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Abstract

Most "ngerprint matching systems rely on the distribution of minutiae on the "ngertip to represent and match "ngerprints.
While the ridge ,ow pattern is generally used for classifying "ngerprints, it is seldom used for matching. This paper describes
a hybrid "ngerprint matching scheme that uses both minutiae and ridge ,ow information to represent and match "ngerprints.
A set of 8 Gabor "lters, whose spatial frequencies correspond to the average inter-ridge spacing in "ngerprints, is used to
capture the ridge strength at equally spaced orientations. A square tessellation of the "ltered images is then used to construct an
eight-dimensional feature map, called the ridge feature map. The ridge feature map along with the minutiae set of a "ngerprint
image is used for matching purposes. The proposed technique has the following features: (i) the entire image is taken into
account while constructing the ridge feature map; (ii) minutiae matching is used to determine the translation and rotation
parameters relating the query and the template images for ridge feature map extraction; (iii) "ltering and ridge feature map
extraction are implemented in the frequency domain thereby speeding up the matching process; (iv) "ltered query images
are catched to greatly increase the one-to-many matching speed. The hybrid matcher performs better than a minutiae-based
"ngerprint matching system. The genuine accept rate of the hybrid matcher is observed to be ∼10% higher than that of
a minutiae-based system at low FAR values. Fingerprint veri"cation (one-to-one matching) using the hybrid matcher on a
Pentium III, 800 MHz system takes ∼1:4 s, while "ngerprint identi"cation (one-to-many matching) involving 1000 templates
takes ∼0:2 s per match.
? 2003 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.

Keywords: Fingerprints; Veri"cation; Identi"cation; Fourier transform; Texture; Ridge ,ow; Gabor "lter

1. Introduction

Among all the biometric indicators [1], "ngerprints have
one of the highest levels of reliability [2] and have been ex-
tensively used by forensic experts in criminal investigations
[3]. Although not scienti"cally established, "ngerprints are
believed to be unique across individuals, and across "ngers
of the same individual [4]. Even identical twins having
similar DNA, are believed to have diBerent "ngerprints.
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These observations have led to the increased use of auto-
matic "ngerprint-based identi"cation systems in both civil-
ian and law-enforcement applications.

The uniqueness of a "ngerprint is determined by the topo-
graphic relief of its ridge structure and the presence of certain
ridge anomalies termed as minutiae points (Fig. 1). Typi-
cally, the global con"guration de"ned by the ridge structure
is used to determine the class [5,6] of the "ngerprint, while
the distribution of minutiae points is used to match and
establish the similarity between two "ngerprints [7,8].
Automatic "ngerprint identi"cation systems, that match a
query print against a large database of prints (which can
consist of millions of prints), rely on the pattern of ridges
in the query image to narrow their search in the database
(-ngerprint indexing), and on the minutiae points to
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RIDGE BIFURCATION

RIDGE ENDING

 CORE

Fig. 1. A "ngerprint image with the core and four minutiae points
marked on it. The global con"guration is de"ned by the ridge
pattern.

determine an exact match (-ngerprint matching). The ridge
,ow pattern is seldom used for matching "ngerprints.

The ridge pattern in a "ngerprint may be viewed as an
oriented texture pattern having a "xed dominant spatial fre-
quency and orientation in a local neighborhood. The fre-
quency is due to the inter-ridge spacing present in the "n-
gerprint (Fig. 2(a)), and the orientation is due to the ,ow
pattern exhibited by the ridges (Fig. 2(b)). By capturing
the frequency and orientation of ridges in non-overlapping
local regions in the "ngerprint, a distinct representation of
the "ngerprint is possible. One such representation has been
discussed in [9]. However, to match two "ngerprints using
such a representation, a suitable alignment of the underlying
ridge structures is essential.

We present a "ngerprint representation scheme, that con-
structs a feature map by observing the local ridge orienta-
tion in a "ngerprint image. The local ridge characteristics
are extracted via a set of Gabor "lters that are pre-tuned to a
speci"c frequency corresponding to the average inter-ridge
spacing in a "ngerprint image. An input "ngerprint image is
"ltered using this set of Gabor "lters; a square tessellation
[10] is then applied to each "ltered image to examine the
local response to the "lter; a feature vector which measures
the energy in the "ltered images for each of the tessellated
cells is next obtained. A collection of these feature vectors

(a) (b) (c)

Fig. 2. Fingerprint as an oriented texture pattern: (a) the constant inter-ridge spacing in a local region of the "ngerprint; (b) the dominant
direction of the ridges in (a); and (c) the power spectrum of (a).

(over the tessellation) constitutes the ridge feature map used
to represent a "ngerprint. Fingerprint matching entails deter-
mining the similarity between two such ridge feature maps.
This representation is used along with the minutiae set of
the "ngerprint image for matching purposes. The proposed
representation and matching scheme are motivated by the
following observations:

(1) Global image information, as de"ned by the ridge pat-
tern of the "ngerprint, is not being explicitly used dur-
ing the matching phase in most of the current matching
systems. We believe that the ridge pattern, when ob-
served at various resolutions and orientations, provides
discriminatory information that can be used for match-
ing "ngerprints.

(2) Minutiae information may not be very discriminative
in the case of solid-state sensors which typically cap-
ture only a small area of the "ngertip. For example, the
average number of minutiae points extracted from Dig-
ital Biometrics optical sensor images (500 × 500 im-
age at 500 dpi) is 45 compared to 25 minutiae obtained
from Veridicom solid-state sensor images (300 × 300
image at 500 dpi). Alternate representations, to supple-
ment minutiae information, are necessary to maintain
suKcient "ngerprint identi"cation performance in such
cases. Further, in poor quality images, while it is diK-
cult to accurately locate minutiae points, the ridge pat-
tern features may be easier to detect.

(3) The problem of aligning and registering "ngerprint im-
age pairs is a computationally intensive task. Hybrid
matchers, that use minutiae sets to align ridge feature
maps, do not require additional computation time for
registering images.

In summary, we represent a "ngerprint image by a combi-
nation of ridge strengths at various orientations, and a set
of minutiae points. In the following sections we describe
the proposed technique in detail. In Section 2 the problem
of "ngerprint matching, and the advantages of the proposed
technique are presented. Section 3 describes the process of
"ltering "ngerprint images in the frequency domain. Section
4 explains the construction of ridge feature maps via tessel-
lation. Section 5 outlines the minutiae detection algorithm.
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Section 6 describes the matching process using the hybrid
scheme. Section 7 describes the experiments conducted to
evaluate the performance of the proposed technique. Section
8 summarizes the paper and presents direction for future
work.

2. Fingerprint matching

Fingerprint matching techniques can be broadly classi"ed
as being minutiae- or correlation-based. Minutiae-based
techniques attempt to align two sets of minutiae points and
determine the total number of matched minutiae [11,12,7].
Correlation-based techniques, on the other hand, com-
pare the global pattern of ridges and furrows to see if the
ridges in the two "ngerprints align [13,14]. The perfor-
mance of minutiae-based techniques rely on the accurate
detection of minutiae points and the use of sophisticated
matching techniques to compare two minutiae "elds which
undergo non-rigid transformations. The performance of
correlation-based techniques is aBected by non-linear dis-
tortions and noise present in the image. In general, it has

X

X X

(a) (b)

(c) (d)

Fig. 3. Tessellating the "ngerprint image using a circular and a square grid. The square tessellation, unlike the circular one, is not aBected
by the location of the core point in the image: (a) circular tessellation about a core point; (b) square tessellation over the entire image; (c)
circular tessellation about a core detected close to the boundary of the image; and (d) square tessellation over image in which the core has
been detected close to the boundary of the image. The images were acquired using the Veridicom sensor.

been observed that minutiae-based techniques perform better
than correlation-based ones.

Jain et al. [9] have proposed a novel representation
scheme that captures global and local features of a "n-
gerprint in a compact "xed length feature vector termed
as FingerCode. This technique makes use of the texture
features available in a "ngerprint to compute the feature
vector. Their scheme for generic representation of oriented
texture relies on extracting a core point in the "ngerprint.
A circular region around the core point is located and
tessellated into sectors as shown in Fig. 3(a). The pixel
intensities in each sector are normalized to a constant mean
and variance, and "ltered using a bank of eight Gabor "l-
ters to produce a set of eight "ltered images. Gray scale
variance within a sector quanti"es the underlying ridge
structures and is used as a feature. The feature vector
(640 values in length) is the collection of all the features,
computed from all the 80 sectors, in every "ltered image.
The FingerCode captures the local information, and the
ordered enumeration of the tessellation captures the in-
variant global relationships among the local patterns. The
matching stage simply computes the Euclidean distance be-
tween the two corresponding FingerCodes. This technique,
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however, suBers from the following shortcomings:

(1) The frame of reference is based on a global singular
point (i.e., the core point). Detection of the core point is
non-trivial; furthermore, the core point may not even be
present in small-sized images obtained using solid-state
sensors.

(2) The alignment is based on a single reference point and
is, therefore, not very robust with respect to errors in
the location of the reference point.

(3) The tessellation does not cover the entire image. Fur-
thermore, if the core were to be detected close to the
boundary of the image, the tessellation will include an
extremely small portion of the image (Fig. 3(c)).

The technique proposed here has the following advantages:

(1) Unlike in Ref. [9], the "ltering is done on the enhanced
images rather than the raw input images. The enhanced
images have lower noise content than the raw images.

(2) Instead of using circular tessellation, a square tessella-
tion is used (Fig. 3(b)). The tessellation includes the
entire image, and all the tessellated cells are of the same
size. Moreover, the tessellation is not based on detect-
ing any landmark points.

(3) The "ngerprint images are aligned using the overall
minutiae information; this is more robust than using
only the core point for aligning image pairs.

3. Image �ltering using Gabor �lters

A 2D Gabor "lter can be thought of as a complex plane
wave modulated by a 2D Gaussian envelope. These "lters
optimally capture both local orientation and frequency infor-
mation 1 and their development was motivated by observing
the linear response of the receptive "eld in simple striate
cortex cells. By tuning a Gabor "lter to a speci"c frequency
and direction, the local frequency and orientation informa-
tion can be obtained. Thus, they are suited for extracting
texture information from images. Daugman has successfully
used these "lters to extract discriminatory features from the
human iris [17].

An even symmetric Gabor "lter has the following general
form in the spatial domain:

G�;f(x; y) = exp

{
−1
2

[
x′2

�2x
+
y′2

�2y

]}
cos(2	fx′);

x′ = x sin � + y cos �;

y′ = x cos �− y sin �; (1)

where f is the frequency of the sinusoidal plane wave at
an angle � with the x-axis, and �x and �y are the standard

1 They are optimal in the sense that they try to minimize simul-
taneously the joint space-spatial frequency uncertainty [15,16].

deviations of the Gaussian envelope along the x- and y-axes,
respectively.

For extracting the response of the ridge at various orien-
tations of the Gabor "lter, the parameters (f; �x; �y; �) are
set to the following values:

(i) The frequency, f, corresponds to the inter-ridge dis-
tance in "ngerprint images. For the 300 × 300 (500 dpi)
images obtained using the Veridicom sensor and resized to
256 × 256 (see Section 7), the average inter-ridge spacing
is about 8 pixels. Hence, f = 1

8 = 0:125.
(ii) The selection of the standard deviation values, �x and

�y, involves a trade-oB. Larger values are more robust to
noise, but will not capture ridge information at a "ne level.
Smaller values, on the other hand, are less robust to noise in
the image, but capture ridge information very well. Based
on empirical data [18], both these values were set to 4, i.e.,
�x = �y = �= 4.

(iii) Eight diBerent orientations are examined. These
correspond to � values of 0◦; 22:5◦; 45◦; 67:5◦; 90◦; 112:5◦;
135◦; 157:5◦ (Fig. 4).

These parameters are "xed during the matching process,
allowing for pre-storing the Gabor "lter representations in
a lookup table referred to as the Gabor "lter bank. This
"lter bank precalculates the Fourier representation of the
Gabor "lter for all orientations of interest. This formulation
substantially improves the matching time in a one-to-many
matching scheme.

3.1. Fingerprint enhancement

Enhancement is the process by which the clarity of the
ridge and furrow structures in the "ngerprint images is
improved to facilitate the feature extraction process [18,19].
Fingerprint enhancement helps in reducing the noise con-
tent in the "ngerprint image. Enhancement, however, can
introduce false ridges, resulting in spurious or missing
minutiae points. Since the ridge feature map representation
proposed here relies on the dominant ridge directions in
each tessellated cell, the introduction of false ridges is not
a serious problem. The minutiae features are also extracted
after processing the enhanced "ngerprint image. The en-
hancement algorithm is based on the technique described
in Ref. [18]. Fig. 5 shows a "ngerprint image before and
after enhancement.

3.2. Fingerprint segmentation

The ridge feature map is constructed using the feature
values computed at each tessellated cell. Certain cells
may predominantly contain background information, and
therefore, the feature values computed at these cells will
not be an accurate indication of ridge strength. Thus, the
purpose of segmentation is to separate the foreground and
background regions in a given "ngerprint image. The fore-
ground corresponds to those regions in the image that have
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Fig. 4. Gabor "lters in spatial domain with eight diBerent orientations used for feature extraction. f = 0:125; �x = �y = � = 4.

Fig. 5. Fingerprint image: (a) before and (b) after enhancement.

Fig. 6. Segmenting a "ngerprint image: (a) the original "ngerprint image and (b) the segmented "ngerprint image.

relevant "ngerprint information (i.e., the ridges and valleys
of the "ngerprint), while the background represents those
regions that do not have the relevant information. Cells with
predominantly background information are not used during

the matching stage. Segmentation is done by observing the
local variation of intensity on the original gray-scale im-
age [7]. Fig. 6 shows a "ngerprint image before and after
segmentation.
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Fig. 7. Results of the "ltering process on the image shown in Fig. 5(b). The eight images correspond to the eight diBerent orientations of
the Gabor "lter.

3.3. Filtering enhanced image

Filtering requires convolving the enhanced image,H , with
each of the 8 Gabor "lters in the spatial domain. However,
such a process would be extremely slow. For a 256 × 256
image that is convolved with a 16 × 16 "lter, this would
mean ∼107 multiplications (assuming that the convolution
operation has not been optimized). In order to speed-up this
operation, the convolution is performed in the frequency
domain. Let F(H) denote the discrete Fourier transform of
H , and let F(G�) indicate the discrete Fourier transform of
the Gabor "lter having the spatial orientation � as described
by Eq. (1). Thus, the Gabor "ltered image, V�, may be
obtained as

V� =F−1[F(H)F(G�)]; (2)

where F−1 is the inverse Fourier transform. Eight "ltered
images are obtained as a result of this "ltering (Fig. 7).

4. Ridge feature maps

4.1. Tessellation of -ltered images

While a "ltered image in its entirety can be used as a rep-
resentation scheme, the presence of local distortions would
aBect the matching process drastically. Moreover, it is the

(a) (b) (c)

Fig. 8. Tessellating the "ltered image: (a) a "ngerprint image "ltered with a Gabor "lter oriented at 157:5◦; (b) a square tessellation of the
"ltered image; and (c) the ridge feature map (nc × nc) representation of the "ngerprint.

local variations in ridge structure (combined with the global
ridge con"guration) that provide a better representation of
the "ngerprint. To examine local variations, the image is tes-
sellated into square cells, and features from each of the cells
are computed (Fig. 8). The size of a cell is chosen to corre-
spond to approximately the width of two ridges (16× 16).
A 8 pixel wide border of the image is not included in the
tessellation. This results in nc=15 cells in each row and col-
umn of the square grid. The total number of tessellated cells
over the image is, therefore, Nc = 225. The variance of the
pixel intensities in each cell across all "ltered images is used
as a feature vector. The variance corresponds to the energy
of the "lter response, and is, therefore, a useful measure of
ridge orientation in a local neighborhood. Those tessellated
cells that contain a certain proportion of background pixels
are labeled as background cells and the corresponding fea-
ture value is set to 0.

4.2. Ridge feature map de-nition

Let C�(i; j) refer to the (i; j)th cell in the square grid that
is placed on the "ltered image V�. The variance, �2�(i; j), rep-
resents the feature value corresponding to the cell. Thus, for
each V�, a feature map of variance values can be obtained.
Let R� denote the feature map associated with the "ltered
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Fig. 9. Feature maps representing the variance in intensity in the "ltered images for each cell. For purposes of visualization, the feature
values have been scaled to the 0–255 range.

image V�. Then,

R� = {�2�(i; j)}; (3)

where, �∈{0◦; 22:5◦; 45◦; 67:5◦; 90◦; 112:5◦; 135◦; 157:5◦};
i = 1; : : : ; nc; j = 1; : : : ; nc.

An eight-dimensional feature map corresponding to the
eight "ltered images is obtained in this way (Fig. 9). These
ridge feature maps are used to represent and match a query
image with a template.

5. Minutiae extraction

Minutiae extraction refers to the process by which the
minutiae points are detected in a "ngerprint image. Each
minutiae is characterized by its (x; y) location in the image,
and the orientation � of the ridge on which it is detected. The
ridge information in a 64×64 region around the (x; y) point
is associated with every minutiae which is useful when two
minutiae sets are being matched. The minutiae extraction
scheme (Fig. 10) can be broadly classi"ed into the following
stages:

(i) Orientation -eld estimation: The orientation of the
"ngerprint image is computed in non-overlapping blocks by
examining the gradients of pixel intensities in the x and y
directions within the block.

(ii) Ridge detection: The ridges present in the "ngerprint
image are identi"ed by applying masks that are capable of
accentuating the local maximum gray level values along the
normal direction of the local ridge direction.

(iii) Ridge thinning: The ridge map constructed in the
earlier stage is used to obtain a thinned ridge image.

(iv) Minutiae detection: A set of rules is applied to the
thinned ridges to label minutiae points (ridge endings and
ridge bifurcations). As a postprocessing step, a re"nement
algorithm is applied to remove spurious minutiae points.

Minutiae matching involves a point matching operation
on the two minutiae sets. An elastic string matching tech-
nique is employed to compare the two minutiae sets [7]. The
output of the matching process is a matching score that in-
dicates the similarity of the two sets being compared, and a
correspondence map that indicates pairing of minutiae points
from the two sets. The correspondence map is used to com-
pute the transformation parameters necessary to align the
two "ngerprint images.

6. Hybrid �ngerprint matcher

The process of "ngerprint matching involves compar-
ing a query print with a set of one or more template
prints. Prior to the matching process, feature information is
extracted from all the template images (Fig. 11). The hy-
brid "ngerprint matcher proposed here utilizes two distinct
sets of "ngerprint information for matching "ngerprints:
minutiae features, and ridge feature maps. When a query
image is presented, the matching proceeds as follows:
(i) the query and template minutiae features are matched to
generate a minutiae matching score and a transformation pa-
rameter (translation and rotation) that relates the query and
template "ngerprints; (ii) the rotation parameter is used to
rotate the 8 Gabor "lters and the modi"ed "lters are applied
to the query image; (iii) the "ltered query images are then
translated and rotated according to the parameters; (iv) the
ridge feature map is extracted from these "ltered images;
(v) the query and template ridge feature maps are matched;
(vi) the minutiae and ridge feature map matching results
are combined to generate a single matching score (Fig. 12).

6.1. Aligning query and template images

For comparing the ridge feature maps of two images,
it is necessary that the images themselves are aligned ap-
propriately to ensure an overlap of common region in the
two "ngerprint images. This is done by determining the
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Input Image Orientation Field

Minutiae Points Thinned Ridges

Extracted Ridges

Fig. 10. Flowchart of the minutiae extraction algorithm [7].

transformation parameters, (tx; ty; t�), that would align the
query image with the template. As indicated in Section 5,
the correspondence map provided by the minutiae matcher
is used to compute (tx; ty; t�).

Once the transformation parameters, (tx; ty; t�), are
obtained, the query image can be aligned with the tem-
plate. But rotating the query image will result in artifacts
that may aBect the subsequent "ltering operation. In order
to avoid this, appropriately rotated Gabor "lters (which
are also stored in the Gabor "lter bank) are applied to
the query image. The resulting -ltered images are then
rotated and feature values extracted. Let H represent
the enhanced query image, and (tx; ty; t�) be the transla-
tion and rotation parameters obtained using the minutiae
matching information. Then the "ltered image, V�; t� , is
obtained as

V�; t� = Rott�F
−1[F(H)F(G�−t�)]; (4)

where Rott� indicates that the "ltered image is rotated by
an angle t�. The notation V�; t� is used to indicate that the
"ltered image corresponding to "lter orientation � − t�
was rotated through an angle t�. The "ltered image is then
translated by (tx; ty), in order to ensure that the tessellation
of the query image would overlap with that of the template.

6.2. Matching scores

The minutiae matching score is a measure of the similar-
ity of the minutiae sets of the query and template images;
the higher the matching score the better the match. The sim-
ilarity score is normalized in the [0; 100] range. The ridge
feature maps of the query and the template images are com-
pared by computing the sum of the Euclidean distances of
the eight-dimensional feature vectors in the corresponding
tessellated cells. Cells that are marked as background, are not
used in the matching process. This results in a distance score
measure; a higher distance score indicates a poor match.
The distance score is normalized in the [0; 100] range, and
converted to a similarity score by simply subtracting it from
100.

6.3. Combining matching scores

The matching scores generated by comparing the minu-
tiae sets and the ridge feature maps, are combined in order to
generate a single matching score. While a variety of strate-
gies [20] may be used to fuse these scores, we adopt the
following sum rule. Let SM and SR indicate the similarity
scores obtained using minutiae matching and ridge feature
map matching, respectively. Then, the "nal matching score,
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Minutiae Extraction

Tesselation

Feature Extraction

Enhanced Image Minutiae Features

Enhancement

Fingerprint Image

Filtering in frequency domain
(8 Gabor filters)

8 Filtered Images Ridge Feature Map

Fig. 11. Template feature extraction. A minutiae set and a ridge feature map are extracted from the input "ngerprint image.

S, is computed as

S = �SM + (1− �)SR; (5)

where �∈ [0; 1]. For the experimental results reported in this
paper, � was set to 0:5. It is possible to vary � to assign
diBerent weights to the individual matchers.

6.4. Fingerprint identi-cation

Fingerprint identi"cation involves matching a query im-
age against multiple templates (corresponding to diBerent
users) in order to determine the best matching score and,
therefore, the template that best resembles it. It is obvious
that the processing time required to perform identi"cation
(one-to-many matching) is substantially more than that re-
quired for veri"cation (one-to-one matching). In order to
reduce the number of matching operations, most "ngerprint
identi"cation systems use some indexing mechanism, to nar-
row the number of templates against which the query image
has to be matched. A variety of "ngerprint indexing mecha-
nisms have been proposed in the literature [5,21–23]. How-
ever, in the identi"cation process described in this paper, we
do not use an indexing mechanism to limit the number of
matchings. The identi"cation process requires "ltering and
rotating the query image for every match that is performed
(Eq. (4)). Computing V�; t� is an expensive operation be-
cause of the Fourier operations performed. To decrease the
computational complexity involved, a combination of fre-
quency domain "ltering, and "ltered image-caching, is done.

Caching V�; t� avoids recomputing this "ltered image. Each
time a query image, Q, is presented, the following sequence
of operations is performed:

Step 1: Let the image-cache be represented by K . Set
K = � (the empty set).
Step 2: Extract the minutiae set of Q; MQ.
For all the templates {Ti} in the database, represented by

their minutiae set {MTi} and ridge feature map {RTi}, do
Steps 3–7.
Step 3: Compute the transformation parameters, (tx; ty;

t�), relating Q and Ti, using the minutiae sets MQ and MTi

as described earlier.
Step 4: If V�; t� ∈K , do Step 6.
Step 5: Compute V�; t� according to Eq. (4). K=K∪V�; t� .
Step 6: OBset V�; t� using (tx; ty) and perform tessellation

and ridge feature map extraction. Let RQ be the ridge feature
map of the query image.
Step 7: Use MQ; MTi ; RQ and RTi to generate the match-

ing scores SMi and SRi . Combine scores using Eq. (5) to
obtain a single matching score Si.
Step 8: The template Tj that results in the highest match-

ing score (Sj ¿Sk ∀j 
= k) is reported as the closest match
to the query image Q.

Step 5 is performed only when V�; t� has not been com-
puted at an earlier stage, thus improving the speed of the
one-to-many matching process.
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Query image
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Minutiae set

Ridge feature map

Minutiae set

Ridge feature map

TemplateQuery

Score

Matching

Sum Rule

Minutiae

Feature Map
Matching

Transformation parameters to align query with template
before extracting ridge feature map of query

Fig. 12. The matching process. The minutiae matching module provides the transformation parameters necessary to align the query image
with the template.

Fig. 13. Eight 300× 300 "ngerprint impressions acquired using the Veridicom sensor. Images (a)–(d) correspond to the right index "nger
of one subject, and images (e) and (h) correspond to the right middle "nger of another subject. The images are resized to 256 × 256 to
speed-up Fourier operations.

7. Experiments and results

The "ngerprint database used in our experiments
consists of "ngerprint impressions obtained from 160
non-habituated, cooperative subjects using the Veridicom
sensor (300 × 300 images at 500 dpi). The data was

collected over two sessions. The subjects mainly consisted
of students, faculty and staB at Michigan State University,
and their relatives and friends. Approximately 35% of the
subjects were women. In the "rst session, each subject was
asked to provide two impressions of each of four diBerent
"ngers—the left index "nger, the left middle "nger, the
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Fig. 14. ROC showing the performances of the three matchers. The hybrid matcher is observed to perform better than the minutiae matcher.

(a) (b)

Fig. 15. Two impressions of the same "nger that have a high minutiae matching score but a low ridge feature map matching score. The
hybrid score results in a true match.

right index "nger and the right middle "nger. A set of
1280 (160× 4× 2) images were collected in this way. The
subjects were requested to provide their "ngerprint images
again, after a period of 6 weeks. During the second session,
the same procedure was adopted, and an additional 1280
images were obtained. Thus, a total of 2560 images were
acquired over two time sessions (Fig. 13). The 300 × 300
images were resized to 256 × 256 2 in order to speed-up
the Fourier operations. The average inter-ridge distance

2 The images were "rst resized to 240 × 240 using a bicubic
interpolation; they were then padded with zeros to increase the
size to 256 × 256. This was necessary to avoid the wrap-around
distortions at the border when the image is convolved with the
Gabor "lter.

was computed using 640 images (one impression per
"nger).

The performance of a biometric system can be mea-
sured by reporting its false accept rate (FAR) and
false reject rate (FRR) at various thresholds. These
two error rates are brought together in a receiver
operating characteristic (ROC) curve that plots the
FRR against the FAR at diBerent thresholds. (Alter-
nately, the genuine accept rate (GAR), which equals
1-FRR, may be plotted against the FAR.) The FAR
and FRR are computed by generating all possible gen-
uine and impostor matching scores and then setting a
threshold for deciding whether to accept or reject a match.
A genuine matching score is obtained when two fea-
ture vectors corresponding to the same individual are
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(a) (b)

Fig. 16. Two impressions of the same "nger that have a low minutiae matching score but a high ridge feature map matching score. The
hybrid score results in a true match.

compared, and an impostor matching score is obtained
when feature vectors from two di;erent individuals are
compared.

The ROC curves depicting the performances of the minu-
tiae, ridge feature map and hybrid matchers are shown in
Fig. 14. The hybrid technique outperforms the minutiae-
based scheme over a wide range of FAR values. For exam-
ple, at a FAR of 0:1%, the GAR of the minutiae matcher
is ∼67%, while that of the hybrid matcher is ∼84%. The
equal error rate of the hybrid technique is observed to be
∼4%. The experiments also show that the minutiae infor-
mation and ridge ,ow information complement each other.
Consider Fig. 15 that shows two diBerent impressions of a
"nger. For this pair, matching the minutiae sets results in
a high matching score, but matching the ridge feature map
results in a low score (due to the limited amount of fore-
ground overlap between the two impressions). The hybrid
score, however, results in a positive match (at a certain
matching threshold) between the two impressions. Now
consider the "ngerprint impressions (of another "nger) in
Fig. 16. The minutiae matching score is rather low in this
case (due to spurious minutiae being detected in both im-
ages), while the ridge feature map matching score is high
(enhancing the image provides sharp dominant ridge direc-
tions). The hybrid score results in a positive match of the
two impressions (at a certain matching threshold), thereby
underlining the importance of the proposed technique.

The experiments reported here were conducted on a
Pentium III, 800 MHz processor, running Windows 2000.
Minutiae extraction took ∼1 s, while ridge feature map
computation took ∼0:3 s. The time taken to match two
minutiae sets and generate the transformation param-
eters was ∼0:02 s. Matching two ridge feature maps
took ∼0:01 s. The total time for "ngerprint veri"cation
(one-to-one matching) was ∼1:4 s. However, "ngerprint
identi"cation (one-to-many matching), involving 1000
templates, took only ∼0:2 s per match (average), because
of the "ltered image-cache.

8. Summary and future work

In this paper, a novel "ngerprint representation technique
that uses ridge feature maps has been presented. Further, a
hybrid "ngerprint matching technique that combines minu-
tiae information with the ridge feature map has been de-
scribed. Experiments indicate that the hybrid technique per-
forms much better than a purely minutiae-based matching
scheme. Currently, minutiae information is being used to
align the query and the template images, before computing
the ridge feature map of the query image. We are work-
ing on non-minutiae based alignment techniques that make
use of orientation "eld and ridge feature map information to
align image pairs. The following areas of improvement are
also being studied:

(1) New matching methods for comparing the ridge feature
maps of two images.

(2) Development of fusion architectures to improve perfor-
mance of the hybrid matcher.

(3) Constructing the ridge feature maps using adaptive
methods for optimal selection of the Gabor "lters.
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