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Altered Fingerprints: Analysis and Detection
Soweon Yoon, Student Member, IEEE, Jianjiang Feng, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract —The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border
control applications has heightened the need for ensuring that these systems are not compromised. While several issues related
to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem
of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration
of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have
been reported in the press. Fingerprint image quality assessment software (e.g. NFIQ) cannot always detect altered fingerprints
since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: (a)
compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS; (b)
investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher; (c) classifying the alterations
into three major categories and suggesting possible counter-measures; (d) developing a technique to automatically detect altered
fingerprints based on analyzing orientation field and minutiae distribution; and (e) evaluating the proposed technique and the
NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the
feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.

Index Terms —Fingerprints, AFIS, obfuscation, alteration, ridge pattern, minutiae distribution, image quality, fingerprint-ness.
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1 INTRODUCTION

F INGERPRINT recognition has been successfully
used by law enforcement agencies to identify

suspects and victims for almost 100 years. Recent
advances in automated fingerprint identification tech-
nology, coupled with the growing need for reliable
person identification, have resulted in an increased
use of fingerprints in both government and civil-
ian applications such as border control, employment
background checks, and secure facility access [2].
Examples of large-scale fingerprint systems in the
U.S. government arena include the US-VISIT’s IDENT
program [3] and the FBI’s IAFIS service [4].

The success of fingerprint recognition systems in
accurately identifying individuals has prompted some
individuals to engage in extreme measures for the
purpose of circumventing these systems. The primary
purpose of fingerprint alteration [5] is to evade iden-
tification using techniques varying from abrading,
cutting, and burning fingers to performing plastic
surgery (see Fig. 1). The use of altered fingerprints
to mask one’s identity constitutes a serious “attack”
against a border control biometric system since it
defeats the very purpose for which the system was
deployed in the first place, i.e., to identify individuals
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in a watch-list.
It should be noted that altered fingerprints are dif-

ferent from fake fingerprints. The use of fake fingers -
made of glue, latex or silicone - is a well publicized
method to circumvent fingerprint systems. Altered
fingerprints, however, are real fingers that are used
to conceal one’s identity in order to evade identi-
fication by a biometric system. While fake fingers
are typically used by individuals to adopt another
person’s identity, altered fingers are used to mask
one’s own identity. In order to detect attacks based
on fake fingers, many software [10] and hardware [11]
solutions have been proposed. However, the problem
of altered fingerprints has hitherto not been studied
in the literature and there are no reported techniques
to identify them. Furthermore, the lack of public
databases comprising of altered fingerprint images
has stymied research in this area. One of the goals
of this paper is to highlight the importance of the
problem, analyze altered fingerprints, and propose an
automatic detection algorithm for them.

The aforementioned problem involving altered fin-
gerprints falls under a broader category of attacks
known as biometric obfuscation. Obfuscation can be
defined as a deliberate attempt by an individual to
mask his identity from a biometric system by altering
the biometric trait prior to its acquisition by the sys-
tem. Examples include mutilating the ridges of one’s
fingerprint by using abrasive material, perturbing the
texture of the iris by wearing theatrical lenses or
altering facial attributes such as nose and lips via
surgical procedures. In this study, we will concern
ourselves with the problem of fingerprint obfuscation
for the following reasons: (i) fingerprint-based biomet-
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Fig. 1: Photographs of altered fingerprints. (a) Transplanted friction ridge skin from sole [6], (b) fingers that have been bitten [7], (c) fingers
burnt by acid [8], and (d) stitched fingers [9].

ric systems are much more widespread for large-scale
identification than any other biometric modality; (ii)
it is relatively easy to alter one’s fingerprints using
chemicals and abrasives compared to, say, one’s iris
or face where a more elaborate surgical procedure
may be necessary; and (iii) mutilated fingerprints
are being routinely encountered by law enforcement
and immigration officials in several countries, thereby
underscoring the urgency of finding a solution to this
problem.

Developing an automatic solution to detect altered
fingerprints is the first step in defeating fingerprint
alteration. Fingerprint quality assessment routines
used in most fingerprint identification systems, such
as the open source NFIQ (NIST Fingerprint Image
Quality) software [12], may be useful in detecting
altered fingerprints if the corresponding images are
indeed of poor quality. But, not all altered fingerprint
images have poor quality (see Figs. 10 and 11). Since
existing fingerprint quality assessment algorithms [13]
are designed to examine if an image contains suffi-
cient information (say, minutiae) for matching, they
have limited capability in determining if an image
is a natural fingerprint or an altered fingerprint. For
example, while the synthesized ridge pattern in Fig.
2 is not likely to appear on fingertips, it is declared to
be of the best quality according to the NFIQ measure1.

Given that the altered fingerprints are likely to be
encountered in large-scale national identification or
border control systems, the automatic detector must

Fig. 2: NFIQ value for this synthetic ridge pattern (generated by
iterative contextual filtering [14]) is 1, the highest quality level.

1NFIQ defines five quality levels in the range [1, 5] with 1
indicating the highest quality.

satisfy the following three requirements:

1) Given the large throughput requirement of these
systems, the algorithm must be extremely fast. In
other words, it should not increase the computa-
tional burden of the matcher by any significant
amount. State of the art AFIS can process finger-
prints at the rate of about 1 million matches per
second. This implies that the feature extraction
and decision rule used to automatically detect
altered fingerprints must be simple.

2) In operational scenarios, the number of indi-
viduals with altered fingerprints that will be
encountered by AFIS will be very small. Keeping
this in mind, the altered fingerprint detection
algorithm should operate at a very small false
positive rate, say 1% or lower. Subjects that are
suspected to have altered fingerprints will go
through a secondary inspection stage.

3) The altered fingerprint detector should be easily
integrated into any AFIS.

The rest of the paper is organized as follows. Section
2 lists some of the cases where altered fingerprints
were encountered by law enforcement agencies. In
Section 3, the impact of the fingerprint alteration
on the matching performance is investigated and
three different categories of altered fingerprints and
their potential counter-measures are described. The
proposed approach for detecting altered fingerprints
is presented in Section 4, and evaluated in Section
5. Finally, Section 6 proposes future directions for
research on this topic.

2 BACKGROUND

Fingerprint alteration has a long history. As early as
1933, Gus Winkler, a murderer and bank robber, was
found to have altered the fingerprints of his left hand
except for the thumb by slashing and tearing the flesh
of the fingers [5]. Further, the pattern type of one
finger was altered from double loop to left loop (see
Fig. 3a).

In more recent cases, a man using the name Alexan-
der Guzman, arrested by Florida officials in 1995
for possessing a false passport, was found to have
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Fig. 3: Inked impressions before and after fingerprint alteration (a) of Gus Winkler [5] (pattern type is altered from double loop to left loop),
and (b) of Jose Izquierdo [15] (altered by switching two parts of a ‘Z’ shaped cut on the fingertip).

TABLE 1: High Profile Cases of Fingerprint Alteration

Case Year Alteration Type Description

Criminal Cases
Gus Winkler [5] 1933 Imitation Pattern type was changed from double loop to left loop

(Fig. 3a).
John Dillinger [16] 1934 Obliteration Fingerprints were mutilated by applying acid.
Robert J. Philipps [16] 1941 Obliteration Skin from the chest was transplanted to the fingertips.
Jose Izquierdo [15] 1997 Distortion A fingerprint with strange pattern was formed by ‘Z’ cut

(Fig. 3b).
Marc George [16] 2005 Imitation Friction ridge skin from sole was implanted to the fin-

gertips (Fig. 1a).
A man arrested for vehicle theft [7] 2007 Obliteration Fingers were bitten (Fig. 1b).
Mateo Cruz-Cruz [8] 2007 Obliteration Fingerprints were blackened as a result of applying acid

(Fig. 1c).
Gerald Perez [17] 2008 Obliteration Fingertips with thick stitches (Fig. 1d).

Non-criminal Cases
A woman at a border crossing [8] 2007 Obliteration A surgery was performed on fingertips to generate

strange fingerprint pattern.
A woman attempting to deceive the Tai-
wan border control system [18]

2008 Obliteration
and Distortion

Thumbprints were altered by ‘Z’ cuts and five other
fingerprints were altered using a laser.

Asylum seekers to EU [19], [20] 2008 Obliteration Fingertips were abraded and burned.
A woman attempting to evade the
Japanese border control system [21]

2009 Imitation Friction ridge skins from thumbs and index fingers were
swapped between left and right hands.

Three people charged with conspiring to
mutilate fingerprints [22]

2010 Obliteration A physician, a broker, and a patient were involved in a
scheme to mutilate or surgically remove the fingerprints
to conceal illegal aliens from detection.

obfuscated fingerprints (see Fig. 3b). After a two-
week search based on manually reconstructing the
damaged fingerprints and searching the FBI database
containing 71 million records, the reconstructed fin-
gerprints of Alexander Guzman were linked to the
fingerprints of Jose Izquierdo who was an absconding
drug criminal [15]. His fingerprint mutilation process
consisted of three steps: making a ‘Z’ shaped cut on
the fingertip, lifting and switching two triangular skin
patches, and stitching them back. In September 2005,
a drug dealer named Marc George was apprehended
because his limping gait as a result of surgery caught
the attention of border officials (see Fig. 1a) [16].

It is not just the criminals who have been found to
alter their fingerprints. In December 2009, a woman
successfully evaded the Japanese immigration AFIS
by surgically swapping fingerprints of her left and
right hands [21]. Although she was originally arrested
for faking a marriage license, scars on her hands made
the police suspicious.

Fingerprint alteration has even been performed at
a much larger scale involving a group of individuals.
It has been reported that hundreds of asylum seek-

ers had cut, abraded, and burned their fingertips to
prevent identification [19], [20] by EURODAC [23], a
European Union-wide fingerprint system for identi-
fying asylum seekers. Table 1 lists reported cases of
fingerprint alteration.

Although the number of publicly disclosed cases of
altered fingerprints is not very large, it is extremely
difficult to estimate the actual number of individuals
who have successfully evaded identification by fin-
gerprint systems as a result of fingerprint alteration.
Almost all the persons identified to have altered their
fingerprints were not detected by AFIS, but by some
other means [16], [21].

3 ANALYSIS OF ALTERED FINGERPRINTS

Based on a database of altered fingerprints made
available to us by a law enforcement agency, we
first (i) determine the impact of fingerprint alteration
on the matching performance, (ii) categorize altered
fingerprints into three types2: obliteration, distortion,

2While the categorization is exclusive, there is ambiguity in
some cases.
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Fig. 4: Distribution of the number of altered fingerprints in tenprint
cards in our database.

and imitation (see Figs. 9, 10, and 11), and (iii) assess
the utility of an existing fingerprint quality measure
in terms of altered fingerprint detection.

3.1 Database
The database contains 4,433 altered fingerprints from
535 tenprint cards of 270 subjects.

• Not all the ten fingers in a tenprint card may have
been altered. The distribution of the number of
altered fingers in a card is shown in Fig. 4; in
57% of the tenprint cards all ten fingerprints were
altered; 85% of the tenprint cards have more than
five altered fingerprints.

• The number of tenprint cards for a subject varies
from 1 to 16; a total of 87 subjects out of the
270 subjects have multiple tenprint cards due to
multiple arrests.

• For subjects with multiple tenprint cards, there
exist 1,335 pairs of pre-altered (natural) and post-
altered fingerprints. Fig. 5 shows an example of
pre-altered and post-altered tenprint cards of a
subject.

3.2 Vulnerability of Fingerprint Identification Sys-
tems

Fingerprint alteration is a serious threat to AFIS,
since it revokes one of the fundamental premise that
fingerprint is persistent during one’s life time. To
understand the vulnerability of AFIS to fingerprint
alteration, we used a commercial matcher, VeriFinger
SDK 4.2 [24], to match 1,335 altered fingerprints to
their mated pre-altered fingerprints. To establish a
baseline, NIST SD4 database [25], which consists of
2,000 fingers with two impressions per finger, was
used to obtain genuine and impostor match score
distributions using VeriFinger SDK 3.

3Note that while the analysis is based on a specific fingerprint
matcher, the results of fingerprint alteration are likely to affect all
commercial matchers in a similar manner. VeriFinger, like other
state of the art fingerprint matchers, utilizes ridge pattern for
matching, which is what the culprits are trying to change through
fingerprint alteration.
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Fig. 6: Match score distributions of pre/post alteration pairs according
to type and genuine and impostor pairs in NIST SD4.

Fig. 6 shows the score distributions for pre/post
altered fingerprint pair matches according to type and
genuine and impostor matches in NIST SD4. The key
observations here are:

1) The match score distributions of pre/post al-
tered fingerprint pairs for all alteration types
follow the impostor score distribution.

2) Heavy tails in pre/post altered match score dis-
tributions indicate that fingerprint alteration, as
observed in our database, is not always success-
ful in evading AFIS.

3) At a threshold of 41, which corresponds to 0%
false accept rate (FAR) on NIST SD4, 83% of the
pre/post altered fingerprint pairs have genuine
match scores below the threshold. This means
that an AFIS is unable to link most of the altered
fingerprints to their true mates.

Fig. 7 shows examples where altering a finger-
print leads to failure in matching to its true mate.
The process of fingerprint mutilation destroys the
ridge structure itself so that minutiae extraction is
not possible in this area (Fig. 7a). Also, severe ridge
distortion such as ridge structure transformation (Fig.
7b) or ridge deformation due to scars alters the spatial
distribution of the minutiae.

There is no guarantee that fingerprint alteration will
always be successful in evading an AFIS (see Fig. 8).
As long as there are a sufficient number of minutiae
that can be extracted in the unaltered area, pre/post
fingerprint mates can be successfully matched.

3.3 Types of Altered Fingerprints

We classify altered fingerprints into three categories
based on the changes in ridge pattern due to al-
teration. This categorization will assist us in follow-
ing manner: (i) getting a better understanding of
the nature of alterations that can be encountered,
(ii) detecting altered fingerprints by modeling well-
defined subcategories, and (iii) developing methods
for altered fingerprint restoration.
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Fig. 5: Mated pre/post altered tenprint cards from a subject. (a) Pre-altered fingerprints and (b) post-altered fingerprints.

(a) (b)

Fig. 7: Examples where fingerprint alteration severely degrades the matching score with the pre-altered mates. (a) Mutilation over a large
area and (b) ridge transformation. These altered fingerprints have a match score of 0 with their true mates. All squares indicate minutiae
extracted from the image and squares filled with red color represent matched minutiae between the pre/post altered fingerprints.

(a) Match score = 233 (b) Match score = 173

Fig. 8: Examples where the pre/post altered fingerprint mates are correctly matched despite fingerprint alteration. (a) Alteration with a small
damaged area and no ridge distortion and (b) sufficient number of minutiae in the unaltered area even with severe fingerprint alteration. Only
a few corresponding minutiae are connected with dotted lines.

Table 2 shows the exclusive categorization of 4,433
altered fingerprints in our database. Note that this
classification is not based on the method of alteration
which is not known to us; it is subjective and is based
on our examination of the ridge patterns in a large
number of altered fingerprint images in the database.

TABLE 2: Exclusive Categorization of the Altered Fingerprints into
Three Types

Type
Obliteration Distortion

Imitation
Scar

Mutila-
Z-cut

Trans-
tion plantation

Number of
1,457 2,480 297 148 51

Images

3.3.1 Obliteration

Friction ridge patterns on fingertips can be obliterated
by abrading [26], cutting [5], burning [18], [19], [20],
[27], applying strong chemicals (Fig. 1c), and trans-
planting smooth skin [16]. Further, factors such as
skin disease (such as leprosy [28]) and side effects
of a cancer drug [29] can also obliterate fingerprints.
Friction ridge structure is barely visible within the
obliterated region. According to Table 2, obliteration
appears to be the most popular form of alteration.
This may be because obliteration which completely
destroys ridge structures is much simpler to perform
than distortion/imitation which requires a surgical
procedure. Furthermore, detecting distorted or imi-
tated fingerprints is much more difficult for human
examiners than obliterated fingerprints.
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Fig. 9: Fingerprint obliteration. Examples of (a) scar and (b) mutila-
tion.

Obliterated fingerprints can evade fingerprint qual-
ity control software, depending on the area of the
damage. If the affected finger area is small, the exist-
ing fingerprint quality assessment softwares may fail
to detect it as an altered fingerprint (the fingerprint in
Fig. 9a has an acceptable NFIQ value of 3), but AFIS is
likely to successfully match the damaged fingerprint
to the original mated fingerprint (Fig. 8a). But, if the
altered area is sufficiently large, fingerprint quality
control software can easily detect the damage. For
example, the obliterated fingerprint in Fig. 9b has the
lowest NFIQ value of 5.

To identify individuals with severely obliterated
fingerprints, it may be necessary to treat these finger-
prints as latent images, perform an AFIS search using
manually marked features, and adopt an appropriate
fusion scheme for tenprint search [30]. In rare cases,
even if the finger surface is completely damaged, the
dermal papillary surface, which contains the same
pattern as the epidermal pattern, may be used for
identification [31].

3.3.2 Distortion

Friction ridge patterns on fingertips can be turned
into unnatural ridge patterns [9], [15], [32], by re-
moving portions of skin from a fingertip and either
grafting them back in different positions (Fig. 10a) or
replacing them with friction ridge skin on the palm
or sole (Fig. 10b). Distorted fingerprints have unusual
ridge patterns which are not found in natural finger-
prints. These abnormalities include abnormal spatial
distribution of singular points or abrupt changes in
orientation field along the scars. Note that orientation
field discontinuity in natural fingerprints is usually
observed only at singular points.

Distorted fingerprints can also successfully pass the
fingerprint quality test since their local ridge structure
remains similar to natural fingerprints while their
global ridge pattern is abnormal. For instance, a dis-
torted fingerprint as a result of swapping skin patches
within the same finger (e.g. Fig. 10a) retains the same
ridge property (e.g. ridge frequency and width) over
the entire fingerprint area. Fig. 10a is assigned the
highest quality level, NFIQ of 1. Similarly, the altered

(a) (b)

Fig. 10: Fingerprint distortion. Examples of (a) transplantation within
a finger by ‘Z’ cut and (b) transplantation from other friction ridge
skin, e.g. from palm.

fingerprint in Fig. 10b is assigned the second highest
quality level, NFIQ = 2.

Fingerprints altered by ‘Z’ cut are of special in-
terest since they retain their original ridge structure
enabling reconstruction of the original fingerprint be-
fore alteration. Therefore, it is imperative to upgrade
current fingerprint quality control software to detect
the distorted fingerprints. Once detected, the follow-
ing operations may be performed to assist the AFIS:
(i) identify unaltered regions of the fingerprint and
manually mark the features (i.e., the minutiae) in these
regions and (ii) reconstruct the original fingerprint as
in the ‘Z’ cut case [15].

3.3.3 Imitation

Friction ridge patterns on fingertips can still preserve
fingerprint-like pattern after an elaborate procedure of
fingerprint alteration: (i) a portion of skin is removed
and the remaining skin is pulled and stitched together
(Fig. 11a), (ii) friction ridge skin from other parts of the
body is used to fill the removed part of the fingertip to
reconcile with the remaining ridge structure (Fig. 11b),
or (iii) transplantation of the entire fingertip. As re-
ported in [21], simply swapping the skin on fingertips
between the left and right hands successfully evaded
an AFIS.

Imitated fingerprints can not only successfully pass
the fingerprint quality assessment software, they can
also confound human examiners. Fig. 11 shows pre-
altered and post-altered fingerprint mates. The altered
fingerprint in Fig. 11a has a very smooth orientation
field over the entire fingerprint area (which looks like
an arch-type fingerprint) and the only evidence of
possible alteration is a thin scar. This fingerprint has
the highest NFIQ value of 1. However, its unaltered
mate is indeed of right loop type, and the match score
between this pair of fingerprints is only 19. Recall that
the threshold on match score corresponding to 0%
FAR of the matcher was 41. The altered fingerprint
in Fig. 11b was generated by an exquisite surgical
procedure to have very natural ridge flow even along
the surgical scars. This fingerprint also has the highest
NFIQ value of 1 with a match score between pre/post
altered fingerprint pair of only 28.
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(a)

(b)

Fig. 11: Fingerprint imitation. Left: pre-altered fingerprint, and right:
its post-altered fingerprint mate. (a) Removal of a portion of skin and
(b) exquisite transplantation from other friction ridge skin.

To match altered fingerprints in Fig. 11, matching
algorithms that are robust to distortion and inconsis-
tency need to be developed. In the case where finger-
prints from different fingers are swapped, fingerprint
matching without using finger position information
(i.e., left thumb is allowed to match to right index
finger) may help in determining the true identity at
the expense of significantly higher matching time.

3.4 Effectiveness of Fingerprint Quality Assess-
ment Algorithm

To learn the effectiveness of the commonly used fin-
gerprint quality control softwares in detecting altered
fingerprints, quality levels of altered fingerprints and
natural fingerprints were estimated using the NFIQ
software [12], which is the de facto standard of fin-
gerprint quality. To construct a natural fingerprint
database, we used the 27,000 fingerprints in NIST
SD14 [33]. From the histograms of NFIQ values for
altered and natural fingerprints shown in Fig. 12, we
can observe that:

1) A significant portion of altered fingerprints have
the lowest quality level of 5 while only a small
percentage of natural fingerprints have this low-
est quality level. In particular, the obliterated
fingerprints have the largest portion at the NFIQ
level of 5. By contrast, the distorted and imitated
fingerprints have relatively small portion at the
level of 5.

2) A large number of altered fingerprints have
good quality; about 7% of altered fingerprints
have the highest quality level of 1 in total, and
a significant portion of distorted and imitated
fingerprints has the highest quality level.
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Fig. 12: Histograms of NFIQ values of 27,000 natural fingerprints in
NIST SD14 and 4,433 altered fingerprints in our altered fingerprint
database according to the type of alteration. Recall that NFIQ = 1
indicates the highest quality.

3) If the NFIQ value of 5 is used as a criterion for
detecting altered fingerprints, it will lead to a
true positive (an altered fingerprint is correctly
classified as an altered fingerprint) rate of 31.6%
at a false positive (a natural fingerprint is mis-
classified as an altered fingerprint) rate of 2.1%.

4 AUTOMATIC DETECTION OF ALTERED
FINGERPRINTS

In the previous section, we showed that the NFIQ
algorithm is not suitable for detecting altered finger-
prints, especially the distortion and imitation types.
In fact, the distorted and imitated fingerprints are
very hard to detect for any fingerprint image quality
assessment algorithm that is based on analyzing local
image quality. In this section, we consider the problem
of automatic detection of alterations based on analyz-
ing ridge orientation field and minutiae distribution.
The flow chart of the proposed alteration detector is
given in Fig. 13.

4.1 Analysis of Orientation Field

Orientation field4 describes the ridge flow of finger-
prints and is defined as the local ridge orientation
in the range [0, π). Good quality fingerprints have
smooth orientation field except near the singular
points (e.g. core and delta). Based on this fact, many
orientation field models have been developed by
combining the global orientation field model for the
continuous flow field of the fingerprint with the local
orientation field model around the singular points
[34], [35], [36]. The global orientation field model
represents either arch-type fingerprints, which do not
have any singularity, or the overall ridge orientation
field except singularity in fingerprints. If the global
orientation field model alone is used for orientation

4Orientation field is often called ridge flow.
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Fig. 13: Flowchart of the proposed algorithm.

field approximation, the difference between the ob-
served orientation field and the model will ideally
be non-zero only around the singular points. On the
other hand, for obfuscated fingerprints, the model
fitting error is observed in the altered region as well.
Thus, we use the difference between the observed
orientation field extracted from the fingerprint image
and the orientation field approximated by the model
as a feature vector for classifying a fingerprint as
natural fingerprint or altered one. The main steps of
the proposed algorithm are described below:

1) Normalization: An input fingerprint image is
normalized to 512×480 pixels by cropping a
rectangular region of the fingerprint, which is
located at the center of the fingerprint and
aligned along the longitudinal direction of the
finger, using the NIST Biometric Image Software
(NBIS) [37]. This step ensures that the features
extracted in the subsequent steps are invariant
with respect to translation and rotation of finger.

2) Orientation field estimation: The orientation
field of the fingerprint, θ(x, y), is computed us-
ing the gradient-based method [38]. The initial
orientation field is smoothed by a 16×16 averag-
ing filter, followed by averaging the orientations
in 8×8 pixel blocks. Foreground mask is ob-
tained by measuring the dynamic range of gray
values of the fingerprint image in local blocks
and morphological process for filling holes and
removing isolated blocks is performed.

3) Orientation field approximation: The orientation
field θ(x, y) is approximated by a polynomial
model to obtain θ̂(x, y).

4) Feature extraction: The error map, ε(x, y), is
computed as the absolute difference between
θ(x, y) and θ̂(x, y) and used to construct the
feature vector.

More details of steps 3) and 4) are given below.

4.1.1 Orientation Field Approximation

To represent the global orientation field, a set of
polynomial functions is used, which is not only com-
putationally efficient, but also provides a good ap-
proximation in orientation field modeling. Let θ(x, y)
denote the orientation field. Then, the cosine and sine
components of the doubled orientation at (x, y) can

be represented by polynomials of order n:

gnc (x, y) , cos 2θ(x, y) =

n
∑

i=0

i
∑

j=0

ai,jx
jyi−j , (1)

gns (x, y) , sin 2θ(x, y) =
n
∑

i=0

i
∑

j=0

bi,jx
jyi−j , (2)

where ai,j and bi,j are the polynomial coefficients for
gnc (x, y) and gns (x, y), respectively.

As the order of the polynomials increases, the
model becomes more flexible in representing abrupt
changes in the orientation field. When the order of
the polynomial model is too low, the orientation field
approximated by the model is quite different from
the true orientation field. However, the order of the
polynomial model does not need to be very high;
polynomial models with 6 or higher order do not
make significant difference in the fitting results. Thus,
we select the order of the polynomial model as 6
(n = 6).

Using the orientation field θ(x, y) obtained in step
2), the polynomial coefficients ai,j and bi,j can be
estimated by the least square method. For simplicity,
we represent (1) and (2) in matrix form:

gc(x, y) = xTa, gs(x, y) = xTb, (3)

where x = [1 x y x2 xy y2 · · · xn · · · yn]T , and a

and b are the corresponding coefficient vectors. The
problem of estimating a and b can be formulated as:

â = argmin
a

‖gc−Xa‖2, b̂ = argmin
b

‖gs−Xb‖2, (4)

where

gc=











gc(x1, y1)
gc(x2, y2)

...
gc(xN , yN)











,gs=











gs(x1, y1)
gs(x2, y2)

...
gs(xN , yN )











, and X=











xT
1

xT
2

...
xT
N











from N observations of θ(x, y) where (x, y) ∈ R, R =
{(x, y): (x, y) in foreground}.

Finally, the orientation field approximated by the
polynomial model, θ̂(x, y), is obtained by:

θ̂(x, y) =
1

2
tan−1

(

ĝs(x, y)

ĝc(x, y)

)

, (5)

where ĝc(x, y) = xT â and ĝs(x, y) = xT b̂.

4.1.2 Feature Extraction

While the low order polynomial model can ade-
quately represent smooth (global) changes in the ori-
entation field, it cannot accurately model the abrupt
changes in the orientation field in local areas, e.g.
around the cores and deltas in natural fingerprints.
One of the observed characteristics of altered finger-
prints is that their ridge flow can be discontinuous in
non-singular regions as well, such as severely scarred
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(a) Fingerprint image

(b) Orientation field extracted from the image, θ(x, y)

(c) Orientation field approximated by the polynomial model, θ̂(x, y)

(d) Error map, ε(x, y)

Fig. 14: Orientation field discontinuity. Column 1: Natural fingerprint (NIST SD14, F0000001); column 2: scarred fingerprint; column 3:
mutilated fingerprint; column 4: distorted fingerprint by ‘Z’ cut; and column 5: distorted fingerprint by transplantation from other friction ridge
skin.

areas (Fig. 9a), mutilated areas (Fig. 9b), and distorted
ridge areas (Figs. 10a and b). The difference between
the observed orientation field and the modeled orien-
tation field indicates the locations and the amount of
the abrupt changes in the ridge flow.

We define the error map ε(x, y) as:

ε(x, y)=min(|θ(x, y)−θ̂(x, y)|, π−|θ(x, y)−θ̂(x, y)|)/(π/2).
(6)

Fig. 14 shows the error maps of a natural fingerprint
and four different altered fingerprints. The size of the
error map is in the size of 60×60 blocks after removing
two columns from each side of the error map.

Feature vector from the error map consists of his-
tograms of local spatial regions [39]. The error map
is divided into 3×3 cells, where each cell is of size
20×20 blocks. Histogram of the error map in each
cell is computed in 21 bins in the range [0, 1], and

the histograms from all the 9 cells result in a 189-
dimensional feature vector.

4.2 Analysis of Minutiae Distribution

A minutia in the fingerprint indicates ridge charac-
teristics such as ridge ending or ridge bifurcation. Al-
most all fingerprint recognition systems use minutiae
for matching. In addition to the abnormality observed
in orientation field, we also noted that minutiae dis-
tribution of altered fingerprints often differ from that
of natural fingerprints.

Based on the minutiae extracted from a fingerprint
by the open source minutiae extractor in NBIS, minu-
tiae density map is constructed by using the Parzen-
window method with uniform kernel function. Let
Sm be the set of minutiae of the fingerprint, i.e.,
Sm={x|x = (x, y) is the position of minutia}. Then,
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(a) Fingerprint image

(b) Minutiae extracted from the image

(c) Minutiae density map

Fig. 15: Minutiae density map. Column 1: Natural fingerprint (NIST SD14, F0001826); column 2: distorted fingerprint with dense minutiae
along scars; column 3: obliterated fingerprint with dense minutiae distribution in the altered area; column 4: obliterated fingerprint with dense
minutiae distribution over the entire altered area due to ridge-like pattern formed by alteration. Note that the minutiae density maps are scaled
to the same gray scale range.

the minutiae density map from Sm is computed as
follows:

1) Initial estimation: Initial minutiae density map,
Md(x), is obtained by

Md(x) =
∑

x0∈Sm

Kr(x− x0), (7)

where Kr(x − x0) is a uniform kernel function
centered at x0 with radius r (r is set to 40 pixels).

2) Low-pass filtering: Md(x, y) is smoothed by a
Gaussian filter of size 30×30 pixels with a stan-
dard deviation of 10 pixels.

3) Normalization: Md(x, y) is transformed to lie in
the interval [0, 1] by

Md(x, y) =

{

Md(x, y)/T if Md(x, y) ≤ T
1 otherwise,

(8)
where T is a predetermined threshold.

Fig. 15 shows the minutiae density maps of a
natural and three altered fingerprints. In the natural
fingerprint, minutiae are well spread and distributed
almost uniformly. In the altered fingerprints, on the
other hand, the distributions of minutiae are quite
different: (i) many spurious minutiae are extracted
along scars and in the obliterated region due to

ridge discontinuity, and (ii) an excessive number of
minutiae appear when a new ridge-like pattern is
formed after alteration. These examples demonstrate
that minutiae distribution can be useful for detecting
altered fingerprints.

Feature vector from the minutiae density map is
also constructed by local histograms in 3×3 cells.
Then, the feature vectors from orientation field discon-
tinuity map and minutiae density map are combined
by concatenating local histograms in each cell, and fed
into an SVM for classification.

5 EXPERIMENTS

The proposed algorithm was evaluated at two lev-
els: finger-level (one finger) and subject-level (all ten
fingers). At the finger level, we evaluate the perfor-
mance of distinguishing between natural and altered
fingerprints. At the subject level, we evaluate the per-
formance of distinguishing between subjects with nat-
ural fingerprints and those with altered fingerprints.
Since most AFIS used in law enforcement, national
ID, and border control applications process all the ten
fingerprints of a person, the subject level performance
utilizes this information of the application domain.
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Fig. 16: ROC curves of the proposed algorithm and NFIQ criterion in detecting altered fingerprints. (a) The ROC curves of the three
approaches in the proposed algorithm and the NFIQ algorithm and (b) the ROC curves of the proposed fusion algorithm and the NFIQ
algorithm for each type of altered fingerprints. The ROC curve of NFIQ criterion is shown as a set of points (only one point is visible in the
range of false positive rate plotted here) because its output can only take one of the five quality levels.

5.1 Finger-Level Evaluation

The altered fingerprint database available to us con-
tains 4,433 fingerprints from 535 tenprint cards. For
non-altered fingerprint database, we use 27,000 fin-
gerprints from the 2,700 tenprint cards in the NIST
SD14 [33]. This database contains two impressions for
each finger, called file and search; the file impression
is used in our experiments.

LIBSVM [40] with radial basis kernel function is
used for classification with 10-fold cross-validation.
The scores output by LIBSVM are linearly scaled to
the range [0, 1]. The normalized score is termed as
a measure of the fingerprint-ness of the input finger-
print. When the fingerprint-ness of an input image
is smaller than a predetermined threshold value, the
system raises an alarm to indicate that the image is a
possible altered fingerprint. If this image is indeed an
altered fingerprint, it is deemed to be a true positive;
otherwise, it is deemed to be a false positive. Similarly,
true negative indicates that a natural fingerprint is
correctly classified as natural and false negative in-
dicates that an altered fingerprint is not detected as
altered.

The Receiver Operating Characteristic (ROC) curves
of the proposed approach and NFIQ software for
detecting altered fingerprints are given in Fig. 16.
At the false positive rate of 2.1%, where natural
fingerprints in NIST SD14 with the NFIQ value of 5
are determined as altered fingerprints, the proposed
algorithm attains a 70.2% true positive rate while the
true positive rate of the NFIQ is only 31.6%. Fig.
16a shows the ROC curves of three approaches for
detecting altered fingerprints (orientation field discon-
tinuity, minutiae distribution, and their feature level
fusion) and the NFIQ algorithm. Fig. 16b shows the
ROC curves of the proposed fusion algorithm and
the NFIQ algorithm according to alteration type. Both

obliterated and distorted fingerprints can be detected
by the proposed algorithm at similar accuracy while
NFIQ can only identify obliterated cases. On the other
hand, imitated fingerprints are challenging for both
algorithms.

At the false positive rate of 1% (which means 270
fingerprints among the 27,000 in NIST SD14 would
be misclassified as altered fingerprints), the threshold
value for fingerprint-ness score is 0.60. Fig. 17 shows
examples of successfully detected alterations using
the proposed algorithm even though the NFIQ mea-
sure assigns acceptable quality level to these images.

Not all the altered fingerprints can be detected by
the proposed algorithm. If the altered area is too small
(Fig. 18a), the evidence of alteration is difficult to
detect. In the imitation case, the ridge structure is very
natural even at the boundary of altered region; the ori-
entation field is continuous and there is insignificant
abnormality in minutiae density along scars (Fig. 18b).

The main reasons for false positive cases are: (i)
poor image quality, leading to incorrect fingerprint
feature extraction (see Fig. 19a) and (ii) ground truth
error; some of the fingerprints in NIST SD14 may
possibly have been altered (see Figs. 19b, c, and d)!
Table 3 shows the NFIQ distribution of the false
positive examples found by the proposed algorithm
at the false positive rate of 1%. Most of the false
positive images have NFIQ of 4 or 5. Note that it is
acceptable to raise alarms on poor quality fingerprints
since (i) poor quality images need to be manually
checked and (ii) criminals may purposely present
poor quality fingerprints to the fingerprint system to

TABLE 3: NFIQ Distribution for False Positives Detected at the Rate
of 1% by the Proposed Algorithm

NFIQ Value 1 2 3 4 5
Number of Images 2 1 39 145 83
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(a) Fingerprint-ness = 0.56
NFIQ = 1

(b) Fingerprint-ness = 0.42
NFIQ = 4

(c) Fingerprint-ness = 0.36
NFIQ = 1

(d) Fingerprint-ness = 0.48
NFIQ = 1

Fig. 17: True positive detection cases by (a) orientation field discontinuity, (b) minutiae distribution, (c) and (d) fusion of both approaches.

(a) Fingerprint-ness = 0.92, NFIQ = 1 (b) Fingerprint-ness = 0.86, NFIQ = 1

Fig. 18: False negative examples of the proposed algorithm. Minutiae and orientation field discontinuities of each example are shown. (a)
Fingerprint with small altered area and (b) imitated fingerprint. Note that NFIQ also fails to detect these two altered fingerprints.

(a) Fingerprint-ness = 0.33
NFIQ = 5

(b) Fingerprint-ness = 0.57
NFIQ = 1

(c) Fingerprint-ness = 0.58
NFIQ = 2

(d) Fingerprint-ness = 0.52
NFIQ = 3

Fig. 19: False positive examples of the proposed algorithm. Poor ridge patterns: (a) NIST SD14, F0010811; and possibly altered fingerprints:
(b) F0019979, (c) F0002962, and (d) F0018103.

evade identification [41]. All three false positive cases
with NFIQ = 1 or 2 appear to have been altered (two
of them are shown in Figs. 19b and c).

5.2 Subject-Level Evaluation

In our altered fingerprint database, we observed that
when a person resorts to fingerprint alteration, he
tries to alter as many fingers as possible (Fig. 4).
This makes sense since large-scale AFIS applications
typically use a fusion of match scores from all ten
fingerprints for identification. So, altering just one or
two fingerprints is not likely to change the identi-
fication decision. Based on this observation, we use
the following decision level fusion rule to perform
the subject level detection for altered fingerprints.
When six or more fingerprints are detected as altered,
the subject is claimed to have altered fingerprints.
Subjects with fewer than six altered fingerprints are
not considered as a threat to the AFIS since even

five (out of ten) natural fingerprints are generally
sufficient for reliable identification.

For the subject level evaluation, 453 tenprint cards
with more than five altered fingerprints and 2,700
tenprint cards in NIST SD14 are used. Fig. 20 shows
the ROC curves of the proposed algorithm (includ-
ing three approaches) as well as the NFIQ criterion
for detecting subjects with altered fingerprints. At a
false positive rate of 0.3%, where the NFIQ criterion
determines subjects with six or more fingerprints of
NFIQ = 5 in NIST SD14 as persons who altered the
fingerprints, the proposed algorithm attains a true
positive rate of 66.4% while the NFIQ criterion obtains
a 26.5% true positive rate.

Fig. 21 shows an example of a tenprint card where
the subject level decision is successful. Even though
one altered finger is not correctly detected due to the
smoothness of the orientation field and the absence of
abnormality in minutiae distribution in altered area,
our subject level fusion algorithm still flags this per-
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Fig. 20: ROC curves of the proposed algorithm (including three
approaches) and NFIQ criterion for detecting altered fingerprints at
subject level.

son because as many as nine fingers are determined
to be altered.

Fusion of multiple fingerprints also helps to reduce
the false positive for a person who either did not alter
his fingerprints or simply has one or two fingerprints
that appear to have been altered due to accidents or
occupational reasons. Fig. 22 shows one such example.
In this case, however, the NFIQ criterion will falsely
raise an alarm for this subject since six of the ten
fingerprints are assigned the NFIQ value of 5.

We also have access to a small altered finger-
print database (254 images) from another government
agency. This database has larger variance in terms
of image format such as compression method, image
resolution, and image type (single finger impressions,
slap impressions, and tenprint cards). As a result,
we report the detection performance on this database
separately. We trained an SVM using all the 4,433
images in our first altered fingerprint database and
tested on this second small database. The same NFIQ
criterion was also used as a comparison. At the false
positive rate of 2.1%, the proposed algorithm shows
a 33.1% true positive rate compared to 9.4% for the
NFIQ criterion.

6 CONCLUSIONS AND FUTURE WORK

The success of automated fingerprint identification
systems (AFIS) and their extensive deployment all
over the world have prompted some individuals to
take extreme measures to evade identification by al-
tering their fingerprints. The problem of fingerprint
alteration or obfuscation is very different from that
of fingerprint spoofing, where an individual uses a
fake fingerprint in order to adopt the identity of
another individual. While the problem of spoofing
has received substantial attention in the literature, the
problem of obfuscation has not been addressed in
the biometric literature, in spite of numerous docu-
mented cases of fingerprint alteration for the purpose
of evading identification. While obfuscation may be

encountered with other biometric modalities (such as
face and iris), this problem is especially significant
in the case of fingerprints due to the widespread
deployment of AFIS in both government and civilian
applications and the ease with which fingerprints can
be obfuscated.

We have introduced the problem of fingerprint
alteration and conducted a quantitative analysis of
the threat of altered fingerprints to a commercial
fingerprint matcher. We also evaluated the capability
of a well known fingerprint image quality assessment
software, NFIQ, for detecting altered fingerprints.
Since the NFIQ has limited ability in distinguishing
altered fingerprints from natural fingerprints, we de-
veloped an algorithm to automatically detect altered
fingerprints based on the characteristics of the finger-
print orientation field and minutiae distribution. The
proposed algorithm based on the features extracted
from the orientation field and minutiae satisfies the
three essential requirements for alteration detection
algorithm: (i) fast operational time, (ii) high true
positive rate at low false positive rate, and (iii) ease
of integration into the AFIS. The proposed algorithm
and the NFIQ criterion were tested on a large public
domain fingerprint database (NIST SD14) as natural
fingerprints and an altered fingerprint database pro-
vided by a law enforcement agency. At a false positive
rate of 0.3%, the proposed algorithm can correctly
detect 66.4% of the subjects with altered fingerprints,
while 26.5% of such subjects are detected by the NFIQ
algorithm.

This study can be further extended along the fol-
lowing directions:

1) Determine the alteration type automatically so
that appropriate counter-measures can be taken.

2) Reconstruct altered fingerprints. For some types
of altered fingerprints where the ridge patterns
are damaged locally or the ridge structure is still
present on the finger but possibly at a different
location, reconstruction is indeed possible.

3) Match altered fingerprints to their unaltered
mates. A matcher specialized for altered finger-
prints can be developed to link them to unal-
tered mates in the database utilizing whatever
information is available in the altered finger-
prints.

4) Use multibiometrics [42] to combat the grow-
ing threat of individuals evading AFIS. Federal
agencies in the United States have adopted or
are planning to adopt multibiometrics in their
identity management systems (FBI’s NGI [43]
and DoD’s ABIS [44]). However, other biometric
traits can also be altered successfully. It has been
reported that plastic surgery can significantly
degrade the performance of face recognition sys-
tems [45] and that cataract surgery can reduce
the accuracy of iris recognition systems [46]. To
effectively deal with the problem of evading
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NFIQ = 3 NFIQ = 4 NFIQ = 2 NFIQ = 4 NFIQ = 4

NFIQ = 2 NFIQ = 4 NFIQ = 4 NFIQ = 4 NFIQ = 4

Fig. 21: True positive example of detection at subject level by the proposed algorithm. Although one of the altered fingerprints was not
detected, this subject is still detected as having altered fingerprints with high confidence since the other nine fingerprints (boxed fingerprints)
are correctly detected as altered. None of the ten fingerprints is detected as altered using the NFIQ criterion.

NFIQ = 3 NFIQ = 4 NFIQ = 3 NFIQ = 5 NFIQ = 5

NFIQ = 4 NFIQ = 5 NFIQ = 5 NFIQ = 5 NFIQ = 5

Fig. 22: True negative example at subject level identified by the proposed algorithm (NIST SD14, F0000121-F0000130). This subject can
pass our alteration detector since the nine fingerprints are determined to be natural fingerprints by the proposed algorithm. However, the
NFIQ criterion raises a false alarm for this subject since six of the fingerprints have the NFIQ value of 5.

identification by altering biometric traits, a sys-
tematic study of possible alteration approaches
for each major biometric trait is needed.

ACKNOWLEDGMENTS

We would like to acknowledge the support of Morpho
during the course of this research. An early version
of this research was supported by a grant from the
NSF Center for Identification Technology Research
(CITeR). We would like to thank John Manzo of the
FBI and Laura Tierney and Arun Vemury of the
DHS for providing access to the altered fingerprint
images. Part of Anil Jain’s research was supported by
WCU (World Class University) program funded by
the Ministry of Education, Science and Technology
through the National Research Foundation of Korea
(R31-10008). All correspondence should be directed to
Anil K. Jain.

REFERENCES

[1] J. Feng, A. K. Jain, and A. Ross, “Detecting Altered Fin-
gerprints,” in Proc. 20th International Conference on Pattern
Recognition (ICPR), August 2010, pp. 1622–1625.

[2] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition (Second Edition). Springer-Verlag, 2009.

[3] The U.S. Department of Homeland Security, US-VISIT, http:
//www.dhs.gov/usvisit.

[4] The Federal Bureau of Investigation (FBI), Integrated Auto-
mated Fingerprint Identification System (IAFIS), http://www.
fbi.gov/hq/cjisd/iafis.htm.

[5] H. Cummins, “Attempts to Alter and Obliterate Finger-
prints,” Journal of American Institute of Criminal Law and Crim-
inology, vol. 25, pp. 982–991, 1935.

[6] Surgically Altered Fingerprints, http://www.clpex.com/
images/FeetMutilation/L4.JPG.

[7] K. Singh, Altered Fingerprints, 2008, http://www.
interpol.int/Public/Forensic/fingerprints/research/
alteredfingerprints.pdf.

[8] M. Hall, “Criminals go to extremes to hide identities,”
USA TODAY, Nov. 6 2007, http://www.usatoday.com/news/
nation/2007-11-06-criminal-extreme N.htm.

[9] Criminals cutting off fingertips to hide IDs, 2008, http://www.
thebostonchannel.com/news/15478914/detail.html.

[10] A. Antonelli, R. Cappelli, D. Maio, and D. Maltoni, “Fake
Finger Detection by Skin Distortion Analysis,” IEEE Trans.
Information Forensics and Security, vol. 1, no. 3, pp. 360–373,
2006.

[11] K. A. Nixon and R. K. Rowe, “Multispectral Fingerprint Imag-
ing for Spoof Detection,” in Proc. SPIE, Biometric Technology for
Human Identification II, A. K. Jain and N. K. Ratha, Eds., vol.
5779, 2005, pp. 214–225.

[12] E. Tabassi, C. Wilson, and C. Watson, “Fingerprint Image
Quality,” NISTIR 7151, August 2004, http://fingerprint.nist.
gov/NFIS/ir 7151.pdf.

[13] F. Alonso-Fernandez, J. Fierrez, J. Ortega-Garcia, J. Gonzalez-
Rodriguez, H. Fronthaler, K. Kollreider, and J. Bigun, “A
Comparative Study of Fingerprint Image-Quality Estimation
Methods,” IEEE Trans. Information Forensics and Security, vol. 2,
no. 4, pp. 734–743, 2007.

[14] R. Cappelli, D. Maio, and D. Maltoni, “Synthetic Fingerprint-
Database Generation,” in Proc. 16th International Conf. on Pat-
tern Recognition, August 2002, pp. 744–747.

[15] K. Wertheim, “An Extreme Case of Fingerprint Mutilation,”
Journal of Forensic Identification, vol. 48, no. 4, pp. 466–477, 1998.



15

[16] History of Fingerprint Removal, http://jimfisher.edinboro.
edu/forensics/fire/print.html.

[17] J. Patten, Savvy criminals obliterating fingerprints to avoid
identification, 2008, http://www.eagletribune.com/punews/
local story 062071408.html.

[18] Woman Alters Fingerprints to Deceive Taiwan Immigration
Fingerprint Identification System, October 2008,
http://www.zaobao.com/special/newspapers/2008/10/
hongkong081002r.shtml (In Chinese).

[19] Sweden Refugees Mutilate Fingers, 2004, http://news.bbc.co.
uk/2/hi/europe/3593895.stm.

[20] Asylum Seekers Torch Skin off Their Fingertips So They Can’t
Be ID’d by Police, 2008, http://www.mirror.co.uk/sunday-
mirror/2008/06/29/asylum-seekers-torch-skin-off-their-
fingertips-so-they-can-t-be-id-d-by-police-98487-20624559/.

[21] Surgically Altered Fingerprints Help Woman Evade Immi-
gration, http://abcnews.go.com/Technology/GadgetGuide/
surgically-altered-fingerprints-woman-evade-immigration/
story?id=9302505.

[22] Three Charged with Conspiring to Mutilate
Fingerprints of Illegal Aliens, July 9 2010,
http://www.eagletribune.com/local/x739950408/Three-
charged-with-conspiring-to-mutilate-fingerprints-of-illegal-
aliens.

[23] EURODAC: a European Union-Wide Electronic
System for the Identification of Asylum-Seekers, http:
//ec.europa.eu/justice home/fsj/asylum/identification/fsj
asylum identification en.htm.

[24] Neurotechnology Inc., VeriFinger, http://www.
neurotechnology.com/vf sdk.html.

[25] NIST Special Database 4, NIST 8-Bit Gray Scale Images of
Fingerprint Image Groups (FIGS), http://www.nist.gov/srd/
nistsd4.htm.

[26] J. W. Burks, “The Effect of Dermabrasion on Fingerprints: A
Preliminary Report,” Archives of Dermatology, vol. 77, no. 1, pp.
8–11, 1958.

[27] Men in Black (1997), http://www.imdb.com/title/tt0119654/.
[28] M. V. de Water, “Can Fingerprints Be Forged?” The Science

News-Letter, vol. 29, no. 774, pp. 90–92, 1936.
[29] M. Wong, S.-P. Choo, and E.-H. Tan, “Travel Warning with

Capecitabine,” Annals of Oncology, 2009.
[30] K. Nandakumar, A. K. Jain, and A. Ross, “Fusion in Multibio-

metric Identification Systems: What about the Missing Data?”
in Proc. 2nd International Conference on Biometrics (ICB), June
2009, pp. 743–752.

[31] H. Plotnick and H. Pinkus, “The Epidermal vs. the Dermal Fin-
gerprint: An Experimental and Anatomical Study,” Archives of
Dermatology, vol. 77, no. 1, pp. 12–17, 1958.

[32] Altered fingerprints detected in illegal immigration at-
tempts, http://www.japantoday.com/category/crime/view/
altered-fingerprints-detected-in-illegal-immigration-attempts.

[33] NIST Special Database 14, NIST Mated Fingerprint Card Pairs
2 (MFCP2), http://www.nist.gov/srd/nistsd14.htm.

[34] J. Zhou and J. Gu, “A Model-Based Method for the Compu-
tation of Fingerprints’ Orientation Field,” IEEE Trans. Image
Processing, vol. 13, no. 6, pp. 821–835, 2004.

[35] S. Huckemann, T. Hotz, and A. Munk, “Global Models for
the Orientation Field of Fingerprints: An Approach Based
on Quadratic Differentials,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 30, no. 9, pp. 1507–1519, 2008.

[36] Y. Wang and J. Hu, “Global Ridge Orientation Modeling for
Partial Fingerprint Identification,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 33, no. 1, pp. 72–87, 2010.

[37] C. Watson, M. Garris, E. Tabassi, C. Wilson, R. M. McCabe,
S. Janet, and K. Ko, “NIST Biometric Image Software,” http:
//www.nist.gov/itl/iad/ig/nbis.cfm.

[38] A. M. Bazen and S. H. Gerez, “Systematic Methods for the
Computation of the Directional Fields and Singular Points
of Fingerprints,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 905–919, 2002.

[39] N. Dalal and B. Triggs, “Histograms of Oriented Gradients
for Human Detection,” in Proc. Computer Vision and Pattern
Recognition, June 2005, pp. 886–893.

[40] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, software available at http://www.csie.ntu.edu.
tw/∼cjlin/libsvm.

[41] L. M. Wein and M. Baveja, “Using Fingerprint Image Quality
to Improve the Identification Performance of the U.S. Visitor
and Immigrant Status Indicator Technology Program,” Proc.
National Academy of Sciences of the U.S.A., vol. 102, no. 21, pp.
7772–7775, 2005.

[42] A. Ross, K. Nandakumar, and A. K. Jain, Handbook of Multi-
biometrics. Springer Verlag, 2006.

[43] The FBI’s Next Generation Identification (NGI), http://www.
fbi.gov/hq/cjisd/ngi.htm.

[44] DoD Biometrics Task Force, http://www.biometrics.dod.mil/.
[45] R. Singh, M. Vatsa, H. S. Bhatt, S. Bharadwaj, A. Noore, and

S. S. Nooreyezdan, “Plastic Surgery: A New Dimension to Face
Recognition,” IEEE Trans. Information Forensics and Security,
vol. 5, no. 3, pp. 441–448, 2010.

[46] R. Roizenblatt, P. Schor, F. Dante, J. Roizenblatt, and R. Belfort,
“Iris Recognition As a Biometric Method after Cataract
Surgery,” American Journal of Ophthalmology, vol. 140, no. 5,
pp. 969–969, 2005.

Soweon Yoon received her BS and MS de-
grees from the School of Electrical and Elec-
tronic Engineering, Yonsei University, Seoul,
Korea, in 2006 and 2008, respectively. She
is currently a Ph.D. student in the Depart-
ment of Computer Science and Engineer-
ing, Michigan State University. Her research
interests include pattern recognition, image
processing, and computer vision with appli-
cations in biometrics.

Jianjiang Feng is an assistant professor in
the Department of Automation at Tsinghua
University, Beijing. He received the B.S. and
Ph.D. degrees from the School of Telecom-
munication Engineering, Beijing University
of Posts and Telecommunications, China, in
2000 and 2007, respectively. From 2008 to
2009, he was a Post Doctoral researcher in
the Pattern Recognition & Image Processing
laboratory at Michigan State University. His
research interests include fingerprint recog-

nition, palmprint recognition, and structural matching.

Anil K. Jain is a university distinguished pro-
fessor in the Department of Computer Sci-
ence and Engineering at Michigan State Uni-
versity, East Lansing. His research interests
include pattern recognition and biometric au-
thentication. He served as the editor-in-chief
of the IEEE Transactions on Pattern Analysis
and Machine Intelligence (1991-1994). He is
the co-author of a number of books, including
Handbook of Fingerprint Recognition (2009),
Handbook of Biometrics (2007), Handbook

of Multibiometrics (2006), Handbook of Face Recognition (2005),
BIOMETRICS: Personal Identification in Networked Society (1999),
and Algorithms for Clustering Data (1988). He served as a member
of the Defense Science Board and The National Academies commit-
tees on Whither Biometrics and Improvised Explosive Devices. He
received the 1996 IEEE Transactions on Neural Networks Outstand-
ing Paper Award and the Pattern Recognition Society best paper
awards in 1987, 1991, and 2005. He is a fellow of the AAAS, ACM,
IAPR, and SPIE. He has received Fulbright, Guggenheim, Alexan-
der von Humboldt, IEEE Computer Society Technical Achievement,
IEEE Wallace McDowell, ICDM Research Contributions, and IAPR
King-Sun Fu awards.




