Fingerprint Verification 

System, Pattern Recognition Letters, 20(11–13), 1371–1379, 1999. 
6. A. J. Willis and L. Myers, A Cost-Effective Fingerprint Recognition System for Use with Low-Quality prints and 

Damaged Fingertips, Pattern Recognition, 34(2), 255–270, 2001. 
7. D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, FVC2002: Second Fingerprint Verification Competition, 

International Conference on Pattern Recognition, 811–814, 2002. 
8. A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, Filterbank-based Fingerprint Matching, IEEE Transactions on 

Image Processing, 9(5), 846-859,  2000. 
9. A. K. Jain, L. Hong, and S. Pankanti, Biometric identification. Comm. ACM, 91–98, 2000. 

10. F. Pernus, S. Kovacic, and L. Gyergyek, Minutiae-based fingerprint recognition, Proceedings of the Fifth 
international Conference on Pattern Recognition, 1380-1382, 1980. 

11. A. K. Jain, L. Hong, and R. Bolle, On-line fingerprint verification, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 19, 302-314, 1997. 

12. M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, On the Use of SIFT Features for Face Authentication, 
Computer Vision and Pattern Recognition Workshop (CVPRW'06), 35, 2006. 

13. D. R. Kisku, A. Rattani, E. Grosso, and M. Tistarelli, Face Identification by SIFT-based Complete Graph 
Topology, Automatic Identification Advanced Technologies, 63-68, 2007. 

14. N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, A Real-Time Matching System for Large Fingerprint Databases, 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 799–813, 1996. 

15. A. K. Jain, K. Nandakumar and A. Ross, Score Normalization in Multimodal Biometric Systems, Pattern 
Recognition,  38(12), 2270-2285, 2005. 

 
 
 
 


	1. INTRODUCTION
	2. SCALE INVARIANT FEATURE TRANSFORMATION
	2.1 Scale Space Construction
	2.2 Local Extrema
	2.3 Stable Local Extrema
	2.4 Assigning Descriptor
	2.5 Example Figure

	3. SIFT ON FINGERPRINT IMAGES
	3.1 Characteristic feature points in fingerprints
	3.2 Fingerprint verification using SIFT

	4. EXPERIMENTAL RESULTS
	4.1 Database
	4.2 Fingerprint matching

	5. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS

