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Abstract

Latent fingerprint images are typically obtained under

non-ideal acquisition conditions, resulting in incomplete or

distorted impression of a finger, and ridge structure cor-

rupted by background noise. This necessitates involving

latent experts in latent fingerprint examination, including

assessing the value of a latent print as forensic evidence.

However, it is now generally agreed that human factors

(e.g., human visual perception, expertise of latent exam-

iners, workload, etc.) can significantly affect the reliabil-

ity and consistency of the value determinations made by

latent examiners. We propose an objective quality mea-

sure for latent fingerprints, called Latent Fingerprint Im-

age Quality (LFIQ), that can be effectively used to distin-

guish latent fingerprints of good quality, which do not re-

quire any human intervention, and to compensate for the

subjective nature of value determination by latent examin-

ers. We investigate several factors that determine the latent

quality: (i) ridge quality based on ridge clarity and connec-

tivity of good ridge structures, (ii) minutiae reliability based

on a minutiae dictionary learnt from high quality minutia

patches, and (iii) position of the finger by detecting a ref-

erence point. The proposed LFIQ metric is based on trian-

gulation of minutiae incorporating the above three factors.

Experimental results show that (i) the proposed LFIQ is a

good predictor of the latent matching performance by AFIS

and (ii) it is also correlated with value determination by la-

tent examiners.

1. Introduction

With the advent of fingerprints for identifying and trac-

ing habitual criminals by the Scotland Yard Police in the

early 1900s, fingerprint recognition has become one of the

most commonly practiced approaches for human identifica-

tion in law enforcement and forensics. Latent fingerprints
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refer to the fingerprints obtained by lifting the residues of

the finger skin from the surface of objects in contact; those

fingerprints found at crime scenes play an important role in

solving the crimes. As the residues from finger skin gener-

ally deteriorate over time and latent fingerprints often con-

tain only a partial friction ridge structure of the finger, the

quality of the latent fingerprints can be poor and the amount

of ridge information contained in the latents is typically

limited. As a result, while exemplar1 search (tenprint-to-

tenprint matching) can essentially be executed in a fully au-

tomated manner using Automated Fingerprint Identification

Systems (AFIS), latent search (latent-to-tenprint matching)

still requires significant effort by latent examiners, particu-

larly in feature markup and identity determination.

Latent examiners commonly follow the ACE-V method-

ology [6] to identify latent fingerprints. This methodology

consists of the following four phases: (i) Analysis phase

to determine the value of a latent as one of three lev-

els: Value for Individualization (VID), Value for Exclusion

Only (VEO), or No Value (NV); (ii) Comparison phase to

assess similarity or dissimilarity between the latent which

is determined as either VID or VEO and a set of exem-

plar fingerprints retrieved by AFIS; (iii) Evaluation phase

to make one of the three identification decisions for each

pair of the latent and an exemplar print (i.e., individualiza-

tion, exclusion, or inconclusive); and (iv) Verification phase

where a second examiner processes the latent independently

and confirms the decision of the first examiner.

One of the critical decisions made by latent examiners

is the latent value determination in the analysis phase of

the ACE-V protocol. If a latent is determined as NV, it is

not processed further for comparison. However, the value

determination by latent examiners may not always be reli-

able or consistent because (i) subjectivity of human visual

perception in determining image quality or bias from prior

knowledge of the case can affect their decision [17], (ii)

different examiners with various levels of expertise in latent

examination may not coincide in value determination of the

1Exemplar fingerprints refer to rolled and plain fingerprints, which are

generally acquired in an attentive mode.
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Table 1. The number of latents in each value category and identification rate (rank-1 and rank-100) for each category.

Value for Individualization (VID) Value for Exclusion Only (VEO) No Value (NV)

NIST SD27a 210 41 7

WVU 370 74 5

Rank-1 Identification Rate 491 (85%) 46 (40%) 1 (8%)

Rank-100 Identification Rate 525 (91%) 72 (63%) 7 (58%)
a The latent examiners’ value determination on NIST SD27 is obtained from the study in [12].

same latent print [20,21], and (iii) heavy workload faced by

the examiners in latent print units can lead to insufficient

amount of time for analysis which can result in false deci-

sions on latent value [15].

The relationship between latent value determination by

examiners and latent identification accuracy by AFIS is

shown in Table 1. Two sources of latent fingerprint im-

ages along with their value determinations by examiners are

evaluated in this paper: 258 latent fingerprints from NIST

SD27 [1] and 449 latents from WVU latent database [24].

Three different AFIS were used to search the latents against

an exemplar database containing 31,997 rolled fingerprints

with both proprietary features from the AFIS and markup

features provided by latent examiners. If any one of the

three AFIS is able to retrieve the true mate of a latent within

rank m, the latent is deemed to be identifiable at rank m.

It is noteworthy that a large number of VEO latents can be

identified at rank 100 (63%) as well as at rank 1 (40%); 1

out of 12 NV latents is identified at rank 1, and 7 out of

12 NV latents are identified at rank 100. This implies that,

while the identification accuracy of AFIS is highly corre-

lated with the value determination by latent examiners, a

significant number of VEO or NV latents can still be iden-

tified by AFIS.

In exemplar search scenarios, fingerprint image quality

is affected by (i) intrinsic factors: saliency of friction ridge

structure or dryness/wetness of finger skin, and (ii) extrin-

sic factors: sensitivity of the fingerprint imaging sensor or

positioning of the finger on the sensor. Most algorithms for

tenprint quality assessment utilize (i) local properties (e.g.,

local ridge quality in terms of clarity, orientation, and fre-

quency) and (ii) global properties (e.g., continuity of ori-

entation field or energy concentration in the frequency do-

main over the entire fingerprint) [5]. As an example, NIST

Fingerprint Image Quality (NFIQ) is based on the size of

foreground region, the total number of minutiae, minutiae

count at different minutiae quality levels, and the size of the

fingerprint region at different ridge quality levels [19].

Defining a quality metric for fingerprint images is a chal-

lenging problem due to the following reasons. Fingerprint

image quality as a predictor of matching accuracy of AFIS

is not always correlated to perceptual image quality which

is generally defined by sharpness, contrast, noise level, etc.

Instead, it is based on the sufficiency of reliable features

that can be effectively used in fingerprint matching. As a

result, a fingerprint quality metric typically is associated

with a certain sensor or a matcher. The NFIQ, a com-

monly adopted fingerprint quality metric, was developed to

overcome the interoperability issue among various sensors

and matchers from different vendors. The development of

NFIQ 2.0 [9] is underway to reflect the advances in finger-

print matching technology over the past 10 years and update

the features and properties of NFIQ. Nevertheless, all exist-

ing fingerprint quality measures were designed for rolled or

plain fingerprints.

For latent fingerprint images, various extrinsic factors,

in addition to intrinsic factors, affect the fingerprint image

quality: (i) the surface where the latent print is left can intro-

duce severe background noise in the acquired image, (ii) the

latent print may contain impression of only the side or tip of

a finger, and (iii) a severe skin distortion can be introduced

during impression formation. Hence, a quality measure for

latent fingerprints needs to take into account the following

considerations:

• Ridge quality in the presence of background noise:

Given that latent images often have cluttered back-

ground, friction ridge pattern needs to be properly lo-

calized in the image, and separated from any overlap-

ping structured background.

• Spatial characteristic of good ridge quality regions:

Local ridge areas of good quality that are spatial neigh-

bors tend to have a greater possibility to be matched

with the mate than good quality regions that are

sparsely distributed.

• Reliability of minutiae: Minutiae are the most critical

features in latent matching. Given the relatively small

number of minutiae in latents, even a few false minu-

tiae can degrade the latent matching accuracy dramat-

ically. Thus, it is necessary to estimate minutiae relia-

bility in latents.

• Finger position: A latent image that contains only the

tip or side of a finger is less likely to be matched with

its true mate in an exemplar database which mostly

contains the central part of the fingers.
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Figure 1. The amplitude map (RA) and ridge continuity map (RC) of the dominant ridge components of a latent image. (a) A latent in

NIST SD27 (G065), (b) contrast-enhanced latent image (I∗), (c) amplitude map (RA), and (d) ridge continuity map (RC).

(a) (b) (c) (d)

Figure 2. Ridge quality maps of the latent shown in Fig. 1(a) at different iterations. (a) Q
(0)
R

, (b) Q
(2)
R

, (c) Q
(4)
R

, and (d) Q
(6)
R

.

In this paper, our goal is to define a quality measure for

latent fingerprints, namely Latent Fingerprint Image Qual-

ity (LFIQ), which can be used as a predictor of latent match-

ing performance. Our preliminary study on latent finger-

print quality [25] developed a latent quality measure by

multiplying the average ridge clarity and minutiae count.

We extend the latent quality measure in [25] by incorpo-

rating (i) the connectivity of good ridge quality regions at

global level, (ii) reliability of minutiae, and (iii) estimation

of finger position for computing the LFIQ. Our experimen-

tal results show that the proposed LFIQ has a high correla-

tion with latent matching accuracy; latents with high LFIQ

value have their true mates retrieved at rank 1 with high

probability. Note that, considering that the matching per-

formances of different AFIS for a given latent query can

be very different, we determine the value of a latent in a

matcher-independent manner; if any of the three AFIS used

here can successfully match the latent, we expect its LFIQ

score to be high.

2. Features for Defining LFIQ

We consider the following three factors that affect the

quality of latent fingerprints: (i) ridge quality, (ii) minu-

tiae reliability, and (iii) finger position. The ridge quality

is determined by local ridge clarity and the connectivity of

the friction ridge areas with high ridge clarity. The minutia

reliability is measured as its likelihood of being a genuine

minutia. The position of a finger is estimated by detecting

the reference point of a finger (e.g., core point(s) or the max-

imum curvature point for arch-type fingerprints); minutiae

in the central parts of the finger are assigned high weights

in LFIQ computation.

2.1. Ridge Quality

The ridge quality of a local block is measured not only by

the ridge clarity of the block but also by the ridge continuity

with its neighboring blocks [25]. The local ridge quality

is propagated over the entire image to determine the ridge

connectivity at the global level.

1. Preprocessing: Given a latent image I , its contrast is

enhanced by [11, 25]:

I∗ = sign(I − Ī)× log(1 + |I − Ī|), (1)

where I∗ is the enhanced image, Ī is the smoothed

image of I by applying a 15× 15 averaging filter, and

sign(x) = 1 if x > 0, otherwise sign(x) = −1. Fig.

1(b) shows the contrast-enhanced image of Fig. 1(a).



2. Dominant Ridge Component Selection: For each 32×
32 pixel block in the enhanced image I∗ centered at

[m,n], the 64 × 64 subimage is constructed by zero-

padding to get high frequency resolution in the Fourier

domain. The local amplitude maximum at (u0, v0)
within the frequency range of

[

1
16 ,

1
5

]

is selected as the

dominant ridge component [14, 25]. Let amn, fmn,

and θmn denote the amplitude, frequency, and direc-

tion of the dominant ridge component of the block at

[m,n]. The amplitude map is defined as RA[m,n] =
amn (see Fig. 1(c)).

3. Ridge Continuity: The adjacent blocks in a 4-

connected neighborhood are continuous if the follow-

ing three conditions are satisfied [14, 25]:

(i) min{|θ1, θ2|, π − |θ1, θ2|} ≤ Tθ,

(ii)

∣

∣

∣

∣

1

f1
−

1

f2

∣

∣

∣

∣

≤ Tf , and

(iii)
1

16

∑

(x,y)∈L

|L1(x, y)− L2(x, y)| ≤ Tp, (2)

where L denotes the set of 16 pixels on the border of

the two adjacent blocks, and Li(x, y) is the filtered im-

age of the block i by a directional bandpass filter with

parameters θi and fi [18]. The three thresholds, Tθ,

Tf , and Tp, are set to π
10 , 3, and 0.6, respectively. The

local ridge continuity of a block at [m,n], RC[m,n],
is defined as the number of neighboring blocks that are

continuous with respect to the central block (see Fig.

1(d)).

4. Ridge Quality: To reflect the ridge connectivity at the

global level, a ridge quality map is constructed by

propagating the amplitude and ridge continuity maps

iteratively. The initial ridge quality map, Q
(0)
R

[m,n],
is defined as RA[m,n] ·RC[m,n]. The ridge quality

map is updated by:

Q
(k)
R

[m,n] = Q
(k−1)
R

[m,n]+
∑

[m′,n′]
∈C[m,n]

Q
(k−1)
R

[m′, n′],

where C is the set of neighboring blocks that are con-

tinuous with respect to the block at [m,n], followed by

filtering Q
(k)
R

[m,n] with a 3 × 3 averaging filter. The

number of iterations is set to 6 (i.e., QR = Q
(6)
R

). Fig.

2 shows the ridge quality maps at different iterations.

2.2. Minutiae Reliability

Even if the ridge quality is determined to be high in a lo-

cal area, the reliability of a minutia located in the area may

not be high since the ridge quality does not necessarily mea-

sure the fingerprint ridge quality; it can, for example, mea-

sure the strength of the structured background noise. Based

(a) (b)

Figure 3. Minutiae dictionary learning. (a) Minutia patches used

for training and (b) minutiae dictionary elements.

on the minutiae dictionary learnt from a set of high qual-

ity minutia patches in exemplar fingerprints, the structural

similarity between an image patch around a minutia and the

minutiae dictionary defines the reliability of the minutia.

2.2.1 Minutiae Dictionary Learning

A large number of high quality minutia patches extracted

from a subset of NIST SD4 [2] are used to learn the minu-

tiae dictionary in the following way:

1. High quality fingerprint images with NFIQ values of

1, 2 or 3 are selected.

2. Minutiae are extracted by a commercial-off-the-shelf

(COTS) fingerprint matcher.

3. If a minutia is located in a block with the highest ridge

quality as indicated by NBIS [23] (i.e., quality level of

4), the 48×48 image patch centered at the minutia and

aligned along the minutia direction is cropped.

4. All the minutia patches are normalized to images with

a mean of 0 and a standard deviation of 1.

In total, 20,000 minutia patches are used to form a train-

ing set for minutiae dictionary learning. Fig. 3(a) shows

some examples of high quality minutia patches used for the

minutiae dictionary learning. The minutiae dictionary, D,

with 128 elements is learnt from the training set via K-SVD

algorithm [4]. Some of the minutiae dictionary elements are

shown in Fig. 3(b).

2.2.2 Minutia Reliability Measure

The reliability of a minutia in a latent is defined as the struc-

tural similarity [22] between the minutia patch and its clos-

est dictionary element. For a normalized minutia patch p,



which is centered at the minutia and aligned along the minu-

tia direction, the minutia reliability is obtained by:

QM = maxSSIM(p,D), (3)

where

SSIM(p, d) =
(2µpµd + C1)(2σpd + C2)

(µ2
p + µ2

d + C1)(µ2
p + µ2

d + C2)
, (4)

d is an element in the minutiae dictionary D, µi and σi are

the mean and standard deviation of the image patch i, σpd

is the correlation coefficient between p and d, and C1 and

C2 are constants.

2.3. Position of Finger

Since most of the exemplar fingerprints typically contain

the central part of a finger, a latent with central part of a

finger is more likely to be matched with its true mate. The

reference point of a latent is determined based on the orien-

tation field reconstructed from the minutiae; high weights

are assigned to the minutiae located in the central part of

the finger and low weights are assigned to the minutiae far

from the center of the finger.

2.3.1 Orientation Field Reconstruction

The orientation field of a latent is reconstructed based on

minutiae with high reliability [10]. The local ridge orien-

tation at a block [m,n], Dc[m,n], is estimated by selecting

the nearest minutia in each of the 8 sectors and then by sum-

ming the doubled directions of the selected minutiae:

Dc[m,n] = tan−1
( v

u

)

,

u =
∑

k

cos(2θk)wk, v =
∑

k

sin(2θk)wk, (5)

where θk is the direction of the selected minutia in the sector

k, and wk is a weighting function (the reciprocal of the Eu-

clidean distance between the block center and the minutia).

The orientation field θ[m,n] is computed as Dc[m,n]/2.

2.3.2 Reference Point Detection

The reference point of a fingerprint is defined as the point

where the curvature of convex ridge structure is the maxi-

mum [26]. To measure the curvature of the ridge structure, a

complex filter Tc is applied to the reconstructed orientation

field:

Tc = (x+ iy)gσ(x, y), (6)

where gσ(x, y) is a 2-dimensional Gaussian function with a

standard deviation of σ. The complex filter Tc can essen-

tially characterize the orientation field around a core, and

has been used to detect cores [16] and reference points [7].

(a) (b) (c)

Figure 4. Reference point detection. (a) Reconstructed orientation

field from reliable minutiae, (b) curvature map (Ĉ), and (c) cur-

vature values along the connected convex ridge points in vertical

direction (PC). The detected reference point is indicated in (a) as

a circle.

The filter response C is obtained by convolving the con-

jugate of the complex filter Tc and the orientation tensor

z = cos(2θ) + i sin(2θ), where θ is the orientation field.

To measure the convex curvature of the ridge structure, C
is projected onto the π/2 direction, equivalent to taking the

imaginary part of C:

Ĉ = Im{C}. (7)

To reliably determine the reference point from the cur-

vature map Ĉ, the convex ridge points in each row are de-

tected and their connectivity in vertical direction is exam-

ined. The convex ridge points in a row satisfy the follow-

ing conditions: (i) |θ(x, y)| < θT , where θT = π
6 , (ii)

θ(x− 1, y) < 0, and (iii) θ(x+1, y) > 0. A binary map in-

dicating the location of convex ridge points is constructed:

P (x, y) = 1 when a convex ridge point is at (x, y); other-

wise, P (x, y) = 0. The connectivity of the convex ridge

points in vertical direction is computed [8]: for (x, y) such

that P (x, y) = 1,

PC(x, y) =











1, if y = 1

1, if
∑x+1

z=x−1 P (z, y − 1) = 0
∑x+1

z=x−1 P (z, y − 1), otherwise.

(8)

Finally, a point at (xo, yo) is determined as a reference

point if (i) the curvature Ĉ is maximum at (xo, yo) along

the connected convex ridge points in the vertical direction

and (ii) Ĉ(xo, yo) > TC and PC(xo, yo) > TPC , where

TC = 0.4 and TPC = 7. Fig. 4 illustrates reference point

detection.

3. Latent Quality Score Computation

Given a set of minutiae in a latent fingerprint, the Delau-

nay triangulation is constructed (see Fig. 5). For a triangle

Ti consisting of minutiae Mij , j = 1, 2, 3 at its vertices, the



Figure 5. The Delaunay triangulation with reliable minutiae shown

in red.

quality score of the triangle is computed by:

QTi
= QRi

3
∑

j=1

QMij
WMij

, for Mij such that QMij
> TQM

(9)

where QRi
is the average ridge quality in Ti, QMij

is the

reliability of the minutia Mij such that QMij
> TQM ,

TQM = 0.3, and WMij
is the weight based on the distance

between the minutia and the reference point of the latent

(if it exists). The weight function is set to a 2-dimensional

Gaussian where the mean is located at the reference point.

LFIQ score for a given latent is defined as:

LFIQ =

N
∑

i=1

QTi
, (10)

where N is the number of the Delaunay triangles in the la-

tent image.

4. Experimental Results

Latent fingerprints from two databases are used in our

evaluation of LFIQ: (i) 258 latents from NIST SD27 [1]

and (ii) 449 latents from WVU latent database [24]. An ex-

emplar database contains 31,997 rolled fingerprints: (i) 258

mated rolled prints in NIST SD27, (ii) 449 mated rolled

prints in WVU latent database, (iii) 4,290 rolled prints in

WVU database, and (iv) 27,000 rolled prints in NIST SD14

[3]. Three COTS fingerprint matchers (one latent finger-

print matcher and two tenprint fingerprint matchers) are

used to search the latents against the exemplar database.

Proprietary features from the matchers and markup minu-

tiae are input to the matchers.

Fig. 6 shows the histogram of LFIQ values for the 707

latents used in our experiments. The LFIQ scores are quan-

tized into 100 bins such that each bin contains 100 latents

and a window for binning slides with a fixed step size. The
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Figure 6. Histogram of LFIQ values for 707 latents in the experi-

ments. The red dotted lines indicate the median LFIQ scores for

the quality indices 10, 20, ..., 100.

red dotted lines in Fig. 6 indicate the median LFIQ scores

for the bins labeled as quality indices of 10, 20, ..., 100. Fig.

7 shows examples of latents corresponding to some of these

quality indices. Note that a high quality index refers to high

LFIQ score.

The proposed LFIQ is compared to the latent quality

measure proposed in [25]. To show the utility of new fea-

tures used in the proposed LFIQ (i.e., global connectivity

of good ridge quality regions, minutiae reliability, and fin-

ger position), the minutiae set for predicting LFIQ is con-

structed by combining manually marked minutiae and pro-

prietary minutiae sets from the two tenprint matchers; this

augmented set contains both reliable and unreliable minu-

tiae. Fig. 8 shows the rank-1 identification rate of latents

with respect to quality index. For each quality index bin, the

percentage of latents whose mates are retrieved at rank 1 is

used as an evaluation criterion. A high identification accu-

racy is expected for latents with high quality indices. Note

that, by fusing the results from the three different COTS

matchers and using both proprietary minutiae and markup

minutiae, 72% of the latents can be identified at rank 1. Fig.

8 also shows the ideal performance when the exact retrieval

ranks of the true mates are available. The minutiae count

used in [25] is not a good feature for latent quality estima-

tion in the presence of unreliable minutiae. The proposed

LFIQ effectively utilizes the minutiae reliability measure

and finger position estimation to determine the latent qual-

ity compared to [25].

To compare the proposed LFIQ with an AFIS tenprint

quality measure, we first mask out the background region

in the latent to reduce the interference of the background

noise in quality estimation. For a fair comparison, the LFIQ

also used the proprietary minutiae from the matcher. The

LFIQ gave comparable results to the tenprint quality mea-

sure without knowing the internal details of the matcher.



(a) (b) (c) (d) (e)

Figure 7. Latent images corresponding to quality indices of (a) 1 (lowest quality), (b) 30, (c) 50, (d) 80, and (e) 100 (highest quality).
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Figure 8. Rank-1 identification rate with respect to different qual-

ity measures: (i) ideal case where the rank of the true mate is

known, (ii) the latent quality measure in [25], and (iii) the pro-

posed LFIQ.

We also evaluated the proposed LFIQ for estimating ten-

print quality. We used 1,844 rolled fingerprint pairs in NIST

SD42 [2] and compared the LFIQ to the AFIS tenprint qual-

ity measure and the NFIQ [19]. Again, the proposed LFIQ

showed a comparable result to the two tenprint quality mea-

sures.

The proposed LFIQ is correlated with the value deter-

mination by latent examiners. The mean LFIQ index of

the latents determined as VID by examiners was 58 (upper

quartile and lower quartile were 85 and 34, respectively)

while the mean LFIQ index of the VEO latents was 20 (up-

per quartile and lower quartile were 30 and 2, respectively)

and that of the NV latents was 21 (upper quartile and lower

quartile were 26 and 1, respectively). This implies that the

proposed LFIQ generally agrees to the examiners’ value de-

termination on latent fingerprints.

Fig. 9 shows examples where the proposed LFIQ can

successfully predict latent value unlike the subjective eval-

uation of latent examiners. Fig. 10 shows a latent for which

2We excluded those images used for minutiae dictionary learning.

(a) U254, NIST SD27

(b) W803S03, WVU

Figure 9. Latents and mated rolled prints for which the proposed

LFIQ correctly predicts the AFIS performance. (a) Latent with

high quality index of 96; determined as NV by examiners, but the

retrieval rank of the true mate by AFIS is 1; and (b) latent with

low quality index of 1; determined as VID by examiners, but the

retrieval rank of the true mate by AFIS is 2,349.

both the proposed LFIQ and the value determination by ex-

aminers indicate that it is of good quality, yet the true mate

is retrieved only at a rank of 600.

5. Summary

Fingerprint quality assessment primarily aims to predict

the matching performance of AFIS to ensure the reliabil-

ity of matching results. By rejecting poor quality finger-

prints, an AFIS can reduce incidents of false accepts or

false rejects. While a number of fingerprint quality mea-

sures have been developed for rolled and plain fingerprints,



Figure 10. A latent (W944F08, WVU) and mated rolled print for

which the proposed LFIQ is high (93); latent examiners determine

the latent as VID, but the mate is retrieved at rank 600.

very little effort has been made to devise a latent fingerprint

quality measure. Reliable latent quality assessment is cru-

cial, primarily to prevent any evidence of value from being

discarded. Recent studies [20, 21] and evaluations of la-

tent matchers [13] show that latent value determination by

examiners can be subjective and inconsistent, which moti-

vates us to develop an objective measure of latent quality.

We have proposed a latent quality metric, called LFIQ, that

incorporates ridge quality, minutiae reliability, and finger

position in latent image. The proposed LFIQ satisfies desir-

able properties of a latent quality measure: (i) it can predict

the matching performance by AFIS with high accuracy and

(ii) it is highly correlated with value determination by latent

examiners. The proposed LFIQ can be used to (i) distin-

guish high quality latents that do not need any human in-

tervention and can be identified in “lights-out” mode, and

(ii) assist latent examiners in their value determination for

latent fingerprints.
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