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Abstract. The problem of biometric sensor interoperability has received limited
attention in the literature. Most biometric systems operate under the assumption
that the data (viz., images) to be compared are obtained using the same sensor
and, hence, are restricted in their ability to match or compare biometric data orig-
inating from different sensors. Although progress has been made in the develop-
ment of common data exchange formats to facilitate the exchange of feature sets
between vendors, very little effort has been invested in the actual development of
algorithms and techniques to match these feature sets. In the Fingerprint Verifica-
tion Competition (FVC 2002), for example, the evaluation protocol only matched
images originating from the same sensor although fingerprint data from 3 dif-
ferent commercial sensors was available. This is an indication of the difficulty
in accommodating sensor interoperability in biometric systems. In this paper we
discuss this problem and present a case study involving two different fingerprint
sensors.

1 Introducton

Establishing the identity of a person is becoming critical in our vastly interconnected
society. Questions like “Is she really who she claims to be?”, “Is this person authorized
to use this facility?” or “Is he in the watchlist posted by the government?” are routinely
being posed in a variety of scenarios ranging from issuing a driver’s licence to gaining
entry into a country. The need for reliable user authentication techniques has increased
in the wake of heightened concerns about security and rapid advancements in network-
ing, communication and mobility. Biometrics, described as the science of recognizing
an individual based on her physiological or behavioral traits, is beginning to gain accep-
tance as a legitimate method for determining an individual’s identity. Biometric systems
have now been deployed in various commercial, civilian and forensic applications as a
means of establishing identity. These systems rely on the evidence of fingerprints, hand
geometry, iris, retina, face, hand vein, facial thermogram, signature, voice, etc. to either
validate or determine an identity [1].

A generic biometric system has four important modules: (a) sensor module which
acquires the raw biometric data of an individual; (b) feature extraction module which
processes the acquired data to extract a feature set that represents the biometric trait; (c)
matching module in which the extracted feature set is compared against the templates
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residing in the database through the generation of matching scores; (d) decision-making
module in which the matching scores are used to either validate the user’s claimed
identity (verification) or determine her identity (identification). The template feature
set is typically generated during enrollment when a user first interacts with the system
and is refreshed or updated over a period of time in order to account for intra-class
variations [2]. Ideally, the feature set extracted from the raw data is expected to be an
invariant representation of a person’s biometric. However, in reality, the feature set is
sensitive to several factors including:

1. change in the sensor used for acquiring the raw data (e.g., optical versus solid-state
sensors in a fingerprint system);

2. variations in the environment (e.g., change in lighting in a face recognition system,
or dry weather resulting in faint fingerprints);

3. improper user interaction (e.g., incorrect facial pose during image acquisition, or
drooping eye-lids in an iris system);

4. temporary alterations to the biometric trait itself (e.g., cuts/scars on fingerprints, or
voice altered by respiratory ailments).

Raw data ‘corrupted’ due to improper user interaction or variations in the environ-
ment can be discarded by the application via a quality checking process [3]. Temporary
alterations in the biometric trait can be accommodated by the use of a periodic tem-
plate selection/update procedure [2]. However, the change in sensor scenario introduces
challenges that have hitherto not been studied. The quality and nature of the raw data
is significantly affected when the sensor used during enrollment and authentication are
different. This directly affects the feature set extracted from the data and, subsequently,
the matching score generated by the system. Consider a fingerprint matching system
that acquires fingerprint images using an optical sensor during enrollment and a solid-
state capacitive sensor during verification (at a later time). The raw images obtained at
both these time instances will be significantly different (Figure 1) due to variations in
imaging technology, resolution of the acquired image, area of the sensor, position of
the sensor with respect to the user, etc. Thus, the corresponding feature sets will ex-
hibit variability that cannot be easily handled by the matching module since very few
algorithms explicitly account for the variations introduced by different sensors. This
problem, known as sensor interoperability, has received limited attention in the litera-
ture. In this paper we briefly explore this problem and present a case study describing
its impact on fingerprint systems.

2 Sensor interoperability

Sensor interoperability refers to the ability of a biometric system to adapt to the raw
data obtained from a variety of sensors. Most biometric systems are designed to com-
pare data originating from the same sensor. In some cases the classifiers are trained on
data obtained using a single sensor alone thereby restricting their ability to act on data
from other sensors. This limitation prevents the use of multiple sensors with different
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(a) An optical sensor.

(b) A solid-state sensor.

Fig. 1. Fingerprint images of the same finger acquired using (a) Digital Biometrics’ optical sensor
and (b) Veridicom’s solid state sensor. The number of detected minutiae points in the correspond-
ing images are 39 and 14, respectively.
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characteristics in a single biometric system. Martin et al. [4] make the following ob-
servation about the effect of the handset type (sensor) on the performance of a speaker
recognition system3:

“Microphone differences are one of the most serious problems facing speaker
recognition, especially when dealing with the telephone, where Edison’s old
nonlinear carbon-button microphone still represents a significant fraction of all
transducers”.

Fig. 2. The logarithmic energy of the same speech segment when passed through carbon-button
and electret microphones. The energy corresponds to a specific frequency band (taken from [5]).

They report a significant dip in performance when the carbon-button microphone
was used during the training phase and the electret microphone was used during the test
phase (and vice-versa) in a speaker biometric system. Malayath [5] suggests the use
of oriented principal component analysis (OPCA) in designing a filter to suppress the
variabilities introduced by different handsets/channels.

Phillips et al. [6] state the following about the sensitivity of face verification algo-
rithms to camera type:

“Many face verification applications make it mandatory to acquire images with
the same camera. However, some applications, particularly those used in law

3 The NIST speaker recognition evaluation.
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enforcement, allow image acquisition with many camera types. This variation
has the potential to affect algorithm performance as severely as changing illu-
mination. But, unlike the effects of changing illumination, the effects on per-
formance of using multiple camera types has not been quantified”.

The International Biometric Group (IBG)4 recently conducted a battery of tests to
evaluate the performance of various sensors (including fingerprint) under different test
conditions. BIO-key International, Inc., demonstrated that its fingerprint system could
enroll and verify fingerprint images obtained using different sensors5. However, this
kind of test scenarios are extremely rare as is borne out by the following statement by
IBG [7]:

“Today, there is really very little interoperability among templates and the algo-
rithms that the systems are using for matching. Those are proprietary technolo-
gies. So if you as an organization are considering deploying biometric tech-
nologies you should be concerned [whether] the vendor you are working with
now will be around in 5 years and supporting the product. The cost to you of
re-enrolling all your subjects could be significant”.

This underscores the need for developing algorithms that are able to seamlessly op-
erate on feature sets originating from different sensors. Note that the problem of sensor
interoperability as defined in this paper cannot be solved by adopting a common bio-
metric data exchange format [8]. Such a format merely aids in the exchange of feature
sets between systems/vendors [9]. It, however, does not provide a method to compare
feature sets obtained from different sensors.

3 Fingerprint sensors

The advent of small-sized solid-state fingerprint sensors permit these devices to be
easily embedded in various applications such as laptops, computer peripherals, cell-
phones, PDAs, etc. The ease of interacting with fingerprint sensors (compared to, say,
iris cameras) has contributed to their increase in popularity. This has resulted in a pro-
liferation of these devices and their subsequent inclusion in a variety of applications
(Figure 3). The recently launched US-VISIT6 program for example, obtains fingerprint
(and face) information of certain travellers arriving in airports and seaports. An optical
fingerprint sensor is currently being used during the enrollment phase to procure fin-
gerprint images. However, it is not guaranteed that a similar type of sensor will be used
at a later time when verifying the same individual. The cost of re-enrolling individuals
every time the sensor is changed will be tremendous and will, in fact, defeat the purpose
of enrolling individuals at the port of entry in the first place. In cases such as these, the
need for sensor interoperability is paramount and will significantly impact the usability
of the system.

4 http://www.biometricgroup.com/index.html
5 http://www.biometricgroup.com/in the news/01 15 04.html
6 United States Visitor and Immigration Status Indicator Technology.
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Fig. 3. A variety of fingerprint sensors with different specifications (e.g., sensing technology,
image size, image resolution, image quality, etc.) are now available. These sensors have been
embedded in computer peripherals and other devices to facilitate user authentication.

A live-scan fingerprint is usually acquired using the dab method, in which the finger
is placed on the surface of the sensor without rolling7. There are a number of sensing
mechanisms that can be used to detect the ridges and furrows present in the fingertip. A
brief description of a few of these principles is provided below:

(i) Optical Frustrated Total Internal Reflection (FTIR): This technique utilizes a
glass platen, a laser light-source and a CCD (or a CMOS camera) for constructing
fingerprint images. The finger is placed on the glass platen, and the laser light-
source is directed toward the platen. The CCD captures the reflected light after
it has passed through a prism and a lens to facilitate image formation. The light
incident on the ridges is randomly scattered (and results in a dark image), while the
light incident on the valleys suffers total internal reflection (and results in a bright
image). It is difficult to have this arrangement in a compact form, since the focal
length of small lenses can be very large. Further, image distortions are possible
when the reflected light is not focused properly.

(ii) Ultrasound Reflection: The ultrasonic method is based on sending acoustic sig-
nals toward the finger tip and capturing the echo signal. The echo signal is used to
compute the range image of the fingerprint and, subsequently, the ridge structure
itself. The sensor has two main components: the sender, that generates short acous-
tic pulses, and the receiver, that detects the responses obtained when these pulses
bounce off the fingerprint surface [10]. This method images the sub-surface of the
fingerprint and is, therefore, resilient to dirt and oil accumulations that may visually

7 It is possible to capture a rolled live-scan fingerprint, although an elaborate scanner arrange-
ment may be necessary in this case
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(a) Fingerprint images of the first user.

(b) Fingerprint images of the second user.

Fig. 4. The fingerprint images of 2 different users (a) and (b) obtained using Precise (left), Ethen-
tica (middle) and Secugen (right) sensors.
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mar the fingerprint. The device is, however, expensive, and as such not suited for
large-scale production.

(iii) Piezoelectric Effect: Pressure sensitive sensors have been designed that produce
an electrical signal when a mechanical stress is applied to them. The sensor sur-
face is made of a non-conducting dielectric material which, on encountering pres-
sure from the finger, generates a small amount of current. (This effect is called the
piezoelectric effect). The strength of the current generated depends on the pressure
applied by the finger on the sensor surface. Since ridges and valleys are present
at different distances from the sensor surface, they result in different amounts of
current. This technique does not capture the fingerprint relief accurately because of
its low sensitivity.

(iv) Temperature Differential: Sensors operating using this mechanism are made of
pyro-electric material that generate current based on temperature differentials. They
rely on the temperature differential that is created when two surfaces are brought
into contact. The fingerprint ridges, being in contact with the sensor surface, pro-
duce a different temperature differential than the valleys that are away from the
sensor surface [11]. The sensors are typically maintained at a high temperature by
electrically heating them up.

(v) Capacitance: In this arrangement, there are tens of thousands of small capaci-
tance plates embedded in a chip. Small electrical charges are created between the
surface of the finger and each of these plates when the finger is placed on the chip.
The magnitude of these electrical charges depends on the distance between the fin-
gerprint surface and the capacitance plates [12, 13]. Thus, fingerprint ridges and
valleys result in different capacitance patterns across the plates. This technique is
susceptible to electrostatic discharges from the tip of the finger that can drastically
affect the sensor; proper grounding is necessary to avoid this problem.

While optical sensors have the longest history, the new solid-state capacitive sensors
are gaining immense popularity because of their compact size and the ease of embed-
ding them into laptops, cellular phones, smart pens, etc. Figure 4 shows the fingerprint
impressions pertaining to two different users acquired using three different sensors. Vi-
sually, there are significant differences in the quality of the image corresponding to
the three sensors. This clearly illustrates the difficulty in accommodating multiple sen-
sors in a single biometric system. In the recently conducted Fingerprint Verification
Competition (FVC20028), only fingerprint images obtained using the same sensor were
matched although images from three different types of sensors were available [14].

4 Optical versus solid-state sensors: a case study

In this section we report experiments conducted using two different types of fingerprint
sensors. The fingerprint images of 160 different non-habituated cooperative subjects
were obtained using an optical sensor manufactured by Digital Biometrics (DBI) and a
solid-state capacitive sensor manufactured by Veridicom (Figure 1). The optical sensor
had a sensing area of approximately 1”× 1”. The images were acquired at a resolution

8 http://bias.csr.unibo.it/fvc2002/
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of 500 dpi and were 480 × 508 in size. The solid-state sensor had a sensing area of
approximately 0.6”× 0.6”. The images in this case were also obtained at a resolution
of 500 dpi. However, the reduced size of the placement area resulted in 300 × 300

images.
The subjects mainly consisted of students at Michigan State University, and their

relatives and friends. Approximately 35% of the subjects were women. Each individual
was asked to provide fingerprint images of four fingers, viz., right index, right middle,
left index and left middle fingers. This process was repeated to obtain a second im-
pression of all four fingers. This resulted in a total of 1, 280 (160× 4 × 2) fingerprint
images per sensor. The subjects were asked to provide their fingerprint images again
after a period of 6 weeks. During this time, another 1, 280 (160 × 4 × 2) fingerprint
images per sensor were obtained. Thus, a total of 2, 560 fingerprint images per sensor
pertaining to 640 different fingers were made available. The databases corresponding to
the optical and solid-state sensors were labelled as MSU DBI and MSU VERIDICOM,
respectively [15].

We used the minutiae-based fingerprint matcher developed by Hong et al. [16] in or-
der to compare fingerprint images. The matcher uses an adaptive elastic string matching
technique to establish correspondences between the minutiae pattern of two images. In
this technique, the minutiae points in an image are first represented as a “string” in the
polar coordinate system. Two such “strings” are then compared via a dynamic program-
ming algorithm. The similarity between two minutiae patterns is indicated by a score
that represents the percentage of matching minutiae pairs. If this score is greater than a
threshold then the two minutiae patterns are said to originate from the same fingerprint
(a match).

We conducted three different types of experiments in order to study the effect of
changing sensors on matching performance.

1. Matching images within the MSU DBI database.
2. Matching images within the MSU VERIDICOM database.
3. Matching images from MSU DBI against those from MSU VERIDICOM.

The Receiver Operating Characteristics (ROC) curves corresponding to all three
cases are shown in Figure 6. Each curve depicts the Genuine Accept Rate (GAR) and
the False Accept Rate (FAR) at various matching thresholds. We make the following
observations:

1. The optical sensor results in a better matching performance than the solid-state
sensor due to the elaborate sensing area of the former. Infact, the average number
of minutiae points extracted from the images acquired using the optical sensor is
substantially more than that acquired using the solid-state sensor (Figures 1 and 5).

2. When the images being matched originate from two different sensors then the per-
formance of the matcher drastically decreases. The Equal Error Rate (EER) in this
case is 23.13% while the EERs for the other two cases are 6.14% (MSU DBI)
and 10.39% (MSU VERIDICOM). This illustrates the impact of changing sensors
on the fingerprint matching performance. As mentioned earlier, the optical sensor
results in more minutiae points than the solid-state sensor. Thus, comparing two
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Fig. 5. Histogram of the number of minutiae points extracted from images acquired using the
Veridicom and DBI sensors. A total of 2, 500 fingerprint impressions were used to compute these
histograms for each sensor. The histograms suggest that substantially fewer minutiae points are
available in images obtained using small-sized solid-state sensors.

images - one obtained from the DBI sensor and the other obtained from the Veridi-
com sensor - is akin to comparing a full print with a partial print, resulting in several
incorrect matches (false accepts) that increase the error rate of the system. Similar
problems arise if one were to compare rolled prints with dab prints. Seldom does
the methodology adopted for one type of input data work on other kinds of data.

There are several ways in which the problem of interoperability can be approached.
Typically, it is the matching module that is expected to reconcile feature sets arising
from the use of multiple sensors. However, reconciliation has to happen much earlier in
a biometric system to mitigate the impact of changing sensors.

1. One of the obvious ways is to store the raw data in its entirety in the database
(during enrollment) along with the feature set extracted from it (e.g., a fingerprint
image and its minutiae set). During verification, the biometric system could ex-
tract feature sets from both the database and input images, and then compare them.
Here, the onus is on the feature extraction module to generate a ‘compatible’ fea-
ture set from the database image by explicitly taking into account the differences
between the sensors used during enrollment and verification. However, storing raw
data in a central repository would raise security concerns, since compromising this
information could have serious repercussions.

2. Canonical representations of the input data might be useful to offset the effect of
variability in data. For example, fingerprint images may be viewed as a collection
of ridge lines, with the inter-ridge spacing forced to be a constant [17]. Feature
values can then be extracted from this canonical representation. Such an approach,
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however, presupposes the existence of a canonical form for the raw data. It also
preempts the possibility of extracting a rich set of features from the original data.

3. In some situations a simple transformation of the template feature set might ac-
count for sensor-specific properties. Fingerprint systems could use the ridge count
between minutiae pairs in an image, the location of core/delta points, etc. to ‘nor-
malize’ the spatial distribution of minutiae points. In speaker recognition systems,
certain normalization filters may be designed [5] to account for variability due to
different handsets.
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Fig. 6. ROC curves corresponding to the 3 matching experiments that were conducted. The optical
sensor is seen to result in the best performance (solid line). The solid-state sensor does not exhibit
good performance (dashed line) possibly due to partial prints that present limited number of
minutiae points. Cross-comparing images between sensors using the same matching program
results in the worst performance (dot-dash line).

5 Summary and future work

The need for biometric sensor interoperability is pronounced due to the widespread
deployment of biometric systems in various applications and the proliferation of ven-
dors with proprietary algorithms that operate on a specific kind of sensor. In this paper
we have illustrated the impact of changing sensors on the matching performance of a
fingerprint system. Almost every biometric indicator is affected by the sensor interop-
erability problem. However, no systematic study has been conducted to ascertain its
effect on real-world systems. Normalization at the raw data and feature set levels of a
biometric system may be needed to handle this problem. There is also a definite need
to develop matching algorithms that do not implicitly rely on sensor characteristics to
perform matching. Biometric vendors and independent test groups (e.g., NIST, IBG)



Appeared in Proc. of International ECCV Workshop on Biometric Authentication (BioAW),
(Prague, Czech Republic), LNCS Vol. 3087, pp. 134-145, Springer Publishers, May 2004.

should begin incorporating interoperable scenarios in their testing protocol. This would
help in understanding the effect of changing sensors on a biometric system and would
encourage the development of cross-compatible feature extraction (representation) and
matching algorithms.
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