Altered Fingerprints: Detection and Localization

Elham Tabassi, Tarang Chugh, Debayan Deb, Anil K. Jain

Dept. of Computer Science & Engineering Michigan State University

October 25, 2018

Altered Fingerprints

Intentional destruction of friction ridge structures to obfuscate the true identity

Transplanted from Foot

Burnt with Acid

Fingerprint Alteration Cases

In 2009, a Chinese woman underwent a surgery to alter her fingerprints in order to deceive the immigrant fingerprint system in Japan

All foreigners are fingerprinted when they arrive in Japan. [1]

Some asylum seekers to EU, torch skin off their fingertips so they can not be identified by AFIS (EURODAC)

Eduardo Ravelo, part of FBI's top-10 most wanted list (2017), is believed to have had a plastic surgery and altered his fingerprints to evade authorities [2]

^[1] http://news.bbc.co.uk/2/hi/asia-pacific/8400222.stm

^[2] https://www.businessinsider.com/fbi-10-most-wanted-criminals-list-2017-11

Previous Approaches

Study	Method	Altered Fingerprint Dataset	Performance
Feng, Jain, and Ross, 2010	Orientation Field	1,976 simulated altered fingerprints	TDR = 92% @ FDR = 7%
Tiribuzi et al., 2012	Minutiae density maps, orientation entropies	1,000 genuine and synthetic altered fingerprints	Avg. Accuracy = 90.4%
Yoon et al. [2012, 2013]	Orientation field, minutiae distribution	4,433 operational altered fingerprints	TDR = 70.2% @ FDR = 2.1%
Ellingsgaard and Busch, [2014, 2017]	Orientation field, minutiae orientation	116 altered fingerprints	TDR = 92% @ FDR = 2.3%

Altered Fingerprint Dataset

- 4,815 operational altered fingerprints (635 tenprint cards of 270 subjects)
- # Tenprint cards/subject: 1 to 16 (multiple encounters)
- # Altered fingerprint instances/subject: 1 to 137
- 4,815 operational valid fingerprints
- 5-fold cross-validation employed
 - Training: 3,852 altered / 3,852 valid fingerprints
 - Testing: 963 altered / 963 valid fingerprints

Altered Fingerprint Detection

Mutilation

- Fingerprint alteration classes based on alteration procedure:
 - Obliteration: abrading, cutting, burning, etc.
 - Distortion: surgical procedures to transplant skin causing unusual patterns
 - *Imitation:* surgical procedures to transplant / remove skin while retaining fingerprint pattern
- Utilized single CNN model for all three alteration types due to:
 - Insufficient data for each alteration type,
 - Manual labeling is subjective; multiple alterations may exist in single fingerprint image.

friction ridge, e.g. palm

match ridge pattern

Altered Fingerprint Localization

- Manually marked ROI (i.e. areas of alterations) for randomly selected 1,182 altered fingerprints
- Patches (96 x 96) centered around minutiae are cropped; fingerprint alterations create spurious minutiae
- Local patches with ≥ 50% overlap with the manually marked ROI labelled as Altered, remaining patches as Valid

ROI marked for altered regions in fingerprints

Proposed Approach

Altered Fingerprint Detection

Altered Fingerprint Localization

- Cascaded approach to detect and localize fingerprint alterations
- Employed CNN model to learn local "texture" around minutiae
- Robust to different fingerprint image sizes
- Large amount of training data to train deep CNNs

Experimental Results

- Achieved avg. TDR = 99.24% @ FDR = 2% across five folds (std. = 0.58%)
- Inception-v3 CNN model (99.24%) outperformed MobileNet-v1 model (92.40%); Computational requirement for Mobilenet-v1 model is almost 10 times lower compared to Inception-v3.
- Both models beat the previous state-of-the-art performance of TDR = 70.2% @ FDR = 2.1% for similar sized operational database
- Evaluation time/image = 50ms (Inception-v3), and 6ms (Mobilenet-v1) on NVIDIA 1080Ti GPU
- Performance on altered fingerprint localization:
 - 2-fold cross validation on manually labeled Altered/Valid patches (81,969 valid, and 89,979 altered); **EER = 8.5**%

ROC curves for altered fingerprint detection.

Experimental Results

Altered Fingerprint Detection

Output

Altered Fingerprint Localization

Synthetic Altered Fingerprint Generation

- To remedy the lack of publicly available altered fingerprint datasets, we trained a Generative Adversarial Network to generate synthetic altered fingerprints.
- Utilized DC-GAN architecture with following parameters [1]; trained on all of the 4,815 operational altered fingerprints

Architecture	DC-GAN	
Input Size	512 x 512	
Batch Size	64	
Optimizer	Adam	
Learning Rate	0.0002	
Momentum	0.5	
Iterations	1,350	
Output Size	256 x 256	

Generated a total of 4,060 synthetic altered fingerprints

Synthetic Altered Fingerprint Generation

Synthetic Altered Fingerprints

Summary

- Proposed a robust and accurate method of altered fingerprint detection and localization,
- Achieved a TDR = 99.24% @ FDR = 2% on an operational dataset of 4,815 altered, and 4,815 valid fingerprint images,
- Trained a GAN model to alleviate the lack of publicly available altered fingerprint datasets by generating synthetic altered fingerprints.

Future Work

- Refining the GAN network to improve the characteristics of synthetic altered fingerprints, control the type of alterations, and use fingerprint match scores to evaluate GAN model,
- Pre- and post-analysis of altered fingerprint images to benchmark the effect of alteration on recognition accuracy.

13