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Abstract

Latent fingerprints, or simply latents, have been con-

sidered as cardinal evidence for identifying and convicting

criminals. The amount of information available for identifi-

cation from latents is often limited due to their poor quality,

unclear ridge structure and occlusion with complex back-

ground or even other latent prints. We propose a latent

fingerprint enhancement algorithm, which expects manu-

ally marked region of interest (ROI) and singular points.

The core of the proposed algorithm is a robust orientation

field estimation algorithm for latents. Short-time Fourier

transform is used to obtain multiple orientation elements in

each image block. This is followed by a hypothesize-and-

test paradigm based on randomized RANSAC, which gener-

ates a set of hypothesized orientation fields. Experimental

results on NIST SD27 latent fingerprint database show that

the matching performance of a commercial matcher is sig-

nificantly improved by utilizing the enhanced latent finger-

prints produced by the proposed algorithm.

1. Introduction

Automated Fingerprint Identification Systems (AFIS)

have been successfully used in forensics and law enforce-

ment applications to reliably identify an individual. Fin-

gerprint matching scenarios generally fall into one of the

following two categories: (i) tenprint search and (ii) latent

search. In tenprint search, rolled and plain impressions of a

subject’s fingers are searched against the tenprint fingerprint

database. Rolled fingerprint images are obtained by rolling

a finger from one side to the other (“nail-to-nail”) in order

to capture all the ridge details of a finger (Fig. 1a). Plain

fingerprints are acquired by pressing a fingertip onto a flat

surface of either a paper for inking methods or a flatbed of a

live-scan device (Fig. 1b). While rolled fingerprints contain

a large number of minutiae (about 100), plain fingerprints

capture relatively small finger area with smaller number of
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minutiae (about 50) and lower skin distortion than rolled

prints. The matching performance of the AFIS for tenprint

search has reached a satisfactory level in most fingerprint

recognition applications. In 2003 Fingerprint Vendor Tech-

nology Evaluation (FpVTE) [10], the best rank-1 identifica-

tion rate of the commercial matchers was already 99.4% on

a database of 10,000 plain fingerprints.

Latent fingerprints (see Fig. 1c), which are lifted from

the surface of objects touched or handled by a person, are

an extremely important source of evidence in crime scene

investigation to identify and convict the suspects. How-

ever, latent search is still a challenging problem due to their

poor quality. The latent fingerprints contain partial area of

a finger, and often have smudged or blurred ridges [3] and

large nonlinear skin distortion due to pressure variations.

In current practice of latent matching, the examiners manu-

ally mark minutiae and region of interest (ROI), search the

input latent against a large database using AFIS, and then

investigate top K (typically, K = 50) candidates retrieved

from the database by manually comparing minutiae as well

as Level 3 features such as pores, dots, incipient ridges, etc.,

if they are visible.

The success of the AFIS in forensics and law enforce-

ment agencies worldwide is based on the availability of

a large database of rolled and plain prints of the ten fin-

gers of all apprehended criminals. As a result, the size of

(a) (b) (c)

Figure 1. Three types of impressions of the same finger. (a) Rolled

fingerprint, (b) plain fingerprint, and (c) latent fingerprint.



the background database is huge and is constantly increas-

ing; currently, FBI’s IAFIS fingerprint database contains

the records of about 70 million subjects. Therefore, for

latent search, a “Lights-Out” identification mode is desir-

able. “Lights-Out” latent fingerprint identification refers to

a system which accepts a latent image as input and returns

a short list of candidates from the database with no human

intervention [1]. In a recent NIST report on the Evaluation

of Latent Fingerprint Technologies (ELFT) [7], the most ac-

curate latent matcher achieved 66.7% rank-1 identification

rate in matching 1,114 latents against 100,000 rolled and

plain tenprint cards when the latent image and the full fea-

ture set marked by latent examiners were available as input

to the matcher.

The primary focus in developing automatic latent iden-

tification algorithms is to reduce the human intervention to

as little as possible while preserving the matching accuracy

with full manual markup. Automatic fingerprint feature ex-

tractors designed for rolled/plain prints do not work prop-

erly on latents since many true minutiae are likely to be

missed due to low ridge clarity and many spurious minutiae

are likely to be extracted due to background noise. In this

paper, we propose an automatic latent fingerprint enhance-

ment algorithm which requires minimal markup - ROI and

singular points (i.e., core and delta). Note that we do not

require a latent examiner to mark minutiae or ridges which

demand significant effort. The objectives of the latent fin-

gerprint image enhancement are to: (i) improve automatic

feature extraction and matching performance of latent fin-

gerprints, and (ii) provide visually enhanced images for la-

tent examiners to mark fingerprint features better.

2. Latent Enhancement

Estimating orientation field of a fingerprint is a crucial

stage in most fingerprint matching algorithms. Orientation

field, θ(x, y), represents the ridge flow of a fingerprint at

each location. To reduce computational and storage com-

plexity, fingerprint orientation field is generally defined at

the block level rather than at the pixel level. The domi-

nant ridge orientations in a block are called orientation el-

ements and defined in the interval [0, π). Quality of finger-

print ridges can be improved by enhancing the local ridge

clarity along the ridge orientation and suppressing noise in

other directions. The proposed latent fingerprint enhance-

ment algorithm consists of the following four steps:

1. Manual markup of ROI and singular points.

2. Orientation element computation using the short-time

Fourier transform (STFT).

3. Orientation field estimation using R-RANSAC.

4. Fingerprint enhancement using Gabor filters [6].

Details of steps 1-3 are described in the following sections.

(a) (b) (c)

Figure 2. Manual markup of singular points. (a) No singularities

are present, (b) two real singular points, and (c) two real cores and

two virtual deltas.

2.1. Manual Markup

We assume that the following information is manually

marked by fingerprint examiners: (i) fingerprint region in

the latent image, or the region of interest (ROI), and (ii)

singular points. ROI is a closed region that is bounded at the

outermost trim of the latent. Only the fingerprint features in

the ROI are regarded as valid.

Singularities observed in almost all the fingerprints fall

into one of the following categories: (i) no singularity (i.e.,

arch type of fingerprints), (ii) one core and one delta (i.e.,

loop and tented arch type), and (iii) two cores and two deltas

(i.e., whorl and twin loop type). Note that not all singular

points may be observed in a given fingerprint image; for

example, plain impression tends to capture only the central

area of a finger. Based on this observation, latent examiners

are expected to mark singular points using the following

convention:

• If the latent does not contain any singularity, no singu-

lar points are marked (see Fig. 2a). Even though a latent

fingerprint may in fact come from a finger with singular-

ity, the latent will be treated as plain arch, the simplest

fingerprint pattern.

• If the latent contains singular points, cores and deltas

should be marked in pairs. For example, the latent fin-

gerprint in Fig. 2b has one core and one delta in ROI.

These singular points are called real singular points

since they are present in the ROI. On the other hand,

when the numbers of core and delta are not equal, the

missing singular points are marked with the best guess.

These are called virtual singular points since they are

not observable in the ROI. For example, the latent in

Fig. 2c contains only two real cores and the two virtual

deltas are also marked with the best guess.

2.2. Orientation Element Computation

Fingerprint ridges in a local image block generally con-

tain only one dominant orientation. A popular approach to
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Figure 3. Orientation elements extracted from a latent using STFT.

(a) Latent (NIST SD27, G027) and (b) orientation elements.

compute the orientations in a block is based on the short-

time Fourier transform (STFT) [4], which detects the peaks

in the magnitude spectrum of the local image. However,

in latent fingerprints, multiple local maxima may appear in

the magnitude spectrum due to the structured background

noise such as lines (see Fig. 3a), and the peak correspond-

ing to the fingerprint ridges can be easily confused with the

peaks corresponding to the structured noise. Thus, we com-

pute multiple dominant orientations (orientation elements)

in each block and determine the true ridge orientation in the

next stage. Fig. 3b shows the extracted orientation elements

in each block in the ROI from the latent in Fig. 3a.

For each local block of 16 × 16 pixels in the ROI, the

orientation elements are computed as follows:

1. Compute the Fourier transform of a local image block

(see Figs. 4a and b).

2. Multiply the magnitude spectrum of the image with a

set of directional filters (Fig. 4c) in Fourier domain;

each directional filter is constructed by multiplying a

binary mask (1 for θ ∈
[

π
L

(

i − 1
2

)

, π
L

(

i+ 1
2

))

, i =
0, 1, . . . , L− 1) and a band-pass filter whose frequency

range includes possible fingerprint ridge frequencies.

L = 8 is selected.

3. Sum the energy for each filtered response (Fig. 4d).

4. Find peaks (local maxima) in the one-dimensional en-

ergy plot. Orientation corresponding to the peak from

the i-th directional filter is
[

π
L
i+ π

2

]

mod π.

Fig. 4e shows two orientation elements extracted from the

image block in Fig. 4a.

2.3. Orientation Field Estimation

In this stage, we use a two-level approach to estimate the

orientation field of a latent: (i) the orientation elements in a

neighborhood are merged into an orientation group whose

elements are compatible each other, and (ii) a global ori-

entation field is robustly estimated by a set of orientation

groups. The following sections describe the orientation field

model and the details in orientation field estimation algo-

rithm.

2.3.1 Orientation Field Model

Orientation field, θ(x, y), of fingerprint can be decomposed

into two components:

θ(x, y) = [θs(x, y) + θr(x, y)] mod π, (1)

where θs(x, y) represents the singular orientation field and

θr(x, y) represents the residual orientation field.

Singular orientation field, θs(x, y), describes the abstract

ridge flow determined by only the singular points (i.e., cores

and deltas) [9] where fingerprint orientation field changes

abruptly. The singular orientation field is obtained by:

θs(z)=

[

1

2
arg

(

ei2θ∞
(z−zc1)(z−zc2)· · ·(z−zcm)

(z−zd1)(z−zd2)· · ·(z−zdm
)

)]

modπ.

(2)

where z = x+iy, {zcj} and {zdj
} are the positions of cores

and deltas, and θ∞ is the orientation at infinity.

Residual orientation field, θr(x, y), represents natural

changes in ridge flow of a fingerprint that are not influenced

by the singularities; it is continuous everywhere. A set of

polynomials can represent the sine and cosine part of the

residual orientation field as follows:

gnc (x, y) , cos 2θr(x, y) =

n
∑

i=0

i
∑

j=0

ai,jx
jyi−j , (3)

gns (x, y) , sin 2θr(x, y) =
n
∑

i=0

i
∑

j=0

bi,jx
jyi−j , (4)

where {ai,j} and {bi,j} are the polynomial coefficients for

gnc (x, y) and gns (x, y), respectively. The order of the poly-

nomials is set as 4 (i.e., n = 4).

Fig. 5 shows an example where the orientation field

model is applied to a fingerprint. It indicates that the above

model can successfully represent the orientation field of a

fingerprint.

2.3.2 Orientation Element Grouping

Neighboring orientation elements which are compatible

with each other are grouped in order to facilitate the subse-

quent orientation field estimation. Based on the continuity

of the residual orientation field, compatible orientation ele-

ments are grouped together and a unique label is assigned

to each group. Let θ
(i)
r (x, y), for i = [1, . . . , L(x, y)], be

the i-th residual orientation element at (x, y), and L(i)(x, y)
be the label assigned to this orientation element. Initially,

L(i)(x, y) = 0 for all i and (x, y). Orientation element

grouping starts from the elements which are the only dom-

inant orientation in a block; they become seed points. For



(a) (b) (c) (d) (e)

Figure 4. Orientation element computation. (a) A local image block, (b) magnitude spectrum of (a), (c) directional filters, (d) energy of

filtered responses by each directional filter, and (e) two orientation elements in this local block that correspond to the two peaks in (d).

(a) (b) θ(x, y) (c) θs(x, y) (d) θr(x, y) (e) θ̂r(x, y) (f) θ̂(x, y)

Figure 5. Orientation field model. (a) Fingerprint (NIST SD4, F0004), (b) orientation field extracted from (a), (c) singular component of

the orientation field, (d) residual component of the orientation field, (e) modeled residual orientation field using the 4th order polynomial

model, and (f) reconstructed orientation field, θ̂(x, y) = θs(x, y) + θ̂r(x, y).

a seed point θ
(i)
r (x, y), a neighboring orientation element

θ
(j)
r (x′, y′) is deemed as a candidate to belong to the same

group as this seed point if (i) L(j)(x′, y′) = 0: no label

is yet assigned to this neighboring orientation element; (ii)

the distance between two blocks is within 5 blocks; and (iii)

|θ
(i)
r (x, y)−θ

(j)
r (x′, y′)| < π/2L: the orientation difference

is less than the threshold.

The candidates which are 4-connected to the seed point

(i.e., a 4-connected path can be found among the set of

candidates) are assigned the same label as the seed point.

Once all the seed points are grouped, the orientation ele-

ments which are the only one unlabeled element in a block

become new seed points. This procedure is repeated until

every orientation element has been assigned a label. Fig.

6 shows five of the orientation element groups in a latent

fingerprint.

2.3.3 Hypotheses Generation

Given a set of orientation element groups as the input, hy-

potheses for residual orientation field are built based on the

randomized Random Sample Consensus (R-RANSAC) al-

gorithm [8]. Generally, RANSAC algorithms consist of

three basic steps: (i) select a set of initial data points ran-

domly, (ii) build a hypothesis, and (iii) evaluate the hypoth-

esis. A set of data points that are consistent with a given

hypothesis is called consensus set. The differences between

R-RANSAC and the basic RANSAC are: (i) the number of

initial data points selected is more than the minimum num-

ber of points required to build a hypothesis, and (ii) the hy-

pothesis evaluation against all data points is conducted only

if all initial data points are consistent with the hypothesis.

Let G be the set of all orientation elements and N be the

total number of the orientation groups. An orientation group

is randomly selected from G based on the following prob-

ability density function (pdf) which is constructed from the

area of each group. The probability for random selection,

pi, of the i-th group with area Ai is defined as:

pi = Ai/

N
∑

j=1

Aj . (5)

(a) (b) (c)

Figure 6. Orientation element grouping. (a) Fingerprint (NIST

SD27, G017), (b) residual orientation elements, and (c) five ori-

entation element groups, each shown in a different color.
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Figure 7. One iteration of hypothesis generation procedure for the latent in Fig. 6. An orientation group is newly added to S at each

step from (1) to (6) (newly added groups are marked as red and existing groups in S are marked green in the left image of each pair); a

hypothesis is built at every update in S and checked if S are all consistent with the hypothesis (red blocks in right images indicate consistent

S). The final hypothesis M is obtained at the end of the iteration when there are no more groups can be added to S. Then, M in (6) is

evaluated by checking the existence of singularity (see Fig. 8).

Orientation elements in the selected group are added to

a set S; the size of S increases monotonically during an

iteration. Initially, non-overlapping orientation groups are

selected randomly according to the pdf until the size of S
is greater than the minimum number of data points (m) to

build a hypothesis; m is 15 for the 4th order polynomial.

Once the size of S is greater than m, a hypothesis is built

using all orientation elements in the current S. The hypoth-

esized model refers to the coefficients of the polynomials,

{ai,j} and {bi,j}, in Eqs. (3) and (4) which are obtained

using least-squares estimation by minimizing

∑

θ
(i)
r (x,y)∈S

|gnc (x, y)− cos 2θ(i)r (x, y)|2, (6)

∑

θ
(i)
r (x,y)∈S

|gns (x, y) − sin 2θ(i)r (x, y)|2. (7)

If all orientation elements in S are within some error tol-

erance of the hypothesis (π/L), the consensus set S∗ is de-

termined by testing the hypothesis against all orientation el-

ements in G and this hypothesis is recorded if the size of the

S∗ is the largest in this iteration. The current iteration con-

tinues by adding a new non-overlapping orientation group

to S. Fig. 7 shows the procedure of hypothesis generation

for an iteration.

If not all orientation elements in S are consistent with

the hypothesis, one of the following two actions is taken: (i)

if the inconsistent group is the most recently added one, re-

move this group from S, add a new group to S, and continue

the current iteration; (ii) otherwise, terminate the iteration

and evaluate the best hypothesis at this iteration. Action (ii)

is taken when no more non-overlapping orientation groups

are found to be added in S.

The best hypothesis at each iteration is verified by check-

ing if the hypothesized residual orientation field includes

any singularity in the ROI. Singularities are found using

Poincaré index [2]. The hypothesis is accepted if there is

no singularity present in the ROI. Fig. 8 shows an accepted

hypothesis, and the reconstructed orientation field combin-

ing the hypothesized residual orientation field with singular

orientation field represents the true ridge flow well. If the

hypothesized residual orientation field contains any singu-

larity, it is rejected (see Fig. 9).

The algorithm terminates when the number of iterations

exceeds (i) a predetermined maximum number of trials, or

(ii) the minimum number of trials k satisfying [5]

k ≥
log(1 − pf)

log(1− εm)
, (8)

where pf is the desired probability of having at least one S
that consists of all orientation groups from the target latent

fingerprint and ε is the true fraction of orientation elements

from the latent in G. Since ε is typically unknown, it is

updated with the size of the best consensus set during itera-

tions.

Once the top-10 best candidate hypotheses for the ori-

entation field are found, the latent fingerprint is enhanced



(a) (b)

Figure 8. Accepted hypothesis. (a) Accepted hypothesized resid-

ual orientation field and (b) reconstructed orientation field using

(a). Red blocks in (a) and (b) indicate the consensus set.

(a) (b)

Figure 9. Rejected hypothesis. (a) Rejected hypothesized residual

orientation field with singularities (red circle for core and yellow

triangle for delta) and (b) reconstructed orientation field using (a).

using Gabor filters [6] whose orientations are tuned to each

orientation field hypothesis and whose frequencies are set to

a fixed value (1/8 ridges per pixel). All ten enhanced latents

are input to the fingerprint matcher. Then, the ten match

scores output by the matcher are fused by the max rule.

3. Experimental Results

3.1. Database

The experiments are conducted on the public domain la-

tent fingerprint database, NIST SD27, which contains 258

latent fingerprints and their corresponding rolled finger-

prints. Each latent image in this database was assigned one

of three (subjective) quality levels - good, bad, and ugly - by

latent fingerprint examiners. The numbers of “good”, “bad”

and “ugly” latents are 88, 85 and 85, respectively. To make

the latent matching problem more realistic and challeng-

ing, the background database was extended to 27,258 fin-

gerprints by including 27,000 rolled prints in NIST SD14.

3.2. Performance Evaluation

The accuracy of the proposed latent fingerprint enhance-

ment algorithm is evaluated by measuring latent matching

Algorithm. Hypotheses Generation for Orientation Field Es-

timation

m: minimum number of blocks to build a hypothesis.

G: the set of orientation elements in all groups.

S: a set of orientation elements in selected groups (initially,

S is empty).

pi for i = 1, . . . , N : a pdf for random selection.

I. Hypothesis

1. Initial S: Non-overlapping groups are selected randomly

based on the given p such that the total number of orienta-

tion elements in S is greater than m.

2. Build a hypothesis M : {ai,j} and {bi,j} are estimated by

the least-squares estimation using S.

3. If all orientation elements in S are consistent with the

M , go to step 4. If the inconsistent orientation elements

are only from the most recently added group, discard this

group from S and go to step 5. Otherwise, go to step 6.

4. Find the consensus set S∗: S∗ is determined by a subset

of G which are within some error tolerance of the regular-

ized residual orientation field from M . If |S∗| > |Sbest|,
update Sbest and Mbest with S and M . Go to step 5.

5. Add a group to S which is selected randomly in G and not

overlapped with any orientations in S and go back to step

2. If there is no groups to be added, go to step 6.

6. Accept/reject the hypothesis: Check if the regularized

residual orientation field from the hypothesis Mbest con-

tains any singularity [2]. If singularity exists in the ROI,

reject the hypothesis. Otherwise, proceed to evaluation

phase.

II. Evaluation

The accepted hypothesis is ranked in a descending order

according to the size of the consensus set S∗

best.

Go back to I.

III. Output

Top-10 best hypotheses are retrieved from the accepted hy-

potheses.

performance using a commercial matcher, Neurotechnol-

ogy VeriFinger SDK 4.2. The Cumulative Match Charac-

teristic (CMC) curves of four types of the input to the fin-

gerprint matcher are shown in Fig. 10. These inputs are: (i)

enhanced latent by manually marked orientation field; (ii)

enhanced latent by the estimated orientation field using the

proposed algorithm; (iii) enhanced latent by the estimated

orientation field using least-squares method [11]; and (iv)

latent image with no enhancement.

Note that the performance of using manually marked ori-

entation field provides the upper bound. As shown in Fig.

10a, the automatic matching performance is significantly

improved when the enhanced images are used as input to

the matcher. Furthermore, the proposed algorithm based

on R-RANSAC performs better than least-squares estima-

tion. The CMC curves are also shown separately accord-

ing to the quality of the latents. For good quality latents,
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Figure 10. CMC curves. (a) All latents, (b) good quality latents, (c) bad quality latents, and (d) ugly quality latents.

the proposed algorithm achieved performance close to the

upper bound (manually marked orientation field; see Fig.

10b). For bad and ugly quality latents, while the proposed

algorithm performs much better compared to least-squares

estimation method or no enhancement case (see Figs. 10c

and d), there is a significant gap in performance between

the proposed algorithm and the upper bound. This shows

that the automatic orientation field estimation in very poor

quality latents is still challenging.

Fig. 11 shows four successful examples where the pro-

posed enhancement algorithm improved the match score

with the mated rolled fingerprint. In these four cases, the

mated rolled print can be retrieved at a high rank from the

large database of 27,258 images. Fig. 12 shows a failure

case where the failure in orientation field estimation leads

to a lower genuine match score after enhancement.

4. Conclusions and Future Work

Latent fingerprints found at crime scenes provide crucial

evidence to law enforcement agencies. The latents are typ-

ically searched against a large fingerprint database which

is the collection of rolled/plain fingerprints of previously

apprehended criminals. Due to the poor quality of the la-

tents, latent examiners perform manual feature markup and

visual verification between the latent and the candidate fin-

gerprints from the database. A “Lights-Out” mode for la-

tent identification is desired to reduce the burden on latent

examiners and to introduce a level of consistency in finger-

print matching, particularly in searching ever growing fin-

gerprint database.

We proposed a latent fingerprint enhancement algorithm

which only requires minimal markup (ROI and singular

points) to improve the automatic matching accuracy. The

orientation field of the latents is estimated by R-RANSAC

which is effectively used to find a correct orientation field

model in the presence of noise and distortion. The es-

timated orientation field is used to enhance ridge struc-

tures by Gabor filtering. The proposed algorithm signifi-

cantly improved the matching performance of a commercial

matcher when the enhanced latents are fed into the matcher.

We propose to extend our work as follows:

• Improve the performance of the orientation field estima-

tion algorithm for bad and ugly quality latents in NIST

SD27.

• Reduce the human markup even further; ideally, the in-

put of the algorithm should only be the latent image.



• Assess the quality of the latents automatically. The reli-

ability of the features extracted from the latents can be

adjusted according to the quality to automatically de-

termine the degree of human intervention for feature

markup and improve the overall matching accuracy.
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(a) Good quality latent (G019): {4,5277}→{54,1}

(b) Good quality latent (G027): {1,4714}→{22,1}

(c) Bad quality latent (B142): {3,1253}→{34,1}

(d) Ugly quality latent (U282): {0,27258}→{24,1}

Figure 11. Successful examples where the proposed algorithm im-

proves the matching performance. Left: latent, Center: estimated

orientation field, and Right: binarized enhanced image. Match

score of the latent with the mated rolled print and its retrieval rank

from a database of 27,258 rolled prints are shown as: {score, rank}
before enhancement → {score, rank} after enhancement.

Figure 12. Failure case (G029). Due to the failure in orientation

field estimation, the match score drops from 23 (before enhance-

ment) to 3 (after enhancement), and the retrieval rank for the true

mate is increased from 12 to 15801.




